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Abstract—Ambient Intelligence considers responsive en-
vironments in which applications and services adapt their
behavior according to the user’s needs and changing con-
text. One of the most challenging aspects for many applica-
tions in Ambient Intelligence environments is location and
orientation of the surrounding objects. This is especially im-
portant for effective cooperation among mobile physical ob-
jects in such smart environments. In this paper, we propose
a robust indoor positioning system that provides 2D posi-
tioning and orientation information for mobile objects. The
system utilizes low-range passive Radio Frequency Identi-
fication (RFID) technology. The proposed system, which
consists of RFID carpets and several peripherals for sensor
data interpretation, is implemented and tested through ex-
tensive experiments. Our results show that the proposed
system outperforms similar existing systems in minimizing
the average positioning error.

Index Terms—Ambient Intelligence, Smart Environment;
RFID; Location and Orientation measurement

I. Introduction

IN Ambient Intelligence (AmI), Information and Com-
munication Technology is expected to become ubiqui-

tous as millions of computers are getting embedded in our
everyday environments [1]. Such advancement has opened
a new era for context-aware computing where applications
are required to become accustomed not only to the com-
puting and communications constraints and resources, but
also to the contextual information such as objects in the
surrounding and people and activities in the environs, and
even emotions and other states of users. Context-aware ap-
plications are capable of obtaining contextual knowledge in
order to allow users to access a wide variety of services that
are tailored on specific desires and preferences, according
to the conditions in the smart environment [2]. Exam-
ples of context-aware applications of smart environments
include intelligent offices or digital homes, as described by
IST Advisory Group [3]. A typical example of such en-
vironments is described in section II. In this paper, we
focus on context-aware applications in indoor smart envi-
ronments where multiple mobile physical objects exist and
are expected to cooperate among each other to provide the
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user with a customized service according to the surround-
ing context. Mobile objects are objects in the environment
for which their location and/or orientation could change
for different reasons, such as chairs, tables, carts, etc., or
objects that do not move that often such as couches and
beds. In all cases, we need to determine the position and
orientation of the objects to be aware of their location in
case they are moved. In such environments, context-aware
applications can only adapt their behavior while collect-
ing and adjusting information for the user if the objects’
position and orientation is estimated with an appropriate
grain-size. This paper takes upon the challenge of deter-
mining the location and orientation of mobile objects in
indoor environment by proposing a robust and novel sys-
tem based on passive RFID technology.

Our proposed system consists of RFID carpets and sev-
eral peripherals for sensor data interpretation. RFID
tags are widely recognized for their distinctive advantages
with respect to their low cost and identification capabil-
ity [4]. They are also known for their promising poten-
tial in context-aware applications. Furthermore, passive
RFID tags have practically no lifetime limit because they
do not require batteries to maintain the wake-and-query
cycle that active tags use [5]. In our system, described in
details in section IV, RFID tags are mounted on carpet
pads where the mobile objects are placed. The system is
designed to work for objects that are connected, directly or
indirectly, to a point which is at a short distance from the
ground. The RFID tags are placed on fixed, pre-defined
positions within a specific carpet pad. The tags do not
store any position information except their row and column
coordinates within the corresponding carpet on which they
are mounted. This special component-based design allows
us (at low cost) to dynamically extend the RFID carpet
for covering arbitrary large spaces. Moreover, this design
allows us to manipulate the density of RFID tags on dif-
ferent partitions of the carpet to minimize the error and
to separately control specific areas of the carpet in order
to meet specific application needs.

While the open literature describes different approaches
for localization and orientation, our system outperforms
existing systems in minimizing the average positioning er-
rors. Furthermore, existing techniques for indoor localiza-
tion such as vision sensor or WiFi based approaches are
often sensitive to changes within the environment. For
exmple when metal objects are moved from one place to
another within the environment, change in the electro mag-
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netic fields happen which significantly influences the ro-
bustness and precision of wireless positioning approaches.
Another example is the changes in lightig conditions or the
reflection of infrared signals by objects in the environment.
This change affects the precision and robustness of camera
based tracking systems. One of the major advantages of
RFID technology over vision based or other sensor based
methods is that reading RFID tags does not require line of
sight, making RFIDs immune to problems associated with
occlusion. Another major advantage of RFID technology
is that it is standardized, widely used, robust, and cheap.
The cost of an RFID tag is very low, therefore even for
applications that require large number of RFIDs the cost
is not an issue. Because of the unique and strategic advan-
tages of RFID tags, they have been heavily investigated in
numerous applications (e.g. [6], [7], [8], [9], [10]).

We cover the related work in more details in section III.
Inspired by the problem scenario explained in the next sec-
tion, our system is validated by a proof-of-concept imple-
mentation and tested through extensive experiments. The
main contributions are as follows: First, our system out-
performs existing systems in minimizing the average posi-
tioning and orientation errors. Second, the system design
is scalable while the cost remains controllable without af-
fecting the error margin. As it will be explained later in
the paper, the system can be extended to cover arbitrary
large spaces by simply adding more carpet pads at low cost
(few cents per RFID). Furthermore, the average error for
any given area is controllable simply by increasing or de-
creasing the density of the tags of the corresponding carpet
pad(s) which covers that area. And because each object
calculates its own position and orientation based on 1 to
4 RFID tag positions, the computational complexity does
not increase. Thus, the average error is neither affected
by the covered area nor by the number of available objects
in a specific carpet area that autonomously calculate their
own position.

The rest of this paper is organized as follows: In the next
section, we describe an example problem scenario to better
familiarize the readers with intelligent environments and
to describe their requirements. In section III, we discuss
the related work. Section IV describes the approach and
the system proposed in this paper, followed by the system
validation in section V. Finally, in section VI, we conclude
the paper and present plans for future work.

II. PROBLEM SCENARIO AND
REQUIREMENTS

In this section, we present a scenario for an indoor intelli-
gence environment where multiple physical objects need to
cooperate together to provide the users with a customized
service according to the surrounding context. The aim here
is to describe a typical problem related to objects localiza-
tion and orientation in indoor smart environment settings
and the solution to this problem as addressed by the pro-
posed system in this paper. The scenario is as follows:

Consider that a group of co-workers, Alice, Bob, and
Jack, are planning to get together and discuss their project
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Fig. 1. Example scenario of a smart room

in one of the company’s conference rooms. Alice wants to
present her slides and Bob needs to show a video about a
prototype he has developed. The project manager, Jack,
wants to discuss the project’s financials and provide some
statistical data. The intelligent room offers a set of displays
and rendering devices: two smart boards, a mobile TV sta-
tion, as well as audio rendering devices. In addition to the
worker’s personal computers, there is a digital projection
system mounted on the wall. Let us also consider that
the TV, which would be a better choice for video render-
ing, is exposed to sunshine because the window’s curtain
has been dismounted to be cleaned. Therefore, using this
device may not be a good choice in this specific context.
Figure 1 illustrates this example scenario.

While coarse-grained localization, that is, whether an
object is present or absent in the proximity, is sufficient
for many applications, in the above scenario the intelligent
room requires fine-grained localization and must be able to
recognize the surroundings and present the media to the
users on the best suitable devices proactively.

It is expected to utilize and orchestrate available media
input and output devices and sensors in order to maximize
the multimedia experience and to support the user’s ac-
tivities. For example, one smart board presents the slides
and the other plays the video. The financial visualization
takes place on the smart board as soon as the slides’ pre-
sentation is finished. The personal computers will be show-
ing the slides and allow cooperative annotation as well as
personal notes. The main question regarding this context-
aware multimedia presentation is how the content can be
delivered to users, while at the same time accounting for
the various types of context information discussed above.
This problem is known as intelligent media output coordi-
nation [11], [12]. The main challenge to the realization of
such applications is the correct determination of the chang-
ing contextual characteristics of the environment [13], [14].
That is, determining the position and orientation of per-
sons and objects for the purpose of having the best suitable
device present a given media content. Surveys of some of
the indoor positioning approaches and systems are found
in [15], [4]. The open literature has also described few
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other complex systems such as those of [13], [9]. Such
systems provide positioning information with an average
error between 30 to 300 cm. However, for smart applica-
tions such as the one we just described, it is required to
localize objects with much lower error. Furthermore, in-
telligent output coordination requires defined information
about the position and orientation of users and the poten-
tial rendering targets such as displays [11]. Based on the
existing surveys and the scenario explained above, we can
list the requirements of such environments as follows:

A. Measurement error and uncertainty

For effective realization of intelligent multimedia envi-
ronments, positioning and orientation of objects should be
measured with minimum error. The best measurement so
far is attained by Hile and Bornello [16] where the average
error is about 30 cm. In other systems, such as Ubisence
[17], the errors range between 50 to 150 cm. Lorincz and
Welsh [7] presented a system where the error could vary be-
tween 80 to 160 cm. Our work, on the other hand, provides
positioning and orientation data with an average error of
6.5 cm with standard deviation of 4.5 cm for positioning
measurement and an average error of 1.9 degrees with stan-
dard deviation of 2.5 degrees for orientation measurement.

B. Affordability and standard compliancy

To ensure that further development is compatible and
easily integrated in the system, it is important that the po-
sitioning technology be based on well developed standards
so that off-the-shelf components are used. Furthermore,
extension to existing systems should be achieved at low-
cost. Luckily, the cost of RFID tags is only a few cents,
that is, even an RFID infrastructure consisting of thou-
sands of tags would only incur a small cost. Such charac-
teristics guarantee wider acceptance and adoption of our
system.

C. Object Scalability and Mobility

The system should support rooms of different sizes. Fur-
thermore, the number of objects to be positioned should
be scalable. In addition, the calibration effort should be
minimal as new objects are added or existing objects are
moved or removed. Many existing indoor positioning sys-
tems allow only a limited number of objects to be posi-
tioned in parallel, and thus are not arbitrarily scalable.
This is especially so for indoor positioning systems that
are vision-based or those that use ultrasonic sensors. In
the former, hidden objects are invisible to the system; in
the latter signal interference limits the system’s scalability.
Other systems that utilize active RFID tags to measure the
position of mobile objects also face scalability challenges as
the computational complexity increases with the increased
number of objects in the environment.

As we will show later in the paper, our system satisfies all
the above requirements. Furthermore, the system is scal-
able and the computational complexity does not increase
as the number of objects increase in the environment, be-
cause each object independently calculates its own position

based on 1 to 4 RFID tags.

In the next section, we cover some of the existing systems
and demonstrate that they do not meet at least one of the
above requirements.

III. RELATED WORK

In this section, we describe four commonly used ap-
proaches for indoor positioning and orientation that are
representative and specifically related to our work. Al-
though far from being exhaustive, this section gives a
rather complete idea of the current state of the art. It
should be mentioned here that this paper focuses on in-
door environments only and therefore works related to ob-
ject positioning and orientation for outdoor environments
are skipped.

A. Beacon-based Approaches

Beacon-based systems for object positioning in intelli-
gent environments have been proposed in the literature for
their low cost and low energy consumption. An example of
such systems is introduced by Roy Want et al. [18]. Their
approach consist of an Active Badge location system which
utilizes a network of beacons communicating with pulse-
width modulated IR signals in order to locate users in in-
telligent office environments. Bahl et al. [21] developed the
RADAR system which is an RF-based beacon system for
indoor user positioning and tracking. Other approaches
have also been proposed for indoor positioning systems
that utilize radio frequency or Ultra-Wide-Band technol-
ogy [17] to determine the user’s position. Some other spe-
cial types of beacon-based systems use Wi-Fi technology
[22]. An extensive survey of these studies can be found
in [23]. However, a common issue in beacon-based sys-
tems is that the user is required to carry an additional
device in order to allow the system to locate him or her.
Another issue is that using radio frequencies makes the re-
liability of the whole positioning system very dependent
on different variables related to shapes of objects, materi-
als, etc., that are found in the environment, because RF
signal propagation is influenced by phenomenon such as re-
flection, diffraction, diffusion, and absorption. Therefore,
extensive calibration is required for such systems. Another
limitation of beacons-based systems is that beacon or tags
cannot be embedded inside metallic objects such as mobile
smart boards or Hi-Fi boxes. Also, for some critical appli-
cations in special environments, such as tracking medical
surgery equipments in hospitals, the use of radio frequency
may interfere with equipments and therefore it is not per-
mitted.

B. Camera-based approaches

The use of camera and computer vision such as the work
presented in [13], [24], is another approach. Yan et al.
[24] present systems for measuring 3D position of users
in indoor environments ceiling-mounted cameras. A com-
mon problem with camera-based positioning is that en-
vironment models or object information such as human
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TABLE I

ANALYSIS AND COMPARISON OF EXISTING SYSTEMS

Reference Application
Domain

Approach Average Pre-
cision

Scalability Issues

Hile and
Borinelloe
[16]

Indoor Naviga-
tion

Image-
based

10cm-150cm
depending on
runtime and
availability
landmarks; av-
erage is 30 cm
after 6 seconds
runtime

scalable Very low speed: 9 seconds from the
time of taking the image to calculate
the camera position; privacy issues;
depends on lighting conditions

Ando and
Graziani [8]

Navigation
for visually
impaired

Infra-red
sensors

N/A Not arbitrarily
scalable

Issues with hidden objects, signal re-
flection

Roy Want et
al.[18]

Generic Beacon-
based

NA N/A RF signal propagation is influenced
by phenomenon such as reflection,
diffraction, diffusion, and absorption

Ubisense [17] Generic Beacon-
based
(Ultra-
Wide-Band)

50cm..150cm
depending on
the environ-
ment; 30 cm
only in optimal
conditions such
as the center of
the sensed space

Theoretically up
to 150 tags

Very expensive and requires contin-
uous calibration; building material
and other objects in the environment
influence precision and accuracy

Krumm et al.
[13]

Generic Camera-
based

N/A Not scalable for
parallel objects
positioning

Computational complexity, sensor
calibration; not scalable for simulta-
neous positioning of a high number
of objects

Zhou and Shi
[19]

Robot tracking Passive
RFID

N/A Scalable Fixed objects are excluded as they do
not provide velocity data

Lorincz and
Welsh [7]

Generic Beacon-
based (
sensor
nodes)

0.8m - 1.6m;
can go up to 3.3
m depending
on the variance
of obstructions.
Beacon node
failure, radio
signature per-
turbations, and
beacon node
density

Not arbitrarily
scalable

Sensitive to radio interferences and
signature perturbations; precision
and accuracy highly depends on sur-
roundings objects’ material

Willis and Helal
et al. [20]

Indoor Naviga-
tion for visually
impaired

Passive
RFID

works with ab-
solute position
information

Arbitrarily Scal-
able

absolute position information writ-
ten on tags that are deployed on
landmarks. Repositioning of tagged
objects requires re-writing of RFID
tags. No orientation data.

Presented work
in this paper

Object position-
ing and orienta-
tion

Scanning la-
bels, passive
RFID

6.5 cm average
positioning
error and 1.9
degrees aver-
age orientation
error

Arbitrarily Scal-
able

Designed for objects with small dis-
tance to the floor

face models is required to detect and recognize objects be-
fore their position can be determined. Furthermore, vi-
sion based systems require line of sight in order to estab-
lish a connection with the objects and locate them. Such
limitations make it very hard to apply this technology in
order to detect arbitrary mobile objects in complex envi-
ronments. Hile and Borriello [16] developed a system for
positioning and orientation in indoor environments based
on camera phones. The system processes images taken by
a cell-phone camera and matches them to predefined land-
marks inside the environment such as corners, floor-to-wall
transitions, doors, etc., to calculate the camera’s location.
While helpful for individuals with cognitive impairments,
the positioning approach is not suitable, as mentioned by
the authors, for large rooms and open areas that do not
provide enough edges, corners and landmarks. Moreover,
in environments such as open exhibitions where landmarks
change frequently due to the ad-hoc nature of the facility,

pre-processed landmarks cannot be used.

C. RFID-based approaches

Recently there are many approaches that take advan-
tage of the emerging mass production of very small, cheap
RFID tags [25], [20]. The work presented in [20] is some-
how close to our work in utilizing passive RFID tags for
object positioning and localization. In such system, the
position of each tag, the relative position of the surround-
ing objects, and other supplementary information in the
room are stored in each tag. The system also tracks the
moving person using RFID-mounted shoes.

While the system in [20] requires equivalent amount of
tag writing as the proposed system in this paper, in our
case it is done only once. Willis and Helal in [20] store in
the RFID tags the absolute position information and the
semantic information about surrounding objects to help
visually impaired people navigate freely. The drawback of
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their design is in the massive rewrite to the stored data
in the RFID tags in case the objects are removed or the
surrounding environment changes. In our system, however,
we made sure that if the whole carpet is moved within the
room or the global coordinates of the room change (e.g. re-
arranging the walls in a flexible office) we do not need to
update the stored information in the RFID tags. Instead
we only change the reference vector pointing to the origin
point of the carpets’ local coordinate system. This vector
is not stored in the RFID tags but (currently) managed
by each mobile object as global context information. The
vector is used to perform coordinate transformation.

Similar to the work presented in [20], Yeh et al. [26] pro-
pose an RFID-mounted sandal to track people in indoor
environments. Yeh et al. [26] developed a system based on
infra-red sensors that adapt smart signal processing to pro-
vide users with information about the position of objects
hindering their path. Multi-sensor strategy for locating
and tracking objects is also used in the work presented in
[8].

Contrary to these works, the RFID tags in our system do
not store data that refer to their position. Instead the data
in the tags correspond to the row and column numbers
within a carpet plate which integrates those RFID tags
like a grid. By so doing, we can move the carpet plate
to any place in the room without the need to change the
stored data. This makes our system unique compared to
the above mentioned approaches. For example, in [20] it
would be very costly to update the data stored in the tag if
the spatial geometry of the room changes. Such scenario is
often the case for modular offices, multipurpose buildings,
exhibitions, and conference rooms with mobile walls.

D. Other approaches

Parallel to the above mentioned solutions, other ap-
proaches such as SmartFloor [27] and Smart Carpets [25]
are also developed. SmartFloor uses person-specific step
patterns to locate users on carpet elements using pressure
sensors. The system must be able to take into account the
weight changes of the person that happen over time. The
main issue with this approach is that mobile objects of
the same type (eg, mobile TV stand, or smart board) ex-
hibit the same step pattern that cannot be distinguished
and tracked easily. Smart Carpets, on the other hand,
are commercial products equipped with a network of self-
organizing micro-controllers. These embedded micro con-
trollers are not pertinent to object tracking in the same
way as RFID-based systems.

Ashokaraj et al. [28] developed a multi-sensor system
to measure the position and orientation of a four wheeled
robot based on ultrasonic signals using interval analysis.
Ultrasonic sensors are integrated around a robot giving
low level information affected by noise, bias, outliers, etc.
to detect obstacles. However, this approach requires that
a 2D map describing the surrounding environment with its
landmarks and obstacles be provided to the robot a priori.

While a system like [28] relies on the robot’s movement
and velocity to predict and track the robot’s position, it

is interesting to note that in intelligent environments, po-
sition estimation based on velocity is not always possible.
Furthermore, why ”estimate” or ”predict” when we can
get a more precise reading from cheap RFID tags and less
computational complexity? Also, velocity-based estima-
tion or ”dead reckoning”, as it’s sometimes called, is not
really appropriate for the scenario described in this pa-
per. The reason is three-folds: First, velocity-based esti-
mation would require velocity measurements, which would
increase processing and measurement complexity. Second,
when objects are lifted and carried from one place to an-
other place, tracking their movement based on their ve-
locity would not be possible before putting them down on
their final position. Third, in such applications we only
need the final position of an object, and we are not inter-
ested in the object’s position as it is being moved. So all
the computational resources used in velocity-based posi-
tion estimation will be wasted as the object is in motion.

Other approaches such the work presented in [29] use
sound analysis to detect the position of an object or hu-
man. The major shortcoming of such approach is that
objects cannot be detected if they do not produce sound.

In summary and as shown in Table I, no system works
optimally for all indoor cases and each has its own short-
comings. In this paper, we are not proposing that our
system replace completely all other existing systems for
all scenarios, but simply that for certain indoor scenarios,
which are quite common, our approach has advantages over
other approaches. In the next section, we provide the de-
tails of our proposed system.

IV. OUR APPROACH: POSITION
MEASUREMENT BASED ON PASSIVE RFID

TECHNIOLOGY

In order to meet the above-mentioned requirements, we
have developed a system to determine the position and
orientation of mobile objects based on passive RFID tech-
nology. Our system, as shown in figure 2, consists of RFID
carpets, several peripherals for sensor data interpretation,
and distribution of the positioning information.

A. RFID Carpets

In our approach, we require the RFID tags to be
mounted on carpet pads where the mobile objects are
placed. The pads are PVC isolation foils that are usu-
ally put on the floor. We placed a carpet on top of the
foil. The carpet, as illustrated in figure 2, is composed of
N by M pads which are equal in dimensions, such that
N ;M > 1. On each carpet pad, RFID tags are placed at
location (X,Y) such that X;Y > 1. Each tag is placed on a
fixed, pre-defined position within a specific carpet pad. In
figure 2, the coordinates X and Y correspond to the row
and column of the carpet pad. The tag stores the integer
values x and y that are referring to the horizontal rows and
the vertical columns respectively. The tag also stores the
horizontal row variable m and the vertical column variable
n that correspond to the pad’s location within the room
dimensions. It must be mentioned that the distribution of
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Fig. 2. An extensible RFID carpet composed of n ∗m components with two mobile objects on it. The orientation has been defined to be
an orthogonal vector to a side defined by the mobile object itself.

the RFID tags on each carpet pad does not need to be the
same. However, it is important that the position informa-
tion stored in each tag refers to the variable x and y in
relation to the design as shown in figure 2. In our design,
we made sure that if a change is required in the distribu-
tion (for example, fewer RFID tags in the carpet) then it
is done by skipping rows or columns as required, but not
changing the cell index (X and/or Y ) of the RFID tags. By
so doing, we avoid changing the stored data in each RFID.
Furthermore, we can manipulate the density of RFID tags
on different partitions of the carpet to achieve the desired
resolution and to separately control specific areas of the
carpet in order to meet specific application needs. We can
also extend the RFID carpets for covering arbitrary large
spaces.

B. Mobile object setup

In our setup, we have mounted RFID readers on all mo-
bile objects, , an example is shown in figure 4. The RFID
reader components are connected to an embedded com-
puter via the serial interface through which the position
and orientation information are calculated based on the
stored tag information. Since the distance between the
reader and the transponder must be small, we have in-
stalled the readers under the mobile object.

C. The distribution of tags

The arrangement of the tags is selected in a manner that
only one tag can be covered from a reader. The main rea-
son for that is the expected resolution and reliability of
the position results. While theoretically it is enough to
have one reader per object that can read one RFID tag to
calculate its position, at least two readers need to detect
two RFID tags to calculate its orientation. And because
orientation is very important for our application, two read-
ers are not always enough since they would not necessarily
match with the tags. For example, if the tags’ distribution
is very sparse, then the probability of getting a reader in an
untagged zone is high and thus it receives no positioning
data. Therefore, using more readers per object increases
the systems’ robustness and ensures measurement quality
in terms of lower average error.

D. Measurement method

The overall measurement steps are as follows: Scanning
the transponders read out the tags in a synchronized
manner. The tag’s ID, the value for the coordinates
M,N,X,andY are time stamped and forwarded as a data
tuple <M,N,X,Y > to the software module.

Measurement of Parameters: the software module
calculates the position of the object based on the data
tuple < M,N,X,Y >, the RFID tag’s ID, and the time
stamp. This information is scanned from the RFID tag
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which is close to the specific reader.

Communication: The system’s component modules are
shown in figure 3. The inter-communication among them is
as follows: When the data is scanned, the embedded com-
puter translates the measured information into high-level
”context events” and sends it to the software modules. The
software modules consist of a context management agent
and a database which stores the mobile objects’ movement
history. In this setup, the embedded computer is part of
an agent communication module. It uses the Knowledge
Query Markup Language (KQML) which offers a plain-
text based TCP/IP agent communication mechanism to
interact with the entities in the system.

An alternative approach would have been to send the
RFID reader output using a wireless serial adapter such as
Bluetooth, ZigBee, or WiFi, to a remote computer. Each
RFID reader would need to be connected to a wireless serial
adapter that is paired to a remote computer in the room.
While such approach could save on energy consumption
of the mobile device by just operating the wireless serial
devices, it produces signal interferences, especially if there
are more than 2 or 3 mobile objects in a room. That is,
12 wireless serial adapters will operate in the same room
using the same remote computer.

E. Determination of position and orientation

In order to calculate the position of a tag which is
scanned by a particular reader we use the following for-
mulas:

Px = (m− 1) ∗ SecW + (x− 1) ∗ TraW +
TraW

2
(1)

Py = (n− 1) ∗ SecH + (y − 1) ∗ TraH +
TraH

2
(2)

Note that m, n, x, and y are all digits greater than 0. The
sybmols in equation (1) and (2) are described in Table II.

For cases where we cannot scan a tag, the x and y compo-
nents of P are not determined. The above equations show

Fig. 4. Actual placement of the RFID readers on the mobile object

that with two location points, we can determine the posi-
tion and the orientation of an object. However, to increase
the robustness of the system we have used four readers.
If one or two readers fail, the system can still effectively
calculate the position and orientation of the mobile object.

The position of the mobile object is determined by the
center point P0 as shown in figure 5. The Z-component of
the 3D position can easily be calculated from the height
of the mobile object. The orientation of the mobile object
changes only around the z-axis (yaw). The center point
P0 is calculated by building the vectorial average of the n
identified reader positions:

~P0 =

∑ ~Ri

n
(3)

where i= 1..n such that 1≤ n≤ 4, ~P0 is the middle point
of the mobile object, and ~Ri represents the vectors (points)
calculated based on the data received from the readers.

However, if the size and dimensions of the mobile object
are known, the position can be calculated by using only two
points using the length of the mobile stand or its diagonal
as it is shown in figure 5. To illustrate that, consider the
following cases: If ~R1 and ~R3 are known, then the position
of the mobile object can be calculated using the following
equation:

~P0 = ~R1 +
~R3 − ~R1

2
(4)

If ~R2 and ~R4 are known, then the position is the centre
point between the line joining them which is calculated by
using the following simple formula:

~P0 = ~R4 +
~R4 − ~R2

2
(5)

If we get the position from two readers, i.e. ~R1 and ~R2

or ~R3 and ~R4 as shown in Figure 5, then to obtain the
middle point of the mobile stand we need the unit vector û
between the points as well as the middle point ~Px = û∗A/2
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Fig. 5. Illustrated map for the size and dimensions of the mobile
object with respect to the mounted RFID readers

TABLE II

GLOBAL CONSTANTS RELATED TO THE TAGS

Variable Description

TraW The width of the tag

TraH The height of the tag

SecW The width of the carpet’s section

SecH The height of the carpet’s section

of the line connecting the two points. Then we need to
rotate the unit vector û using the rotation matrix RΦ and
the formula v̂ = û ∗RΦ. With this new unit vector we can
obtain the position of the mobile stand by multiplying it
with B/2 of the mobile object and adding it to Px. Using
~R1 and ~R2 we can calculate as follows:

~P0 = ~Px+v̂∗B/2 =
~R1 − ~R2

|| ~R1 − ~R2||
∗A/2+

~R1 − ~R2

|| ~R1 − ~R2||
∗RΦ∗B/2

(6)

whereby Φ = π/2 or 90 degrees. Using ~R1 and ~R4 we
have to use A instead of B and the rotation angle Φ will
be −π/2 or -90 degrees. For the example shown in figure
4, the length of B is 55 cm and A is 49 cm. The orien-
tation is seen as a normalized, orthogonal vector from the
mobile object towards the center of a user-defined side of
the objects. The ”‘unit”’ vector of ( ~R1− ~R2) or ( ~R3− ~R4)
is the orientation ô of the mobile object:

ô =
~R1 − ~R2

|| ~R1 − ~R2||
(7)

For the case when we only have the positions of and
( ~R2, ~R3), the unit vector must be rotated in the right

direction with an amount Φ = arctan A
B . If ( ~R2 and ~R3)

are known instead of ( ~R1, ~R4), then the rotation angle will
be Φ = arctan A

B + π/2. The following numerical example
illustrates the above analysis:

Example: Consider the layout shown in Figure 2,
assume that the readers R1, R2, R3, and R4 (marked

in red) are detected and the data collected from these
readers are as follows:
R1 readings are (m, n, x, y) = (2, 1, 2, 11)
R2 readings are (m, n, x, y) = (2, 1, 2, 3)
R3 readings are (m, n, x, y) = (1, 1, 2, 2)
R4 readings are (m, n, x, y) = (1, 2, 2, 1)

Applying equations 1 and 2 then we have for R1

P1x = (2− 1) ∗ 60cm+ (2− 1) ∗ 8.5cm+ 8.5cm
2

P1x = 60cm+ 8.5cm+ 4.25cm= 72.75cm
P1y = (1− 1) ∗ 60cm+ (11− 1) ∗ 5.5cm+ 5.5cm

2
P1y = 57.75cm

Then, the position of the RFID reader R1 is represented
by the ordered set (point) P1 = (72.75cm;57.75cm) or a 2
dimensional vector . Similarly, the positions for readers
R2, R3, and R4 are calculated and shown below. For R2,
P2 = (72.75cm;13.75cm),
for R3, P3 = (12.75cm;8.25cm),
and for R4, P4 = (12.75cm;62.75cm)

Applying equation 3 we get:

~P0 =

∑ ~Ri

n

=

(
72.75cm+ 72.75cm+ 12.75cm+ 12.75cm
57.75cm+ 13.75cm+ 8.25cm+ 62.75cm

)
3

~P0 =

(
42.8cm
35.6cm

)

The orientation of the object in Figure 4 is calculated
based on the readings from R1 and R2 per equation 7 as
follows:

ô=
~R1− ~R2

|| ~R1− ~R2||

=

(
72.75cm− 72.75cm
57.75cm− 13.75cm

)
√

0 + 442
=

(
0cm
44cm

)
44cm

=

(
0
1

)
φ= 90deg

, since x= 0,y > 0.
The above example shows how the position and orien-

tation of mobile objects are calculated according to the
coordinates on the carpet itself. However, if the layout
of the carpet is done in a way that it does not share the
same coordinates with the room in which it is integrated,
then we need an additional vector pointing at the origin
of the carpet’s local coordinate system that we add to the
measured position vector. In addition, we have to map the
measured position vector from the carpet’s local system
into the global coordinate system. This can be done by
a coordinate system transformation. An alternative way
is to arrange the carpet pads so that its origin point and
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unit vectors line up with those of the room. In such con-
figuration, we can directly read out the absolute position
according to the room’s coordinates and not the local co-
ordinates of the carpet. In other words, if the carpet’s
coordinates are lined up to the global coordinates of the
room, then all the calculated positions are measured in
reference to the global coordinates of the room. In this
case, coordinate transformation is not needed. However,
for flexibility and configuration re-usability it is preferred
to use coordinate transformation, i.e., the case when the
carpet tiles are not lined up with the coordinates of the
room. The reason is that the carpets can be moved within
the room or even relocated to other rooms. And for this,
the software algorithm will only need the global position
of the carpet’s point of origin and the unit vector of its N
axis. Any other point located on the carpet can be calcu-
lated and transformed to a point in the global coordinates
of the room.

It should also be made clear that it is a characteristic
of our system which has been specifically designed to opti-
mally identify the location and orientation of objects that
are connected, directly or indirectly, to a point which is
about 7 cm to 10 cm from the ground. However, since
each object connects to the ground in one way or another,
this is not a shortcoming that cannot be overcome for most
cases. For example, a computer monitor is usually on a ta-
ble or stand and is rarely separated from it, so the tags can
be put on that table or stand. When the monitor is put on
top of another stand, the system can easily be configured
to use the new stand’s position to track the monitor.

In the next section, we provide implementation evalua-
tion and analysis of our system.

V. VALIDATION AND TEST ANALYSIS

We validated our proposed approach by a proof-of-
concept implementation which is used to analyze the aver-
age error for the mobile object’s positioning and orienta-
tion measurements. The aim here is to show the feasibility
of the system and its capability of reading the position and
orientation data of mobile objects on-the-fly. The following
subsections provide detail explanations about the system
testing have that we have performed to analyze the mea-
surement errors while the mobile object is moving from
one point to another.

A. Prototype Implementaion

The highlights of the prototype are as follow: A mobile
stand is equipped with four RFID readers. The dimensions
of the mobile stand are as shown earlier in figure 4 and 5.
We used a 60 cm x 60 cm carpet pads and then we placed
the RFID tags on top of them. The RFID tags are arranged
using a checker board arrangement as shown in figure 2 and
6. The RFID tags are Tag-it HF-I transponders made by
Texas Instruments. The pads were organized in 3 rows and
5 columns and cover a surface of 3m x 1.80 m. On each pad
we have placed 39 RFID tags. The size of the tags is 8.5
cm x 5.5 cm. We used Mifare QC-3100-AT RFID readers,
which comply with the ISO 15693 standard. The readers

Fig. 6. Layout of RFID tags on the floor

were installed at a distance of about 4 cm from the edge of
the lower part of the mobile stand. Through several trial
experiments we were able to optimize the vertical distance
of the readers from the ground in order to detect the tags
even if they are not located directly under the readers. The
distance is found out to be between 3 cm and 6 cm. The
measurements of the constants described in Table II are
as follows: TraW = 8.5cm, TraH = 5.5cm, SecW = 60cm,
SecH = 60cm.

B. Test setup

Our experiment consists of two tests: The first test is
based on a route that consists of 10 test positions (i.e.
different locations and angles). In each run we used the
four readers to analyze the data. In this test the mobile
stand is moved along the edge of the carpet with random
steps. Furthermore, we ensured that while we are moving
the stand from one position to another along the edge,
the orientation is always pointing to the same direction
and in each step we slightly changed the position and the
orientation left and right in a zigzag form. The reason
for that is twofold: First, random steps allow us to test
the robustness of the system while avoiding positions that
have the same properties with respect to the location of
tags and readers. Second, the zigzag form allows us to take
different measurement for the orientation at each position.
The total number of scans is as follows: 10 position x 4
readers = 40 scans. The second test is mainly used to
analyze the measurement error pertained to the orientation
of the object. We have placed the mobile stand in one
location and rotate the stand 360 degrees in steps of 22.5
degrees. The results of the experiments are discussed next
in subsections.

C. Results and analysis of the first test

Table III shows the test results of the first test and figure
7 shows the difference between the measured and the true
location of the mobile stand center point.

In this test, for 7 of the 10 positions, the 4 readers were
able to scan the tags, in the other 3 positions only 3 readers
were able to scan tags. The reason could be attributable to
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Fig. 8. Difference between the measured and true value for the
orientation of the mobile stand (average error 1 degree, standard
deviation 4.9 degrees

signal collision or interference or that simply there were no
tags under the reader. In Table III, the results show that
the range of measurement error was from 0.9 cm to 13.7 cm
(absolute value of the vectorial differences). The average
error is 6.5 cm with a standard deviation of 5.4 cm. Table
IV shows the analysis of the mobile stand orientation for
the first test, and figure 8 shows the difference between the
measured and the true orientation for each test position.
The orientation error ranges between -9.08 to 9.95 degrees
with average error equal to 0.96 degrees and standard de-
viation equal to 4.92 degrees. In figure 8, we notice that at
positions 5, 7, and 10, the orientation error is higher than
the other 7 test postions. This is mainly due to the fact
that unlike position calculation where we take the vectorial
average of 4 readers positions, for orientation calculation
we use only two readers. In the position calculation, the
effect of the error contributed by one reader is minimized
when averaged with the other 3 correct reader positions,
while in the orientation calculation the error contributed
by one reader is averaged by at most one other correct
reader position. This is why we see the spike in figure 8 at
positions 5, 7, and 10.

TABLE III

Positioning Results of the First Test (average error 6.5 cm

, standard deviation 5.4 cm); MP: Measured Position in cm;

TV: True Value in cm; Err: Localization Error in cm

(Vectoroial Distance)

Pos. MP X MP Y TV X TV Y Err
1 42.8 35.6 41.9 35.6 0.9
2 72.5 41.0 72.6 41.9 0.9
3 184.0 30.3 183.7 29.0 1.3
4 252.4 37.6 261.5 27.4 13.6
5 254.6 94.3 255.6 92.8 1.7
6 244.0 150.3 244.3 160.7 10.5
7 212.4 150.4 203.5 141.4 12.7
8 135.3 141.1 145.9 147.8 12.6
9 47.0 150.3 46.8 159.7 9.5
10 42.8 109.3 43.6 108.6 1.1

TABLE IV

Orientation Results of the First Test. Average error 1

degree, standard deviation 4.9 degrees. (MO: Measured

Orientation; TO: True Orientation; Err: Orientation Error)

Pos. TO/degrees MO/degrees Err/degrees

1 89.90 90.00 -0.10

2 91.46 90.00 1.46

3 90.63 90.00 0.63

4 90.00 90.00 0.03

5 90.21 80.26 9.95

6 89.84 90.00 -0.16

7 90.76 99.84 -9.08

8 88.29 90.00 -1.71

9 90.62 90.00 0.62

10 88.13 80.16 7.97

D. Results and analysis of the second test

In the second test, the mobile stand was centered in one
location and rotated 360 degrees in steps of 22.5 degrees
as shown in figure 11.

The mobile stand was rotated through 16 stages as
shown in Table V. At each position, we measured the pos-
tion and orientation of the object and compared it with
the true values. In the 16 orientation test positions, the
error ranged between 0 and 9.8 degrees with average error
equal to 1.9 degrees and standrad deviation equal to 2.5
degrees. At positions 3 and 13 in table V, we have noticed
that the average error is higher than those tested at the
other positions, this is mainly due to the case when the
reader receives responses from several neighboring tags at
one location. In this case, the reader selects one tag that
might not be at the exact measured location and hence
contributes to such higher error value. Figure 9 plots the
difference between the measured and the true orientation
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angle. Table VI shows the measurement of the mobile ob-
ject position with repect to the true value of the center
point (166.1cm, 81 cm). The position error between the
actual and the measured value ranges from 1.3 cm to 16.2
cm. The average error value equals to 6.3 cm and the stan-
dard deviation equals to 5.3 cm. Figure 10 plots the differ-
ence between the measured and the true position values.
The total number of scan attempts is 64 (16 positions x 4
readers) among which 6 scans were not successful. Among
the 16 test positions we had 6 test cases where 1 reader
could not detect the RFID tags, namely at postions 1, 5,
11, 12, 14, and 15. At these 6 test positions, we noticed a
higher positioning error than the average 6.3 cm shown in
table VI. This is because the positioning calculation was
done based on three readers instead of four.

VI. CONCLUSION AND FUTURE WORK

The The goal of this paper was the development of
an RFID-Based system for determining the location and
orientation of mobile objects in smart environments with
higher accuracey than existing sytem, while still reaminnig
economically affordable. A number of contributions were
made in this paper. Specifically, we have shown through
a proof of concept implementation and a series of exper-
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Fig. 11. Rotation of the mobile stand in the second test

TABLE V

Orientation Results of the Second Test. (average error of

1.9 degrees, standard deviation 2.5 degrees)

Pos. TO/deg MO/deg Err/deg

1 0.0 0.0 0.0

2 22.5 20.4 2.1

3 45.0 51.6 6.6

4 67.5 68.7 1.2

5 90.0 90.0 0.0

6 112.5 111.1 1.4

7 135.0 136.3 1.3

8 157.5 156.9 0.6

9 180.0 180.0 0.0

10 202.5 201.2 1.3

11 225.0 224.1 0.9

12 247.5 248.9 1.4

13 270.0 279.8 9.8

14 292.5 291.3 1.2

15 315.0 316.3 1.3

16 337.5 339.4 1.9

iments that the system achieves a low average error for
indoor object positioning and orientation, which are lower
than the previous work as described in section III. For
future work, we are planning to study the effect of using
different types of floors. This is because the absorption
rate of RF energy varies from one type of floor to another
(e.g. wood floor, concrete floors etc.) and thus affects the
measurement error of mobile object positioning and orien-
tation.

Acknowledgment

Parts of this research was conducted at and supported
by the Distributed Artifical Intelligence Lab (DAI-Labor)
of the Technische Universitt Berlin, Berlin, Germany.



12 IEEE TRANS. ON INSTRUM. MEAS.

TABLE VI

Positioning Results of the Second Test. Average error of

6.3 cm, standard deviation 5.3. True Center point =

(166.1cm, 81 cm). MP X: Measured Position X; MP Y:

Measured Position Y; Err: Localization Error (Vectoroial

Distance)

Pos. MP X/cm MP Y/cm Err/cm

1 175.6 94.1 16.2

2 166.9 79.4 1.8

3 166.9 82.1 1.4

4 167.0 84.9 4.0

5 175.6 72.3 12.9

6 167 84.9 4

7 162.6 82.1 3.7

8 164.8 80.8 1.4

9 167.0 85.0 4.1

10 166.9 79.4 1.8

11 155.4 81.3 10.7

12 161.3 95.8 15.5

13 164.9 80.9 1.2

14 161.3 73.9 8.6

15 164.1 93.9 13.1

16 164.8 80.8 1.4
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