
Power System Representation and Equations 
 

 
 

A one-line diagram of a simple power system 
 

 
 
 
Oil or liquid circuit breaker                    Rotating machine 
 
 
 
 
Two-winding power transformer            Wye connection, neutral ground 
 

Per-Phase, Per Unit System 
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As we have seen in Chapter 2, many transformers and machines have their internal 
impedances specified as per unit resistances and reactances, using the voltage and 
apparent power ratings of the device itself as the base quantity. If these impedances are 
expressed in per unit to a base other than the one selected as a base for a power system, 
we must convert the impedances to per unit on the new base. This conversion could be 
done by using the original base impedance to convert the impedances back into ohms, 
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Load B 
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and then using the power system base impedance to convert the value on ohms to per unit 
on the new base. Alternatively, we may combine the two steps into a single equation: 
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Example 
A simple power system consisting of one synchronous generator and one synchronous 
motor connected by two transformers and a transmission line is shown in the following 
Figure. Develop a per-phase, per unit equivalent system for this power system using a 
base apparent power of 100 MVA and a base line voltage at generator G1 of 13.8 kV. 
 

 
Solution:  
 

kV 8.13base,1 =V  Region 1 

kV 110
kV 8.13
kV 110

base,1base,2 =





=VV  Region 2 

kV 2.13
kV 120
kV 4.14

base,2base,3 =





=VV  Region 3 

 
The corresponding base impedances in each region are: 
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Load A 

G1 rating: 
100 MVA 
13.8 kV 

R = 0.1 pu 
XS=0.9 pu 

T1 ratings: 
100 MVA 

13.8/110 kV 
R = 0.01 pu 
X=0.05 pu 

L1 
R=15Ω 
X=75Ω 

T2 ratings: 
50 MVA 

120/14.4 kV 
R = 0.01 pu 

X=0.05 pu 

M rating 
50 MVA 
13.8 kV 

R = 0.1 pu 
X2=1.1 pu 

Region 1 Region 2 Region 3 
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Per-phase, per unit equivalent circuit of the simple power system. 

 
 

 
Writing Node Equations for Equivalent Circuit 

 
Once the per-phase, per unit equivalent circuit of a power system is created, it may be 
used to find the voltages, currents, and powers present at various points in a power 
system. The most common technique used to solve such circuits is nodal analysis. In 
nodal analysis, we use Kirchhoff’s current law equations to determine the voltages at 
each node (each bus) in the power system, and then using the resulting voltages to 
calculate the currents and power flows at various points in the power system, and then 
use the resulting voltages to calculate the currents and power flows at various points in 
the system.Consider the following simple three-phase power system containing three 
busses connected by three transmission lines. The system includes a generator connected 
to bus 1, a load connected to bus 2, and a motor connected to bus 3. 
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0.1 + j0.9 pu 

  0.124 + j0.62 pu  0.023 + j0.119 pu
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A simple three-phase power system 
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Sum of currents out of a node = sum of currents into the node 
Apply KCL on node 1 

( ) ( ) 113121 IV VV VV =+−+− dba YYY  
Apply KCL on node 2 

( ) ( ) 223212 IV VV VV =+−+− eca YYY  
Apply KCL on node 3 

( ) ( ) 332313 IV VV VV =+−+− fcb YYY  
Rearrange these equations to collect the terms in each voltage 
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The above equation can be expressed in matrix form 
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This equation is of the form 
IVYbus =  

Where Ybus is the self admittance of a system. 
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There are many ways for solving systems of simultaneous linear equations, such as 
substitution, Gaussian elimination, LU factorization, and so forth! For us, MATLAB has 
very efficient equation solvers built directly into it! If a system of n simultaneous linear 
equations in n unknowns can be expressed in the form: 
 

bAx =  
 
Where A is n × n matrix, and b is a n-element column vector. It may be expressed as 
 

bAx 1−=  
 
Where A-1 is the inverse of a matrix! 
 


