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Introduction

In the previous chapter, we used Laplace transform to obtain the
transfer function models representing linear, time-invariant, physical
systems utilizing block diagrams to interconnect systems.

In Chapter 3, we turn to an alternative method of system modeling
using time-domain methods.

In Chapter 3, we will consider physical systems described by an
nth-order ordinary differential equations.

Utilizing a set of variables known as state variables, we can obtain
a set of first-order differential equations.

The time-domain state variable model lends itself easily to computer
solution and analysis.



Time-Varying Control System

With the ready availability of digital computers, it is convenient to
consider the time-domain formulation of the equations representing
control systems.

The time-domain is the mathematical domain that incorporates the
response and description of a system in terms of time t.

The time-domain techniques can be utilized for nonlinear, time-
varying, and multivariable systems (a system with several input and
output signals).

A time-varying control system is a system for which one or more of
the parameters of the system may vary as a function of time.

For example, the mass of a missile varies as a function of time as
the fuel is expended during flight



Terms

State: The state of a dynamic system is the smallest set of variables
(called state variables) so that the knowledge of these variables at ¢
= t,, together with the knowledge of the input for t > {,, determines
the behavior of the system for any time t > {,.

State Variables: The state variables of a dynamic system are the
variables making up the smallest set of variables that determine the
state of the dynamic system.

State Vector: If n state variables are needed to describe the
behavior of a given system, then the n state variables can be
considered the n components of a vector x. Such vector is called a
state vector.

State Space: The n-dimensional space whose coordinates axes
consist of the x, axis, x, axis, .., x, axis, where x,, X,, .., x,, are state
variables, is called a state space.

State-Space Equations: In state-space analysis, we are concerned
with three types of variables that are involved in the modeling of
dynamic system: input variables, output variables, and state
variables.



The State Variables of a Dynamic System

The state of a system is a set of variables such that the knowledge
of these variables and the input functions will, with the equations
describing the dynamics, provide the future state and output of the
system.

For a dynamic system, the state of a system is described in terms of
a set of state variables.
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State Variables of a Dynamic System

@ x(0) initial condition

u(t) Input y(f) Output

> Dynamic System >
State x(f)

The state variables describe the future response of a system,

given the present state, the excitation inputs,

and the equations describing the dynamics



The State Differential Equation
The state of a system is described by the set of first-order differential
equations written in terms of the state variables (x,, x,, .., X;,)

X1 = allxl +a12x2 ++a1nxn +b11u1 +...+b1mum
X2 =0y X +AxpXy +..+ay,X, +byyu; +...4+ by, u,,

Xn =a,X| +a,,%X, +...+a,,x, +bu;+...+b,, u,

. dx
r== x| [ay, ap, a, [x ]
1 11 4 4 1
dt " by Tu
11Dy | U
d | X2 |_|d21 4 o || X2 |
dt|.
b...b,. | u,
_xn_ _anl Ayo Ay __xn_
A X B u

x = Ax + Bu (State differential equation)

A :State matrix; B : input matrix

C : Output matrix; D : direct transmission matrix y = Cx + Du (Output equation - output signals)



Block Diagram of the Linear, Continuous Time Control System

D(?)

B(t) XD g O g

A(D)

x(t) = A(£)x(t) + B(t) u(?)
y(8) =C(1) x() + D(¢) u(?)



Mass Grounded, M (kg)

Mechanical system described by the first-order differential equation

Appied torque 7, (¢) (N -m)
Linear velocity v(¢) (m/sec)

Linear position x(¢) (m)

2
Fty=mL - pp 40

dt dt?

W(t) = ﬁ jF (t)dt

<Fa(l‘)




Mechanical Example: Mass-Spring Damper
A set of state variables sufficient to describe this system includes the
position and the velocity of the mass, therefore, we will define a set of
state variables as (x;, X,)

X, (1) = () o

0= =

2 Wall friction
d”y

M— + b +ky =u(t) !
dt’

M%+bx2+kxl = u(t)

dt I ()

v

—— ==Xy —— X +—UuU k : Spring constant
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Example 1: Consider the

previous mechanical
system. Assume that the
system is linear. The

external force u(t) is the
input to the system, and
the displacement y(t) of
the mass is the output.
The displacement y(f) is
measured from the
equilibrium position in the
absence of the external
force. This system is a
single-input-single-output
system.

m 5/‘4‘ b j/+ ky=u
This is a second order system. It means it involves two integrators.

Let us define two variables: x;(¢) and x, (¥)

X, (£) = y(t); x, () = ¥(£); then x1 = x,
: k b 1
X2 = __xl __.X2 +—u

m m m

The output equationis:y = x;

In a vector matrix form, we have

x2
X2 m m m

y=ﬁ0W?

2

0 1 0
X1 x1 :
=| k b { } +| 1 |u (State Equation)

} (Output Equation)
The state equation and the output equation are in the standard form :

X:AX+Bu;y:CX+Du
0 1 0
A=| ¥ »|,B=|1C=[1 0[D=0

m m m
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Electrical and Mechanical Counterparts

Energy Mechanical Electrical
Kinetic Mass / Inertia Inductor
0.5 mv?/0.5 ja? 0.5 L7
Potential Gravity: mgh Capacitor
Spring: 0.5 kx? 0.5 Cv?
Dissipative Damper / Friction Resistor
0.5 Bv? Ri?

12




Resistance, R (ohm)

Appied voltage v(z)
Current i(?)
v(t) = Ri(t)

i(f) = %V(r)
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Inductance, L (H)

Appied voltage v(z)
Current i(¢)
di(t)

v(t)=L ”

-
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Capacitance, C (F)

Appied voltage v(7)
Current i(7)

v(t) = % [i(t)dt

dv(t)

i(r)=C—.

-
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Electrical Example: An RLC Circuit

X1 =ve(t);xy =i (?)
E=(1/2)Li; +(1/2)Cv?

x,(¢y) and x, (¢,) is the total initial
energy of the network

USE KCL at the junction

dv
. =C—<=+u(t)—i
o (6)—i

c

dt

The output of the systemis represented by : v, = Ri; (¢)

dx, 1 1
—=——X, +—u(t
d  C* C ®
dx, 1 R
—=+—X X,

dt LV L

The output signalis then : y,(¢) = v, (t) = Rx,

o < 4



Example 2: Use Equations from the RLC circuit

o5 L
X = C x+| C |u(t)
1 R
— -— 0
L L] - -
The output 1s
y=[0 R]x
When R=3,L=1,C =1/2, we have
o -2 [2]
X = x+| |u
1 -3 |0

y=bﬂx



Signal-Flow Graph Model
A signal-flow graph is a diagram consisting of nodes that are
connected by several directed branches and is a graphical
representation of a set of linear relations. Signal-flow graphs are
important for feedback systems because feedback theory is concerned
with the flow and processing of signals in system.

R,(s) O G(S) Y,(s)
22

Read Examples:2.8-2.11
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Mason’s Gain Formula for Signal Flow Graphs
In many applications, we wish to determine the relationship between an
input and output variable of the signal flow diagram. The transmittance
between an input node and output node is the overall gain between
these two nodes.

!
P=X;PkAk

P, = path gain of k, forward path

A = determinant of graph

= 1-(sum of all individual loop gain) +

(sum of gain of all possible combinations of two nontouching loops)

- (sum of gain products of all possible combinations of these nontouching loops) +..

=1-Y L,+> LL.- Y L,L.L,
a b,c

def
A, = cofactor of the kth forward path determinant of the graph with the loops

touching the kth forward path removed, that is, the cofactor A, 1s obtained from A

by removing the loops that touch path P, .
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Signal-Flow Graph State Models

-RIL
O ~ 1/s ~ A o~ R
o/ o/
1/s
X, 2
U(s)
-1/C
v
U(s) s+ pBs+y
- 1 1
Xl =——=X, +—ull
1 crt e (1)
- 1 R
X2 =—X| ——X,;V, = Rx
2 AL A 2
Vo(s) R/LCs? - R/LC

UGs) 1+(R/Ls)+[1/LCs?) 52 +(R/L)s+(1/LC)

O
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Y(s) s" +b, 8" +..+bs+b,

G(S): n n—1
U(s) s"+a, s" +..+as+a,

Y(s) sV 4b, s 4 b 1 p 57"

G(s) =

U(s) l+a, s +otas " Via s
Y P Ak

G(S) _ (S) _ Zk k
U(s) A

G(s) 2. B Some of the forward - path factors
s) = =
1— Zé\;l Lg 1-sumof the feedback loop factor

21



Phase Variable Format: Let us initially consider the fourth-order
transfer function. Four state variables (x;, x5, X3, X,); Number of
integrators equal the order of the system.

U(s) Y(s)
1/s 1/s 1/s 1/s
Q X, X3 X5 X4 O
bO
O
Y(s)
Y(s) by
G(s) = 4 3 2
U(s) s"+azs” +a,s™ +a;s+a,
bys~*

N -1 -2 -3 —4
l+ays  +ays “+aps ™ +aps .



bys® +bys” +bys + b,

4

G(s)= 3 >
ST 4+ays” +aysT+ais+a,

bys ™ +bys 2 +bys T +bys !

1+czz3s_1 +azzs_2 +a1s_3 +ays”

4

Read Examplev 3.1 of the textbook

X1 =X2;X2 ZX3;.X3 :x4

X4 = _aoxl _al.X:2 _a2x3 _a3X4 +u

x| [0 1 0 0 J[x ] [0]
X 0 0 1 0 X 0
d )% _ 2+ )
dt | x5 0 0 0 1 X3 0
(X4 | |-qp -a; -a; -as || x4 _1_
_x1_
-xz
Y(f)zcxz[bo by by b;
X3 23
| X4




Alternative Signal-Flow Graph State Models

Motor and Load

R(S) Y(S)
— Controller > > —
U(s) I(s)
_S(s+1) 1 6
G.(s)= 515) 512) (5+3)

- . I 24



The State Variable Differential Equations

Diagonal form or Canonical form

Y(s) _7 30(s+1) B q(s)
R(s) (s +5)(s+2)(s+3)  (s—5,)(s—5,)(S—53)
Y(s) _ T(s) = ky ks
R(s) (s+5) (S+2) (s+3)
k, =—20,k, =-10,and k; = 30
-5 0 0] [1]
x=[0 -2 0 |x+|1|r@®);y()=[-20 -10 30}

0 0 -3 1 25




The State Variable Differential Equations

3 6 0 0
x=|0 -2 -5(x+|5|r(t)
0 0 -5 1

Y(s) _T(s) = 30(s +1) _ q(s)
R(s) (s+3)(s+2)(s+3)  (s—s)(s—5,)(s—53)
) b,k ks
R(s) (S+5) (S+2) (s+3)
k, =-20,k, =-10,and k5 =30
-5 0 O] (1
x=[0 -2 0|x+[1|r@
0 0 -3| |1

y()=[-20 -10 30



The Transfer Function from the State Equation
Given the transfer function G(s), we may obtain the state variable equations
using the signal-flow graph model. Recall the two basic equations

X = AX + Bu y is the single output and
y= Cx u is the single input.

X ( S) —AX ( S) +BU ( S) Take the Laplace transform
Y(s)=CX(s)

(sT-A)X(s)=BU(s)
Since [SI - A]_1 =D (s)
X(s)=D(s) BU(s)

Y(s)=CD(s)BU(s)
Y(s)
U(s)

G (s) = =C®D(s)B

27



Exercises: E3.2 (DGD)

A robot-arm drive system for one joint can be represented by the differential equation,

dz,(;) = —kv(t) =k, y(t) + k5i(2)

where v(t) = velocity, y(t) = position, and i(f) is the control-motor current. Put the equations
in Z;ate variable form and set up the matrix form for k,=k,=1

i
dt
dv .
— = —k(t) =k y(1) + k5i(2)
dt
d(y) |0 1 (») [0 ]|
—| 7 |= + z
dt V __k2 _kl_ V _k3_
Defineu =i,andletk; =k, =1
- 0 1 0 | y
X =Ax+Bu; A = ,B = , X =
-1 -1] _k3_ V

28



E3.3: A system can be represented by the state vector differential
equation of equation (3.16) of the textbook. Find the characteristic
roots of the system (DGD).

: 0 1
X = Ax+Bu A=
-1 -1
A -1
Det (AI- A) =Det
1 (A+1)

= UA+1)+1=2 +1+1=0

1 3 1 3

b=t 2 p == N2
I T e S

29



E3.7: Consider the spring and mass shown in Figure 3.3 where M = 1
kg, Kk = 100 N/m, and b = 20 N/m/sec. (a) Find the state vector
differential equation. (b) Find the roots of the characteristic equation for

this system (DGD).
.).Cl — XZ
x2 =—100x, —20x, +u

: 0 1 0
X = X+ |u
-100 -20 1
A

Det(ﬁI—A):De{ }=12+201+100

100 A+20
=(A+10) =0; 4, =4, =-10

30



E3.8: The manual, low-altitude hovering task above a moving land deck
of a small ship is very demanding, in particular, in adverse weather and
sea conditions. The hovering condition is represented by the A matrix

(DGD) )

0 1 0]
A=[0 0 1
10 -5-2 |
A -1 0
Det(AL- A) = Det| O A -1 |=
_O 5 /1:2_

/1(12+2/1+5))=o

31



E3.9: See the textbook (DGD)

-1
X =

L
Sz+5

2
- [=2
7/ =

0

X,y = [1 - 3/2]X

232 |

—S+1:(S+2)(S+lj20

2

0

_1/2_2; y =[-0.35-1.79]

32



P3.1 (DGD-ELG4152):
Apply KVL

v(t) =Ri(¢t)+ L ﬂ +4v,
dt

vczéjidt

(a) Select the state variablesas x; =iand x, = v,

(b) The state equations are :

: | R |

X1 = _V__xl __.X2
L L L

: |

X2 =—x1
C

. |-R/L  -1/L 1/L
(c)x = X + u
1/C 0 0



