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Abstract—This paper presents a method for automatic temporal 
location and recognition of human actions. The data are obtained 
from a motion capture system. They are then animated and 
optical flow vectors are subsequently calculated. The system 
performs in two phases. The first phase employs nearest neighbor 
search to locate an action along the temporal axis taking into 
account both the angle and length of the vectors, while the second 
classifies the action using artificial neural networks. Principal 
Component Analysis (PCA) plays a significant role in discarding 
correlated flow vectors. We perform a statistical analysis in order 
to achieve an efficient, adaptive and targeted PCA. This will 
greatly improve the configuration of flow vectors which we have 
used to train both the locating and classifying systems. 
Experimental results confirm the significance of our proposed 
method for locating and classifying a specific action from among 
a sequential combination of actions. 

Keywords-temporal location; classification; human actions; 
neural networks; principal component analysis. 

I. INTRODUCTION 
Analysis and recognition of human motion is an essential 

element in security, traffic, sports, multimedia, and biomedical 
technologies.  During the past decade an extensive amount of 
research has been carried out with the goal to create a robust 
system, capable of recognizing human actions and a variety of 
different tools and techniques have been employed. 

Optical flow provides unique features which has made it 
very suitable for training systems for human action 
recognition. In [1-8] the utilized data is based on optical flow 
vectors or some refined format of flow features. The Lucas-
Kanade algorithm for optical flow computation has shown to 
be most common and effective when optical data are 
available. Some other types of motion records such as motion 
capture data [9,10] and data acquired from accelerometers [11] 
have also been employed. 

When using optical flow features, the excessive number of 
correlated data must be reduced. PCA (Principal Component 
Analysis) is the most common tool [3-6] for this purpose. 
Other techniques such as Adaboost [2] and flow histograms 
[1,6,8] have also been suggested to create stronger features. 
Each motion frame is usually divided into n subsections 

(channels) and the refining algorithm is performed on each 
individual channel. The outcome for each channel is then used 
to train the system. For example, [8] the authors create a flow 
histogram for three channels representing three vertical slices 
for each frame. Ikizler et al. [1] divide the frames into 9 equal 
rectangles and subsequently form histograms for each of the 9 
channels. This type of partitioning the frames does not take 
into account the fact that some channels, for instance the 
channels corresponding to the corners of the image, are 
occupied by insignificant or almost no data. In the training 
process however, all channels are employed with equal weight 
and influence on the system.  

There are basically two problems to tackle when dealing 
with recognition of human actions. The first is to locate a 
specific action along the temporal axis. This means, in a 
sequential combination of actions performed by an actor, the 
goal is to determine when an action begins. A sliding search 
window may be an option [1] for this purpose, yet since for 
each new position of the window, the entire classification 
process must take place, it shows to be very time consuming. 
The other main problem is to classify the selected action. 
Varieties of different tools have been utilized for action 
classification. Hidden Markov models (HMM) are one of the 
most common tools [4,5,12,13,14]. Support Vector Machines 
(SVM) [1,8,15] and K-Nearest Neighbor (K-NN) [3,6,7,16] 
have also been utilized. The main tool which we have 
employed for classification of actions, Artificial Neural 
Networks (ANN), have also been used largely for action 
recognition [17-21]. Kornprobst et al. in [17] show that visual 
data used to train neural networks are an effective and 
efficient means for human action recognition. In [18] Babu et 
al. employ MHI (Motion History Image) and train neural 
networks for the recognition task. Self organizing neural 
networks have also been utilized by Kuniyoshi and Shimozaki 
[19,20]. Last but not least, in [21] Theodoridis and Huosheng 
use a variety of different neuron/layer MLP networks along 
with different training functions to classify human actions and 
compare the performance for different situations.  

The research reported here tries to address the two 
mentioned problems for recognition of human actions. We 
have made use of the Lucas-Kanade algorithm for optical flow 
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computation and PCA for data refinement. In this research we 
have not used the conventional linear partitioning of the 
images, and have proposed an effective method to tackle this 
problem by creating non-identical and dynamic channels 
based on statistical analysis in order to configure efficient, 
adaptive and targeted channels. The classification system 
performs in two phases. The first phase employs nearest 
neighbour search and locates specific actions temporally. For 
this purpose both the length and angle of the vectors are taken 
into account. Then the main classification system takes action 
as the second phase, classifying the located actions into pre-
defined classes. Phase two utilizes artificial neural networks 
for human action recognition purposes. 

II. OPTICAL FLOW FEATURES, DYNAMIC CHANNELS, AND 
TARGETED PCA 

The data used to create both the recognition and 
classification systems are based on optical flow computation 
of an animated skeleton of the actor performing the actions. 
This benefits our system by simplifying our research such that 
the clothing variations and background is no more an issue to 
deal with. In most literature on this topic, the background and 
actor clothing is chosen such that the separation of the actor 
from the background environment is simplified [4,5,7]. The 
motion capture data are obtained by a Vicon system based in 
Carleton University, and the motion frames are extracted via 
Autodesk Maya 3D animation software. Once the data 
acquisition is accomplished, the optical flow vectors are 
calculated using the very practical and popular Lucas-Kanade 
algorithm. Fig. 1 shows the calculated optical flow vectors for 
frame 10 of a walking and jumping sequence. 

 

 

Figure 1.  Optical flow vectors for walking sequence (left) and jumping 
sequence (right) 

The number of the obtained vectors are considerably large, 
thus it must be reduced. Using PCA, enhanced non correlated 
optical motion features are extracted.  

As discussed earlier in section 1, the images are usually 
divided into similar sections with equal areas, and PCA is 
performed on each section for flow vectors. When applying 
this approach, all channels will be equally weighed even for 

channels which do not contain flow features critical to 
characterizing the action, for example the channels in the 
corners of the images. Also in this fashion, the motion of a 
body part such as the arm might be partially represented by 
one channel and partially by another. As a result a specific 
channel which contains some of the arm motion features might 
also contain the motion features for the spine section. 
Performing PCA on this channel will then result in vectors 
representing both the arm and spine. Such situations are likely 
to happen for other parts of the body as well, which will be 
confusing for the recognition system. Another possibility is 
that one of the two important body parts represented by a 
specific channel be totally ignored since they might contain 
correlated motion features. This situation will result in loss of 
features that may be critical for recognition of actions. 

Our proposition for tackling the channeling problem is to 
introduce non-similar dynamic channels for the motion. Prior 
to the optical flow computation, the center mass of the 
skeleton is measured and a fixed 150 by 250 pixels box with 
same center mass is applied, discarding any pixel outside the 
box. The size of this box is selected based on the lengthiest 
poses available to guarantee that all actions remain inside the 
box. Optical flow is computed for the box only, guaranteeing 
that the skeleton is in the center of the image, thus reducing 
the number of flow vectors for the skeleton to some extent as 
shown is Fig. 1. Reduction of flow vectors happens due to the 
fact that by centralizing the actor for all frames, some body 
parts such as the spine will seem at rest although they are not, 
and only critical curl movements will be taken into account as 
motion. The mask is then configured on each 150 by 250 
window based on two concepts: the anatomical shape of the 
body and statistical analysis of the locations at which most 
motion features appear in with respect to the overall 
configuration of the image pixels. For this purpose the flow 
vectors are calculated within the box for all frames of the 
sequence. For each pixel the sum of the magnitudes of all 
vectors associated with that pixel during an action is 
calculated and normalized based on all pixels such that they 
vary from 0 to 255. Fig. 2 (left) shows the outcome of this 
analysis where brighter pixels show more motion. Based on 
the anatomical shape of the body, each channel is defined with 
respect the center mass of the body and the borders of the 150 
by 250 box. The channels are configured such that they 
represent a block-style version of human body. Six channels 
are created representing six important sections of the body: 
head, left arm, right arm, spine, left leg, and right leg. The size 
of the channels will change with the change in perspective size 
of the actor body, with actor height, and with different poses 
that are created throughout an action. Fig. 2 (middle) 
illustrates the mask applied on a practical image where the 
flow vectors have been computed. In Fig. 2 (right), the 
adaptiveness of the mask for a different pose and different 
perspective height and width is demonstrated. Body parts may 
indeed cross the boundaries and depart into non-relative 
channels. This situation is unavoidable in 2D images, 
nevertheless we have minimized this issue with our approach. 
Also this technique would reduce the negative effect of 
possible variation in test actor height and bulkiness due to its 
adaptation with the volume of the body.  
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Figure 2.  Channeling mask for PCA process – mask formation (left), mask 
adaptation (middle, right) 

Subsequent to applying the channel masks, PCA is 
performed on each of the 6 channel for all the flow vectors 
within. The result is a number of vectors weighted with 
respect to their correlation. The sum of these vectors is a 
single vector representing that channel. These vectors are later 
used for locating the actions temporally and for classification. 

III. TEMPORAL LOCATION OF ACTIONS 
The vectors representing each channel in each frame 

compose the training data for the location and classification 
subsystems. To create the location subsystem, nearest 
neighbor search is selected due to its fast routine and accurate 
capability in recognition of similar features. 

For training the nearest neighbor classifier, the temporal 
location where each action initiates is labeled. The optical 
flow vector for each channel contain both amplitude and phase 
denoted by (li,�i). The Euclidean distance between the test 
vector and the training vectors are calculated by the polar 
distance formula (1) where the � subscript represents the 
training features and c represents the channel number. j 
represents the action class (walk, run, or jump) and i denotes 
the frame number. The distance d is computed for all i and j 
values twice: once for the starting point of each action class j 
and once for the ending instance. The i which returns the least 
value of d for each round of calculations indicates the starting 
and ending point of the action. 
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The reason that this procedure is not used to classify the 
action along with the temporal locating of the action is that 
this technique simply employs the beginning and ending 
instance channels, and the frames in between can be of any 
sort. The goal of this search is to find the frames which appear 
to be the most similar to the start and end instances of any of 
the three classes. Also KNN is not adaptive compared to ANN 
which would be specialized to learn the alteration of flow 
vectors for a specific action.  

IV. ACTION CLASSIFICATION USING NEURAL NETWORKS 
Classification of the actions is carried out by means of 

ANN. By constructing a single neural network and training it 
with the three types of action the classification task can take 
place. This network employs 12 inputs one for each 
component of each channel, and 1 output, determinant of the 
action class. The input values are computed by differentiation 
of consecutive frame values, while the output value is 1, 2, or 
3 representing the classes of action which the difference 
vectors belong to. As it will be demonstrated in section 5, this 
network will not be very precise since differentiating between 
the three classes of action which hold many similarities is 
confusing for the network. Our proposed method is to create a 
different neural network for each action class. These networks 
play the role of anticipators. The frame span measured by the 
KNN is employed by all three networks, where each frame is 
used as the input and the consecutive frame plays the role of 
the output. Finally the mean square error (MSE) is calculated 
and the network producing the least MSE determines the class 
of action. The classification process is illustrated in Fig. 3.  

 

Figure 3.  Classification process 

For this research, the very practical, yet efficient 
multilayer perceptron (MLP) with backpropagation learning 
technique is utilized. The networks hold 12 inputs and 12 
outputs, one for each component of each of the 6 channel 
vectors, and two hidden layers are configured.  

V. EXPERIMENTAL RESULTS 
The goal of this research is to create an automatic system 

capable of locating and classifying human actions using 
different motion sequences. The overall functionality of the 
system is based on the discussed topics in sections 2, 3, and 4. 
The flow diagram of the system is presented by Fig. 4 which 
shows the different steps of this process. Initially optical flow 
is computed for the entire images and the dynamic channels 
are then configured based on statistical analysis and human 
figure. PCA is applied on each channel and the resulting 
vectors are used to train the nearest neighbor locator as well as 
three neural networks. Then for every test set, optical flow is 
computed, dynamic channels are applied, PCA is applied on 
each channel, and the results are employed by nearest 
neighbor locator for temporal location. The segmented action 
is then fed through the anticipators for classification of the 
located action. 

The dynamic channeling process is carried out based on 
section 2. To evaluate the contribution of this technique 
compared to fixed size static channels, the images were also 
divided into six non-adaptive channels where the width of 
each image is divided into 2 sections and the height is divided  
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Figure 4.  Flow diagram of the system. Dashed lines show similar procedures 
of the steps. 

into 3 sections. Following the channeling procedure, PCA is 
applied to each channel which results in a single vector 
representing each channel for both techniques. The nearest 
neighbor search is then carried out, locating the most likely 
frames representing the start and end temporal instance of an 
unknown action. Table 1 shows the results for temporal 
location of actions for each of the two channeling techniques. 
Six 100 frame sequences are tested where each action class is 
included in two of the sequences. The rest of sequence is filled 
with actions other than the three action classes. The error is 
calculated by the sum of differences in frame number with 
respect to the correct temporal instance of the beginning and 
ending of each action, divided by the total number of frames 
of each action. 

TABLE I.  TEMPORAL LOCATION USING FIXED AND DYNAMIC CHANNELS 

Action Error: Fixed 

Channels 

Error: Dynamic 

Channels 

Walk 5.97% 5.97% 

Jump 3.99% 3.99% 

Run 6.38% 5.07% 

Average 5.45% 5.01% 

It can be observed from Table 1 that the contribution of 
dynamic channeling is not very significant to the search for 
temporal location of the actions as the search for both walk 
and run remained unchanged. Overall, some improvement is 
observed while the accuracy of the nearest neighbor search for 
both techniques is acceptable and precise.  

The classification of the located actions is then carried out 
using neural network for both techniques. Table 2 presents the 
results where both a single neural network and three neural 
networks in the form of anticipators have been tested. 

TABLE II.  CLASSIFICATION OF ACTIONS USING FIXED AND DYNAMIC 
CHANNELS 

 

 

 

 

 

 

 

 

 

 

Table 2 clearly demonstrated the effect of employing 
dynamic channels as well as using neural networks in the form 
of anticipators. While a single neural network shows an 
accuracy of 50%, three specialized neural networks one for 
each class increases the accuracy by more than 16.67%. Also 
the effect of dynamic channels is significant (16.67% 
improvement) for classification as opposed to the temporal 
search where it did not affect the results by a considerable 
margin. The reasons for these drastic improvements in 
classification results are the facts that 1) when three neural 
networks are used, the networks are not confused by the 
different classes of action used to train them 2) dynamic 
channels simplify and specialize the flow vectors in each 
channel compared to the case where static and equally sized 
channels are utilized. From Table 2 we can conclude that each 
of these measures improves the classification accuracy by 1/6. 

In regards to the runtime of the proposed method, the 
system is far from real-time. Yet the speed of the system is 
significantly higher compared to the practical method. The 
application of dynamic channels omits the need for 
implementation of PCA for up to 2/3 of the area of the images, 
resulting in reduction of the lengthy PCA runtime by nearly 
2/3 of the original method where PCA is applied on the entire 
images using fixed size channels. This impact varies based on 
the perspective of the figure which results in faster 
computations from between 1.5 to 2 times the original speed. 
The same impact is visible for the location task where fewer 
channels result in faster temporal location of actions. The use 
of 3 separate neural networks in the form of anticipators 

Action 

Classification 
Results: 
Dynamic 
Channels 

Classification 
Results: Fixed 

Channels 

Classification 
Results: 
Dynamic 
Channels 

Neural 
Network Single Triple 

(Anticipators) 
Triple 

(Anticipators) 
Walk1 Run Walk Walk 
Walk2 Run Run Walk 
Jump1 Jump Jump Jump 

Jump2 Jump Jump Jump 
Run1 Walk Walk Walk 
Run2 Run Run Run 

Accuracy 50.00% 66.67% 83.33% 
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instead of a global network does not significantly impact the 
runtime. Training three different networks with a fixed 
number of data sets for each, consumes almost the same 
amount of time as one single network takes to be trained by all 
the data sets used to train each of the three. This means the 
training time which is a very lengthy process is almost equal 
in both cases. The testing of the data using three anticipators, 
however, takes triple the time required to test the data using 
one network. Yet since the testing is a very fast procedure, the 
difference in runtime is negligible. Thus the overall runtime of 
the system is significantly decreased compared to the practical 
optical flow/neural network methods. 

VI. CONCLUSION 
In this paper, we proposed a method for automatic 

classification of actions. The actions were located from within 
a sequential combination of actions. The process for temporal 
location of actions was carried out using nearest neighbor 
search. The outcome was employed by three neural networks 
in the form of anticipators, each of which were earlier trained 
by features of a specific class of action, and the network 
producing the least mean square error determined the actions 
class. It was demonstrated that using separate specialized 
neural networks instead of a single network improved the 
results significantly. 

The features used to train the locating and classification 
tools were based on optical flow vectors. The flow vectors for 
consecutive frames were first measured. Based on statistical 
analysis and the anatomical shape of the body, six dynamic 
and adaptive channels were constructed. Principal component 
analysis was then applied to each channel to discard the 
correlated data for more accurate results. Experimental results 
clearly demonstrated the significant effect of using dynamic 
adaptive channels as a replacement for fixed size static 
channels where the proposed channels are adaptive to the 
perspective size and different pose of the body.  

The results clearly show that while the temporal location 
of actions did not improve significantly when using dynamic 
channels, a 33.33% improvement in results for classification 
of human actions was observed when dynamic channels and 
neural networks in the form of anticipators (instead of one 
global network) were employed.  
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