
Hardware/Software Co-design
and the SPLASH Effect
CEG 4392 Lecture

Rami Abielmona
SMRLab – SITE – University of Ottawa
January 18, 2006
rabielmo@site.uottawa.ca

Presentation Outline
Brief History of Computers
Embedded Systems Overview
Co-specification & Co-synthesis
Co-simulation & Co-execution
Co-design languages and environments
The SPLASH Effect
Reconfigurable Computing
Reconfigurable Architectures
Run-Time Environment
Run-Time Reconfigurability
The Alternatives
Potential Applications
References

1st generation (1945-1955)
Stored program, assembly → machine language instructions (assembler)
Vacuum tubes used for logic
Magnetic core memories were invented

2nd generation (1956-1965)
HLL used (Fortran), HLL → assembly language instructions (compiler)

3rd generation (1966-1975)
ICs were invented and used as processor and memories
Microprogramming, parallelism and pipelining
Cache and virtual memory (VM) developed

4th generation (1976-Today)
VLSI started being efficient (microprocessor)
Concurrency, pipelining, caches and VM schemes evolved
LANs, WANs, Internet and WWW flourished

5th generation (?-?)
Embedded systems: calculators, pagers, watches
Artificial intelligence (AI): symbolic processors, cognitive computers
Massively parallel systems: evolvable computers (evolutionary algorithms)
Distributed systems: network computers (NCs), real-time control

Generational History of Computers

SISD – Single Instruction stream, Single Data stream
Conventional sequential machines
Program executed is instruction stream, and data operated on is data stream

SIMD – Single Instruction stream, Multiple Data streams
Vector machines (superscalar)
Processors execute same program, but operate on different data streams

MIMD – Multiple Instruction streams, Multiple Data streams
Parallel machines
Independent processors execute different programs, using unique data
streams

MISD – Multiple Instruction streams, Single Data stream
Systolic array machines
Common data structure is manipulated by separate processors, executing
different instruction streams (programs)

Flynn’s Classifications (1972) [ES-1]

Embedded Systems Overview (1)
What is an embedded system ?

An architecture that can execute an application-
specific function, while meeting all performance, cost,
size, weight and power requirements
Became popular in the 1980s
Differs from the data-processing (non-embedded)
architectures, as the latter are more general-purpose
and less performance- or requirement-driven

Hardware/software co-design
A solution to system objectives through the concurrent
design of both hardware and software components, by
the exploitation of their trade-offs

Embedded Systems Overview (2) [ES-2]

Embedded Systems Overview (3) [ES-3]

Next-generation devices
must be based on low-
cost, low-power and
extremely fast electronic
circuits
Cannot count on hardware
design (leaves out
malleability of software)
Cannot count on software
design (leaves out inherent
parallelism of hardware)
We need a better-suited
computing paradigm!

Embedded systems market breakdown
Zero-delay – printers, copiers, scanners
Zero-power – cellulars, pagers, watches, cameras
Zero-cost – blenders, TVs, radios
Zero-volume – military, supercomputers

Co-specification & Co-synthesis

Co-specification involves the creation of system
specifications that describe both the HW and
SW elements, and their relationships
Co-synthesis is the (semi-)automatic design of
HW and SW to meet a specification

Scheduling computations
Allocating computations to processing elements (PEs)
Partitioning functionalities into computational units
Mapping computational units to HW or SW elements

Co-simulation & Co-execution

Co-simulation involves the concurrent simulation
of HW and SW elements, at different abstraction
levels
Co-execution is the simultaneous execution of
both HW and SW components, on the various
CPUs, MCUs, DSPs, ASICs, and FPGAs in the
system

Watch out for co-verification!
It is when we verify our SW on a model of our target
HW (e.g. Mentor Graphics Seamless tool [CO-1])

Co-design Generic Flow [CO-2]

Co-design Particular Flow [CO-3]

Co-design Environments (1)

Allows for the description of computational processes, and their
connections, and their parallel realization on FPGAs and

µPs/DSPs

ImpulseC (Streams-C)
[CO-8]

C-like syntax extended with concurrent processes, message
passing, timing and resource constraints and template modelsHardwareC [CO-9]

C++ class library that provides necessary constructs to model
system architectures, including HW timing, concurrency and

reactive behaviors
SystemC [CO-6]

Based on CFSMs and includes translating the application from
formal languages, simulating the app. behavior, partitioning the

system, and obtaining a physical prototype
POLIS [CO-7]

Parallel-C language that provides a high-level abstraction for RTL
parallel-synchronous executionpsC [CO-10]

Variant of C that can be directly and intuitively mapped onto
circuits, including FPGAs

Single-assignment C (SA-C)
[CO-5]

Programming language designed for compiling programs into
hardware images of FPGAs.

Subset of C, extended with a few constructs for configuring and
generating the HW

Handel-C [CO-4]

DescriptionLanguage/Environment

Other true HW/SW co-design environments
Cosyma, Vulcan, Lycos, Castle, SpecSyn, Cosmos

Other co-design languages
SpecC, PureC/C++

Timed vs. untimed C
If the programmer is able to explicitly specify the clock
boundaries of a C expression → timed C
If the programmer cannot map the execution of a C expression to
a specific clock event → untimed C
Timed C involves more work, but can precisely control the
hardware
Untimed C is easier to work with, however, if hardware control is
required, HDL programming may be involved

Co-design Environments (2)

The SPLASH Effect (1) [ES-4]
A problem has occurred on our way to deep sub-micron levels:

Schism between the traditional ASIC tools and their required outcomes
Designers are becoming too specialized in one set of CAD tools

Plethora of gates and not enough designers to use them
Hardware design is now to complex and customized

Lack of a technology to which Moore’s Law can be extrapolated to
Self-prophesizing law “The length of eternity is 18 months, the length of a product
cycle” [ES-5]

Augmentation of the cost of fabrication plants
US $ 14 million in 1966
US $ 3 billion in 1998
US $ 10 billion in 2005

Separation between the digital producer and the digital consumer
Demonstrated by the loudspeaker bottleneck (next slide)

Hindrance of the optical lithographical process caused by physical limitations
Physics could signal the end of Moore’s Law (but not yet!)

The SPLASH Effect (2) [ES-4]

The SPLASH Effect (3) [ES-4]

An RDA is a reconfigurable digital assistant
It can be reconfigured to tailor to an intended application
It can build the required resources, on demand and in real-time
No more customization and no more market utilization gap!

Reconfigurable Computing Overview

Research began in the late 1980s but didn’t take off until
the FPGA became viable
RC fills the gap between hardware and software

It performs much higher than software
It is much more flexible than hardware

Let us begin with a simple classification
Non-configurable computing
Configurable computing
Reconfigurable computing

Each has its own set of advantages, disadvantages and
applications

Non-configurable Computing

Uses fixed hardware such as ASICs or custom VLSI circuits (e.g.
microprocessors like x86, Sparc, DEC, PowerPC, etc…)
Long product turnaround time, usually around 3-6 months
Optimized performance
Can be quite costly
Hardwired, thus, no room for error, re-work or improvement

Execute

01101001011101101
11000100110001110
01110010100110001
11001110010100110
00111001110010100
11000111001110010

11100100011111111
11111111110011000
11110001111111110
11010010111011011
10001001100011100
00000001101010101
11101010110101111
11111111

Configuring Host Bitstream

Execute

Configurable Computing (1)

Configuring host supervises FPGA
reconfiguration of a new bitstream
A bitstream is a sequence of bits
which represents the burn-in
configuration of the Hardware Block
(HB) eg. synthesized, place and
routed design

Configurable Computing (2)
Advantages:

Uses configurable hardware such as FPGAs or CPLDs
PLDs are soft wired for reuse of static hardware resources
Cost effective
Quick turnaround time
Flexible and ease in design process

Disadvantages:
Inefficient use of hardware resources, cannot use unused idle
FPGA area during run-time
Slow reconfiguration time, because of reconfiguring the entire
FPGA for a single Hardware Block (HB)
Thus, must stop execution while reconfiguring a new Hardware
Block

01101001011101101
11000100110001110
01110010100110001
11001110010100110
00111001110010100
11000111001110010
110010

11100100011111111
11111111110011000
11110001111111110
11010010111011011
10001001100011100

Configuring Host

11100100011111111
11111111110011000
11110001111111110
11010010111011011
10001001100011100

Bitstream

Execute

• We could also use a placement
algorithm to possibly fit all requested
HB into the FPGA

Reconfigurable Computing (1)

Reconfigurable Computing (2)
Advantages:

Same as Configurable Computing
No need to completely stop the execution while reconfiguring the
FPGA with a new HB
Efficient use of static hardware resources; can swap out or move
HBs around to fit new HBs on the FPGA, no need for a larger
FPGA or a second one
Fast reconfiguration times, (with a Xilinx Virtex FPGA,
reconfiguration times can be less then 1 ms for reconfiguring the
entire FPGA)
Run-time reconfiguration on the fly
Less power consumption, as we can swap out HBs

Disadvantages:
Routing HBs can be a heavy overhead for the configuring host
especially if HBs are too large or when defragmentation is
necessary

Reconfigurable Computing (3)
A RC system must contain the following features:

A reconfigurable architecture (RA)
A run-time environment (RTE)
Run-time reconfigurability (RTR)

A RC system must adhere to the following requirements:
1. Dynamic reprogrammability of the device

No down time
Functionality gained must offset reconfigurability times

2. Partial reconfiguration of the device
Necessary blocks are swapped online and in real-time

3. Accessible and visible internal state
Eases task switching, scheduling and allocation

4. Embedded processor presence
Required to handle context-switching, hardware routing, pre-emptive
scheduling and so on.

Reconfigurable Architectures (1)
A RA is a PLD-based design system, coupled with
a microprocessor used to combine the strengths of
both hardware and software
RAs can be classified in four different
architectures, based on coupling strategies:

a) Working as an external processor coupled through
the I/O bus;

b) Working as an attached processor coupled through
the local bus;

c) Working as a coprocessor directly coupled to the
main processor; and

d) Working as a functional unit coupled through the
datapath of the main processor

Reconfigurable Architectures (2) [RC-1]

Reconfigurable Architectures (3)

Can also be classified as coarse- or fine-grained
Coarse-grained architectures: the minimal path width is at least
greater than one
Fine-grained architectures: usually 1-bit path widths

There are numerous examples of RAs (much more at [RC-2])
CHESS Array (1999)

Floorplan is chessboard-like
Interleaved ALUs and switchboxes (logical architecture)
16 buses in each row and column (interconnect architecture)
4-bit, multi-granular (granularity)
JHDL compilation (mapping)
Mesh based (structure)

XD1 (2004)
AMD Opteron 64-bit processors along with 6 Xilinx V2P FPGAs
RapidArray provides high-speed, low-latency paths (interconnect)
1-bit, multi-granular (granularity)
Verilog, VHDL, Handel-C, Matlab/Simulink, Impulse-C (mapping)
Mesh-based (structure)

Run-Time Environment

A RTE is required to manage resources in an
abstract manner

Models must be created to virtualize the resources
The more concrete the model is, the more a designer
knows about the architecture, however
The more abstract a complex architecture is to a designer,
the easier it is for the designer to create applications

Needed to promote RC design to a much wider
pool of designers
Will aid in the transition to application designers
Best if residing within the OS (see hardware
operating systems in [RC-3])

Run-Time Reconfiguration (1)

RTR involves the direct manipulation of the
available hardware resources at run-time, in order
to respond to the surrounding requirements placed
on the system
Time-sharing of different tasks (temporal
partitioning) allows for:

Minimizes the required silicon area
Introduces the virtual hardware concept
Cycle-by-cycle context switching
Post-fabrication adaptation to new standards/features
Acceleration of the application through H/W hot-spot cores
True multitasking of applications and algorithms

Run-Time Reconfiguration (2)

Decided on reconfiguring all HBs into columnar-blocks
The Virtex FPGA’s atomic unit of reconfiguration is the column

Run-Time Reconfiguration (3) [RC-3]

Inserting and removing HBs at run-time
Implemented FPGA defragmentation to “fill the holes” created by the
application flow

The SPLASH Effect (revisited)
RC resolves the SPLASH effect by

Schism…
A new and innovative set of tools and compilers have been developed
Allows for application designers, rather than software or hardware designers

Plethora of gates…
A larger designer pool is targeted
The computer did not truly flourish world-wide until software and the Internet allowed the
free exchange of ideas and applications amongst its consumers

Lack of a technology…
Nano-technology, DNA computing, chaos-based computing, quantum computing,
Xputers

Augmentation of the cost…
RC dramatically lowers fabrication costs!

Separation between the DP and DC…
There is no need for post-fabrication customization in order to bridge the DP-DC gap

Hindrance of the optical process…
RC opens up various fields where the hardware is shared in both space and time!

The Alternatives

A few alternatives to RC design exist,
including:

General-purpose microprocessors (µPs)
Digital signal processors (DSPs)
Application-specific integrated circuits (ASICs)
System-on-chip (SoC) designs

We will next explore these alternatives focusing on
their performance measures

Generic performance equation
Performance = [frequency * IPS] / number of instructions

Basic performance equation (processor time)
T = [N * S] / R, where

T is the processor time
N is the number of instructions in the program
S is the average number of basic steps needed to execute one machine
instruction (CPI)
R is the clock rate (processor speed)

The goal is to decrease processor time and to increase
performance. How is that attained ?

Increase clock rate (or frequency) → Controlled by IC processes
Modify the instruction set → CISC vs. RISC

Interesting point!
CISC → ↓N but ↑S
RISC → ↑N but ↓S

Increase the number of instructions per second (IPS) → VLIW
Increase the efficiency of the compiler ↓[N * S] → Borland, Microsoft,
gcc

Performance Measures (1)

SPEC
System Performance Evaluation Corporation
Publishes suites of programs for each application to be
tested by the computer
Results are referenced to a well-known computer

For SPEC1995, it was the SUN SPARCstation 10/40
For SPEC2000, it was the Ultra-SPARC-10 workstation with a
300-MHz UltraSPARC-Iii processor

SPEC rating = [Running time on the reference computer] /
[Running time on the computer under test]

E.g. SPEC rating of 50 means CUT is 50 times as fast as
the reference computer
Watch out!

SPEC ratings measure the combined effect of all factors
affecting performance, including the compiler, the OS, the
processor and the memory

Performance Measures (2)

The microprocessor introduced a new computing
paradigm

Instead of designers having to map a fixed problem onto
fixed resources (e.g. TTL design), they were mapping
variable problems onto fixed resources

This created a big boom in computing
Two major bottlenecks exist today

Instruction execution
Each instruction is fetched, decoded and executed
Complexity is always increasing

Computational efficiency
Performance = [frequency * IPS] / number of instructions
Power = 0.5 * capacitance * [voltage]2 * frequency
Thus, increasing the performance increases the power!
However, embedded systems are high-computation, low-power
devices!

µP/DSP Co-design

Powerful customized chips operating at very high
speeds, and consuming less power than typical
µPs/DSPs
However, they are neither reconfigurable nor flexible
They are very expensive to design and produce
They require very specialized designers
They have a very long time-to-market

Small changes in a design might cost the product cycle
months at a time! (for a satirical view of the “man-month” refer
to [RC-4])

Changes in the applications environment and the
ability to support dynamic standards rule out ASICs
over the long run

ASIC Co-design

As soon as the process technologies entered the deep
sub-micron levels

Grouping various cores together became viable
Controlled the size and complexity
Offered off-the-shelf functionalities

The mixing and matching of such cores is what is
termed a System-on-Chip design
Many challenges face this infant

Interfacing the cores together
Verifying the cores’ individual and combined functionalities
Building large IP databases
Managing all the licensing and legal issues involved

SoCs have a future, but it is not their time just yet!

SoC Co-design

Potential Applications

Adaptive embedded systems would be capable of
arithmetic, DSP, multimedia, and other computationally
intensive functions

Low-power requirements met by swapping out idle HBs and
clocking only operational ones
Adaptation requirements met by updating HBs on-the-fly and
allowing for the download of Internet HBs!

Current boom in mobile robotics will result in the adoption
of RPUs for the management of real-time and low-power
tasks
The computer of the future will immensely benefit from
the addition of a RPU, to complement the extremely fast
and efficient, yet inflexible, contemporary processor

References (1)
Embedded Systems (ES)
1. M.J. Flynn, “Very High-Speed Computing Systems,” Proceedings of the IEEE, vol.

54, p.p. 1901-1909, December 1966
2. Petrov Group, “Trends in HW/SW Co-Design – User and Vendor Strategies,”

Strategic Report, April 2005
3. Nick Tredennick, “Get ready for reconfigurable computing,” Computer Design, April

1998
4. Groza V., Abielmona R., Petriu E., “Reconfigurable Computing: Exploring Emerging

Technologies,” INES 2002, IEEE International Conference on Intelligent
Engineering Systems, ISBN 953-6071-17-7, pp. 539-544, Opatija, Croatia, 25-28
May, 2002

5. Robert Schaller, “Moore’s law: past, present and future,” IEEE Spectrum, pp. 53-59,
June 1997

Reconfigurable Computing (RC)
1. Joao Cardoso and Mario Vestias, “Architectures and compilers to support

reconfigurable computing,” http://www.acm.org/crossroads/xrds5-3/rcconcept.html,
last viewed on 08/25/2006

2. Rami Abielmona, “Alphabetical List of Reconfigurable Computing Architectures,”
http://www.site.uottawa.ca/~rabielmo/personal/rc.html, last viewed on 01/16/2006

3. R. Abielmona, V. Groza, N. Sakr, "Low-Level Run-Time Reconfiguration of FPGAs
for Dynamic Environments," IEEE Canadian Conference on Electrical and
Computer Engineering, CCECE 2004, pp. 2135 – 2138, Vol.4, May 3-5, 2004
Niagara Falls, Ontario, Canada

4. Frederick Brooks, “The Mythical Man-Month,” Addison-Wesley, 1995

References (2)
Co-design (CO)
1. Mentor Graphics Corp., “HW/SW Co-Verification and Performance Analysis,”

Product datasheet, 2005
2. Rozenblit, J. and K. Buchenrieder (editors). Codesign Computer -Aided

Software/Hardware Engineering, IEEE Press, Piscataway, NJ, 1994; © IEEE 1994
3. Canadian Microelectronics Corporation (CMC), “Digital Design Flow,”

http://www.cmc.ca, last viewed on Jan. 2002
4. T. Stocklein and J. Basig, “Handel-C: an effective method for designing FPGAs

(and ASICs),” Fachbereich Nachrichten-und Feinwerktechnik.
5. Sven-Bodo Scholz, “Single Assignment C: Functional Programming Using

Imperative Style,” Proceedings of the 6th International Workshop on Implementation
of Functional Languages (IFL'94), Norwich, England, UK, pp.21.1-21.13, University
of East Anglia, 1994

6. Bhasker, J. “A SystemC Primer”, Star Galaxy Publishing, Allentown, PA: June 2002
7. F. Balarin, et al., “Hardware-Software Co-Design of Embedded Systems: The Polis

Approach,” Kluwer Academic Press, 1997
8. David Pellerin and Scott Thibault, “Practical FPGA Programming in C,” Prentice

Hall, 2005.
9. David Ku and Giovanni DeMicheli, “HardwareC – A Language for Hardware

Design,” Technical Report CSL-TR-90-419, Stanford University, 1990
10. Novakod Technologies, “psC Technology,” company white paper,

http://www.novakod.com/docs/Novakod_psC_Technology_Brochure.pdf, 2005

