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Girard’s Geometry of Interaction (GoI) develops a mathematical framework for

modelling the dynamics of cut-elimination. We introduce a typed version of GoI, called

Multiobject GoI for both multiplicative linear logic (MLL) and multiplicative

exponential linear logic (MELL) with units. We present a categorical setting which

includes our previous (untyped) GoI models, as well as more general models based on

monoidal ∗-categories. Our development of multiobject GoI depends on a new theory of

partial traces and trace classes which we believe is of independent interest, as well as an

abstract notion of orthogonality (related to work of Hyland and Schalk.) We develop

Girard’s original theory of types, data and algorithms in our setting, and show his

execution formula to be an invariant of Cut Elimination (under some restrictions). We

prove Soundness Theorems of the MGoI interpretation (for Multiplicative and

Multiplicative Exponential Linear Logic) in partially traced ∗-categories with an

orthogonality. Finally, we briefly discuss relating our GoI interpretation to other

categorical interpretations of GoI.

1. Introduction

The Geometry of Interaction (GoI) is a highly original interpretation of linear logic, in-
troduced by Girard in a fundamental series of papers beginning in the late 80’s (Gir89a;
Gir88; Gir95a) and continued recently in (Gir07; Gir08). One striking feature of this
work is that it provides a mathematical framework for modelling cut-elimination (nor-
malization) of proofs as a dynamical process of information flow, independent of logical
syntax. Girard introduces methods from functional analysis and operator algebras to
model proofs and their dynamical behaviour.

Girard’s original framework (in GoI I and II), based on C∗-algebras, was studied in
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detail in several works of Danos and Regnier (for example in (DR95)) and by Malacaria
and Regnier (MR91). The GoI program itself has been applied to the analysis of optimal
reduction by Gonthier, Abadi, and Lévy (GAL92), to complexity theory (BP01; Sch07),
to game semantics and token machines (B95; Lau01), etc. For further history see (AHS02)
and our recent (HS10).

Let us briefly recall some aspects of Girard’s original GoI. Traditional denotational
semantics models normalization of proofs (or lambda terms) by static equalities: if Π,
Π′ are proofs and if Π reduces to Π′ by cut-elimination, then in any appropriate model,
Π = Π′ . Instead, in his GoI program, Girard considers proofs as operators, pictured

as I/O boxes: a proof of a sequent ` Γ is interpreted as a box with input and output
wires labelled by Γ. The formulas or types in Γ form the I/O-interface of the proof box
and the rules of logic modify this interface. A graphical representation of this process (in
the language of combinatory algebras) is described in (AHS02). However Girard works in
an untyped setting, so in fact the labels of the wires range over a single space U satisfying
various domain equations (see below).

Now consider a proof Π of a sequent ` [∆],Γ, where ∆ is a list of all the cut-formulas
used. Girard associates to such a proof a pair of partial symmetries (u, σ), where u is of
norm at most 1, and σ represents the cuts ∆. The dynamics of cut-elimination may now
be captured in a solution of a system of feedback equations, summarized in an operator
Ex(u, σ) (the Execution Formula). It can be shown (Gir89a; HS04a) that for denotations
of proofs (u = Π ) of appropriately restricted types in System F, Ex( Π , σ) is an
invariant of cut-elimination. We feel that the general categorical framework described
below (based on partial traces) permits a structured approach to solving these general
feedback equations and deriving properties of the Execution formula.

Categorical foundations of GoI were initiated in the 90’s in lectures by M. Hyland
and by S. Abramsky. An early categorical framework was given in Abramsky-Jagadeesan
(AJ94). Recent work has stressed the role of Joyal-Street-Verity’s traced monoidal cat-
egories (JSV96) (with additional structure) as a unifying framework for the different
approaches. For example, Abramsky’s GoI situations (Abr96; Hagh00; AHS02) provide
a basic algebraic foundation for GoI for multiplicative, exponential linear logic (MELL).
In our paper (HS04a), we studied a particular class of GoI situations (using traced unique
decomposition categories) to axiomatize the details of Girard’s original GoI I paper.

In our previous articles, we emphasized several important aspects of Girard’s seminal
work (at least in GoI I and II).

1 The original Girard framework is essentially untyped: there is a reflexive object U
in the underlying model (with various retractions and/or domain isomorphisms, e.g.
U ⊗ U � U).

2 Cut-elimination is interpreted by feedback, naturally represented in traced monoidal
categories. The execution formula, defined via trace, provides an invariant for cut-
elimination (for certain restricted sequents).

3 Girard introduced an orthogonality operation ⊥ on endomaps of U together with the
notion of types (as sets of endomaps equal to their biorthogonal).

4 Following the original Girard papers, there are notions of data and algorithm encoded
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into this dynamical setting, with fundamental theorems connecting types, algorithms,
and the convergence of the execution formula.

Points (1) and (2) above were already emphasized in the Abramsky program, as well as
in work of Danos and Regnier (Abr96; AHS02; HS04a; DR95). Orthogonalities have been
studied abstractly by Hyland and Schalk (HylSch03). The points (1)–(4) are critical to
our view of GoI in (HS04a; HS04b) and to the technical developments in this paper. We
have recently given a general survey of categorical foundations of GoI in (HS10).

As mentioned, Girard’s GoI (both the original, as well as the more recent versions
(Gir08)) is essentially untyped: there are domain isomorphisms of a reflexive object U and
an associated ∗-algebra of codings and uncodings. Categorically, proofs are interpreted in
the monoid Hom(U,U) using this ∗-algebra) (see (Gir88; AHS02; HS04a; HS04b)) and
the Execution formula is used to model the dynamics of cut-elimination. In an important
series of works, Danos and Regnier (see (DR95) and the references there) studied this
∗-algebra in detail in concrete models, leading to their extensive analysis of reduction
paths in untyped lambda calculus.

Our aim in this paper is to move away from “uni-object GoI” to a typed version. This
permits us to both generalize GoI and axiomatize its essential features. For example, by
removing reflexive objects U , we also unlock the possibilities of generalizing Girard-style
GoI to more general tensor categories including cases where the tensor is “product-like”
in addition to “sum-like”, in the sense of (Abr96; AHS02). We shall illustrate both of
these styles in the examples below.

This paper combines and details the treatments in (Hagh06) and (HS05a). The con-
tributions of this paper can be summarized as follows:

— We introduce an axiomatization for partially traced symmetric monoidal categories
(and ∗-categories) and provide concrete examples based on Vecfd , finite dimensional
vector spaces, and CMet, complete metric spaces, as well as Hilb, the category of
Hilbert spaces, among others. This axiomatization is different from that in (ABP99),
although related in spirit.

— We introduce an abstract orthogonality relation (see (HylSch03)), appropriate for
GoI, on our models.

— We present a multiobject version of Girard’s GoI semantics (MGoI) in partially traced
∗-categories with orthogonality. We define versions of Girard’s types, data, algorithms
in our setting, as well as a categorical version of the execution formula. We give
an MGoI interpretation for the multiplicative as well as multiplicative-exponential
fragments of linear logic with units (MLL and MELL) in appropriate partially traced
∗-categories, and show that the execution formula is an invariant of cut-elimination,
in an appropriate sense (see Section 4.3 below).

— We end by briefly discussing how the MGoI interpretation compares to categorical
interpretations in various Int-categories (cf. (JSV96; AJ94)) as well as a brief descrip-
tion of the intrinsic “paracategory” of types and terms in which MGoI lives.

Finally, we should remark that even in the simple case of multiplicative linear logic
(MLL), the differences between typed and untyped GoI are evident: recall that Girard’s
original GoI (as presented in (AHS02)) requires a reflexive object U 6= {0}, with a
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retraction U ⊕U �U , which is impossible in say finite dimensional vector spaces Vecfd ,
although we can nevertheless give a typed GoI interpretation. On the other hand, in the
case of exponentials in MELL, infinity forces itself into the framework: it is no longer
possible to carry out the MGoI interpretation in finite dimensions. This is discussed
further in Section 5 below, and contrasts with the collapsing of types in untyped GoI
based on a reflexive object.

2. Partially Traced Categories

2.1. Parametric Trace Class

The notion of categorical trace was introduced by Joyal, Street and Verity in an influential
paper (JSV96). The motivation for their work arose in algebraic topology and knot
theory, although the authors were aware that such traces also have many applications
in Computer Science, where they include such notions as feedback, fixedpoints, iteration
theories, etc. For references and history, see (Abr96; AHS02; HS04a).

In this paper we go one step further and look at partial traces. The idea of generalizing
the abstract trace of (JSV96) to the partial setting is not new. For example, partial
traces were already studied in work of Abramsky, Blute, and Panangaden (ABP99),
in unpublished lecture notes of Gordon Plotkin (plot03), in Blute, Cockett, and Seely
(BCS00), as well as in (KSW02), (Jeff98) and others (see the discussion in Remark 2.2
below). Unfortunately none of these extant theories is appropriate for our treatment of
Girard’s GoI. So we present a suitable axiomatization for partial traces which we believe
is of independent mathematical interest.

Recall, following Joyal, Street, and Verity (JSV96), a (parametric) trace in a symmetric
monoidal category (C,⊗, I, s) is a family of maps

TrU
X,Y : C(X ⊗ U, Y ⊗ U) −→ C(X,Y ),

satisfying various naturality equations. A partial (parametric) trace requires instead that
each TrU

X,Y be a partial map (with domain denoted TU
X,Y ) satisfying various closure

conditions.

Definition 2.1 (Trace Class). Let (C,⊗, I, s) be a symmetric monoidal category. A
(parametric) trace class in C is a choice of a family of subsets, for each object U of C, of
the form

TU
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X, Y of C

together with a family of functions, called a (parametric) partial trace, of the form

TrU
X,Y : TU

X,Y −→ C(X,Y )

subject to the following axioms. Here the parameters are X and Y and a morphism
f ∈ TU

X,Y , by abuse of terminology, is said to be trace class.

— Naturality in X and Y : For any f ∈ TU
X,Y and g : X ′ −→ X and h : Y −→ Y ′,

(h⊗ 1U )f(g ⊗ 1U ) ∈ TU
X′,Y ′ ,
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and TrU
X′,Y ′((h⊗ 1U )f(g ⊗ 1U )) = hTrU

X,Y (f) g.

— Dinaturality in U : For any f : X ⊗ U −→ Y ⊗ U ′, g : U ′ −→ U ,

(1Y ⊗ g)f ∈ TU
X,Y iff f(1X ⊗ g) ∈ TU ′

X,Y ,

and TrU
X,Y ((1Y ⊗ g)f) = TrU ′

X,Y (f(1X ⊗ g)).

— Vanishing I: TI
X,Y = C(X ⊗ I, Y ⊗ I), and for f ∈ TI

X,Y

TrI
X,Y (f) = ρY fρ

−1
X .

Here ρA : A⊗ I −→ A is the right unit isomorphism of the monoidal category.
— Vanishing II: For any g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V , if g ∈ TV

X⊗U,Y⊗U , then

g ∈ TU⊗V
X,Y iff TrV

X⊗U,Y⊗U (g) ∈ TU
X,Y ,

and TrU⊗V
X,Y (g) = TrU

X,Y (TrV
X⊗U,Y⊗U (g)).

— Superposing: For any f ∈ TU
X,Y and g : W −→ Z,

g ⊗ f ∈ TU
W⊗X,Z⊗Y ,

and TrU
W⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrU

X,Y (f).

— Yanking: sUU ∈ TU
U,U , and TrU

U,U (sU,U ) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called a partially
traced category, or a category with a trace class. If we let X and Y be I (the unit of the
tensor), we get a family of operations TrU

I,I : TU
I,I −→ C(I, I) defining what we call a

non-parametric (or scalar-valued) trace.

Remark 2.2. An early definition of a partial parametric trace is due to Abramsky,
Blute and Panangaden in (ABP99). The guiding example in (ABP99) is the relationship
between trace class operators on a Hilbert space and Hilbert-Schmidt operators. This
allows the authors to establish a close correspondence between trace and nuclear ideals
in a tensor ∗-category. Our definition is different but related to theirs. First, we have used
the Yanking axiom in Joyal, Street and Verity (JSV96), whereas in (ABP99) they use a
conditional version of the so-called “generalized yanking”; that is, for f : X −→ U and
g : U −→ Y , TrU

X,Y (sU,Y (f⊗g)) = gf whenever sU,Y (f⊗g) is trace class. It was shown in
(Hagh00) that for traced monoidal categories the two axioms of yanking and generalized
yanking are equivalent in the presence of all the other axioms. This equivalence remains
valid for the partially traced categories introduced here. In our theory sUU is traceable
for all U ; on the other hand, many examples in (ABP99) do not have this property.
Our Vanishing II axiom differs from and is weaker than the one proposed in (ABP99):
it is a “conditional” equivalence. More importantly, we do not require one of the ideal
axioms in (ABP99). Namely, we do not ask that for f ∈ TU

X,Y and any h : U −→ U ,
(1Y ⊗ h)f and f(1X ⊗ h) be in TU

X,Y . Indeed in the next section we prove that the
categories Vecfd of finite dimensional vector spaces, and (CMet,×) of complete metric
spaces are partially traced. It can be shown that in both categories the above ideal axiom
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and Vanishing II of (ABP99) fail and hence they are not traced in the sense of ABP. In
defense of not enforcing this ideal axiom, we observe that it is not required for any of the
trace axioms. Any partially traced category in the sense of ABP for which the yanking
axiom holds will be partially traced according to our definition. Finally, we observe that
the nonparametric version of our partial trace is also different from the one in (ABP99).

Plotkin’s work develops a theory of Conway ideals on biproduct categories, and an
associated categorical trace theory.

Other notions of categorical partial trace have been examined by Alan Jeffrey (Jeff98)
and also by various category theorists. One may ask: why did we not use those? For
example, Jeffrey cuts down the domain of the trace operator to admissible (traceable)
objects U which form a full subcategory of the original category. This is not possible for
us: our trace classes do not form subcategories. For example, in keeping with functional
analysis on infinite dimensional spaces, the ABP theory of traced ideals (ABP99), and
with Girard’s papers on GoI, we do not wish (in general) for the identity map to be
traced; nor are our trace classes necessarily closed under all possible compositions.

P. Katis, N. Sabadini, R.F.C. Walters (KSW02) give an interesting theory of categories
with partial feedback. Although their theory permits treating feedback with delay in a
natural way, their approach will not work for us, since dinaturality for them is restricted
to isomorphisms, which is unsuitable for giving a GoI interpretation for linear logics.

In (BCS00), Blute, Cockett, and Seely develop an interesting and detailed theory of
trace (and fixpoint) combinators in a linearly distributive category, including an appro-
priate version of the Int construction of (JSV96) in that setting. The notion of trace is
somewhat similar to Jeffrey’s, in that trace is defined for objects and one talks about the
traceability of objects in a category. The authors take a local view of the trace combi-
nator: rather than assuming that a trace is available at every object, they consider the
effect of particular objects having a trace (partiality of trace), as well as restricting to
“compatible classes” of trace operators (which guarantees that an object may have at
most one trace structure.)

In the case when (in their notation) trU is a partial operator, the authors modify the
trace axioms in line with the definitions in (ABP99), in particular Yanking is replaced by
Generalized Yanking etc. Thus for our purposes, the notion of partial trace in (BCS00)
suffers the same issues as the previously-discussed ABP ideal-structure axiomatization
(save for the difference in formulation on objects instead of arrows). Also, as in the case
of ABP mentioned above, our examples (Vecfd ,⊕) and (CMet,×) will not be partially
traced in the sense of (BCS00).

One is obliged to say that there are many different approaches to partial categorical
traces and ideals; ours is geared to the details of Girard’s GoI. We believe our traceability
conditions are most naturally formulated as we did above, as properties of morphisms
rather than objects, but this may be a matter of taste.

2.2. Examples of Partially Traced Categories

(a) Finite Dimensional Vector Spaces

The category Vecfd of finite dimensional vector spaces and linear transformations is a
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symmetric monoidal, indeed an additive, category (see (Mac98)), with monoidal product
taken to be ⊕, the direct sum (biproduct). Hence, given f : ⊕IXi −→ ⊕JYj with |I| = n

and |J | = m, we can write f as an m × n matrix f = [fij ] of its components, where
fij : Xj −→ Yi (notice the switch in the indices i and j).

We give a trace class structure on the category (Vecfd ,⊕, 0) as follows. We shall say
an f : X ⊕ U −→ Y ⊕ U is trace class iff (I − f22) is invertible, where I is the identity
matrix, and I and f22 have size dim(U). In that case, we write

TrU
X,Y (f) = f11 + f12(I − f22)−1f21 (1)

This definition is motivated by a generalization of the fact that for a matrix A, (I−A)−1 =∑
iA

i, whenever the infinite sum converges. Clearly this sum converges when the matrix
norm of A is strictly less than 1, or when A is nilpotent, but in both cases the general
idea is the desire to have (I −A) invertible. If the infinite sum for (I − f22)−1 exists, the
above formula for TrU

X,Y (f) becomes the usual “particle-style” trace in (Abr96; AHS02;
HS04a). One advantage of formula (1) is that it does not a priori assume the convergence
of the sum, nor even that (I − f22)−1 be computable by iterative methods.

Proposition 2.3. (Vecfd ,⊕, 0) is partially traced, with trace class as above.

The proof of Proposition 2.3 uses the following standard facts from linear algebra:

Lemma 2.4. Let M =
[
A B

C D

]
be a partitioned matrix with blocks A (m×m),

B (m×n), C (n×m) and D (n×n). If D is invertible, then M is invertible iff A−BD−1C

(the Schur Complement of D) is invertible.

Proof. We write

M =
[
I BD−1

0 I

] [
A−BD−1C 0
0 D

] [
I 0
D−1C I

]
.

Clearly M is invertible iff A−BD−1C is invertible, and in that case

M−1 =
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.

Lemma 2.5. Given A (m× n) and B (n×m), (Im −AB) is invertible iff (In −BA) is
invertible. Moreover (Im −AB)−1A = A(In −BA)−1.

Proof. Let K = (Im − AB)−1. One can check that (In − BA)−1 = (In + BKA) and
conversely if L = (In − BA)−1, then (Im − AB)−1 = (Im + ALB). The second identity
follows easily.

Proof. (Proposition 2.3) We shall verify the axioms.

— Naturality in X and Y : Suppose f ∈ TU
X,Y and g : X ′ −→ X and h : Y −→ Y ′,

(h⊕1U )f(g⊕1U ) can be represented by its matrix
[
hf11g hf12
f21g f22

]
whose component
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from U to itself is f22 and hence (h⊕1U )f(g⊕1U ) ∈ TU
X′,Y ′ and it is easy to see that

hTrU
X,Y (f)g = TrU

X′,Y ′((h⊕ 1U )f(g ⊕ 1U )).
— Dinaturality in U : Let f : X ⊕ U −→ Y ⊕ U ′, g : U ′ −→ U . (1Y ⊕ g)f ∈ TU

X,Y iff
I − gf22 is invertible iff I − f22g is invertible by Lemma 2.5 and thus iff f(1X ⊕ g) ∈
TU ′

X,Y .

T rU
X,Y ((1Y ⊕ g)f) = f11 + f12(I − gf22)−1gf21

= f11 + f12g(I − f22g)−1f21 by Lemma 2.5.

= TrU ′

X,Y (f(1X ⊕ g)).

— Vanishing I: Follows from the fact that I (the unit of the monoidal product) is the
zero object in Vecfd .

— Vanishing II: Let g : X ⊕ U ⊕ V −→ Y ⊕ U ⊕ V be given by g =

 a b c

d e f

m n p

 .
And suppose g ∈ TV , then (I − p) is invertible. g ∈ TU⊕V iff

[
I − e −f
−n I − p

]
is

invertible, iff I − e− f(I − p)−1n is invertible by Lemma 2.4. Thus, iff TrV (g) ∈ TU .
Finally, TrU⊕V

X,Y (g) = TrU
X,Y (TrV

X⊕U,Y⊕U (g)) follows from the expression for the in-

verse of
[
I − e −f
−n I − p

]
as in Lemma 2.4.

— Superposing: Suppose f ∈ TU
X,Y and g : W −→ Z, then I − f22 is invertible and so

g ⊕ f ∈ TU
W⊕X,Z⊕Y . Moreover,

TrU
W⊕X,Z⊕Y (g ⊕ f) =

[
g 0
0 f11

]
+

[
0 0
0 f12(I − f22)−1f21

]
= g ⊕ TrU

X,Y (f).

— Yanking: sUU ∈ TU
U,U as its U to U component is 0UU and so I − 0UU = I which is

invertible. Also TrU
U,U (sU,U ) = 0UU + 1U (I − 0UU )−11U = 1U .

As discussed in Remark 2.2, the category (Vecfd ,⊕) is not partially traced in the
sense of ABP; nor is it traced in the sense of A. Jeffrey, since (for example) the identity
is not trace class.

(b) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive maps, where
f : (M,dM ) −→ (N, dN ) is said to be non-expansive iff dN (f(x), f(y)) ≤ dM (x, y), for
all x, y ∈ M . Note that the tempting collection of complete metric spaces and contrac-
tions (dN (f(x), f(y)) < dM (x, y)) is not a category: there are no identity morphisms!
CMet has products, namely given (M,dM ) and (N, dN ) we define (M ×N, dM×N ) with
dM×N ((m,n), (m′, n′)) = max{dM (m,m′), dN (n, n′)}.

We define the trace class structure on CMet (where ⊗ = × ) as follows. We say
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that a morphism f : X × U −→ Y × U is in TU
X,Y iff for every x ∈ X the induced map

π2λu.f(x, u) : U −→ U has a unique fixed point; in other words, iff for every x ∈ X, there
is a unique u, and a y, such that f(x, u) = (y, u). Note that in this case y is necessarily
unique. Also, note that contractions have unique fixed points, by the Banach fixed point
theorem.

Suppose f ∈ TU
X,Y . We define TrU

X,Y (f) : X −→ Y by TrU
X,Y (f)(x) = y, where

f(x, u) = (y, u) for the unique u. Equivalently, TrU
X,Y (f)(x) = π1f(x, u) where u is the

unique fixed point of π2λt.f(x, t).

Proposition 2.6. (CMet,×, {∗}) is a partially traced category with trace class as above.

Lemma 2.7. Let A and B be sets, f : A −→ B and g : B −→ A. Then, gf has a
unique fixed point if and only if fg does. Moreover, let a ∈ A be the unique fixed point of
gf : A −→ A and b ∈ B be the unique fixed point of fg : B −→ B. Then f(a) = b and
g(b) = a.

Proof. Suppose gf has a unique fixed point a, then fgf(a) = f(a) and so fg has a
fixed point. Now suppose b is another fixed point of fg, then gfg(b) = g(b), so g(b) = a

and b = fg(b) = f(a). Similarly for the converse direction.

Proof. (Proposition 2.6) We shall verify the axioms. For f : X ×U −→ Y ×U and
x ∈ X, we will use fx to denote the map λu.f(x, u) : U −→ Y × U.

— Naturality in X and Y : Suppose f ∈ TU
X,Y and g : X ′ −→ X and h : Y −→ Y ′,

for any x′ ∈ X ′, π2((h× 1)f(g× 1))x′ = π2fg(x′) and hence (h× 1)f(g× 1) ∈ TU
X′,Y ′ .

Moreover, TrU ((h× 1)f(g × 1))(x′) = π1(h× 1)f(g × 1)(x′, u) where u is the unique
fixed point of π2((h× 1)f(g × 1))x′ . Observe that

TrU ((h× 1)f(g × 1))(x′) = π1(h× 1)f(g × 1)(x′, u)

= hπ1f(g(x′), u)

= hTrU (f)(g(x′))

= hTrU (f)g(x′).

— Dinaturality in U : Let f : X×U −→ Y ×U ′, g : U ′ −→ U . Note that for any x ∈ X,
π2((1Y × g)f)x = g(π2fx) and π2(f(1X × g))x = (π2fx)g and g(π2fx) has a unique
fixed point iff (π2fx)g has a unique fixed point, by Lemma 2.7. Thus (1Y ×g)f ∈ TU

X,Y

iff f(1X × g) ∈ TU ′

X,Y .

TrU
X,Y ((1Y × g)f)(x) = π1(1× g)f(x, u) where u is the unique

fixed point of g(π2fx)

= π1f(x, u)

= π1f(x, g(u′)) by Lemma 2.7

where u′ is the unique fixed point of (π2fx)g

= TrU ′

X,Y (f(1X × g))(x).
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— Vanishing I: Follows from the fact that I (the unit of monoidal product) is {∗}.

— Vanishing II: Let g : X × U × V −→ Y × U × V and suppose g ∈ TV
X×U,Y×U , then

TrV (g) : X × U −→ Y × U is well-defined.
TrV (g) ∈ TU

X,Y iff for every x, there is a unique u such that TrV (g)(x, u) = (y, u) for
some y, iff for every x, there is a unique u and a unique v such that g(x, u, v) = (y, u, v)
for some y, iff g ∈ TU×V

X,Y .
TrU

X,Y (TrV
X×U,Y×U (g))(x) = y iff there is a unique u such that TrV (g)(x, u) = (y, u)

iff there is a unique u and a unique v such that g(x, u, v) = (y, u, v) iff TrU×V
X,Y (g)(x) =

y.
— Superposing: Suppose f ∈ TU

X,Y and g : W −→ Z, note that πZ×Y,U
2 (g × f)(w,x) =

πY,U
2 fx, for all w ∈ W and x ∈ X, so g × f ∈ TU

W×X,Z×Y . Moreover, TrU (g ×
f)(w, x) = (z, y) iff there is a unique u such that (g × f)(w, x, u) = (z, y, u) iff there
is unique u such that f(x, u) = (y, u) and g(w) = z iff (g × TrU (f))(w, x) = (z, y).

— Yanking: sUU ∈ TU
U,U ; indeed π2su1 is the constant u1 function, hence it has a unique

fixed point, namely u1. Moreover, TrU (s)(x) = π1sx(u) where u is the unique fixed
point of π2sx, thus u = x and TrU (s)(x) = π1(u, x) = u = x and hence TrU (s) = 1U .

Proposition 2.6 remains valid for the category (Sets,×) of sets and mappings. The
latter then becomes a partially traced category with the same definition for trace class
morphisms as in CMet. However, this fails for the category (Rel,×), of sets and rela-
tions, as Lemma 2.7 is no longer valid: consider the sets A = {a}, B = {b, b′}, and let
f = {(a, b), (a, b′)} and g = {(b, a), (b′, a)}.

(c) Monoidal Subcategories of Traced Categories

The following results have been obtained recently by O. Malherbe (Mal10) and yield
many interesting examples of partial traces, especially related to categories arising in the
semantics of quantum programming languages and higher-order quantum computation
(Sel04; Sel04a).

Example 2.8 (O. Malherbe). Let (C,⊗, I, s) be a symmetric monoidal category, with
monoidal subcategory D. Suppose C is partially traced, with trace classes
TU

X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X, Y of C and with trace TrU
X,Y : TU

X,Y −→
C(X,Y ).

Then D is partially traced by defining f ∈ D(X ⊗ U, Y ⊗ U) to be trace class (in D)
if f ∈ TU

X,Y in C and in addition TrU
X,Y (f) ∈ D(X,Y ) . Moreover, the trace of f ∈ D

(when defined), is its value when calculated in C.

In particular, if D is a monoidal subcategory of C and C is a totally traced symmetric
monoidal category, then D is partially traced. In this case, a map f ∈ D is trace class if,
when considered as a C map, its trace lands in D, and in this case, the value of the trace
is its value in C.

(d) Total Traces
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Of course, all (totally-defined) traces in the usual definition of a traced monoidal category
yield a trace class, namely the entire homset is the domain of Tr. In particular, all
the examples in our previous work on uni-object GoI based on unique decomposition
categories, (HS04a; HS04b), still apply here.

Remark 2.9 (A Non-Example). Consider the structure (CMet ,×). Defining the
trace class morphisms as those f such that π2λu.f(x, u) : U −→ U is a contraction, for
every x ∈ X, does not yield a partially traced category: all axioms are true except for
dinaturality and Vanishing II.

3. Orthogonality Relations

Girard originally introduced orthogonality relations into linear logic to model formulas
(or types) as sets equal to their biorthogonal (e.g. in the phase semantics of the original
paper (Gir87) and in GoI 1 (Gir88)). Recently M. Hyland and A. Schalk gave an abstract
approach to orthogonality relations in symmetric monoidal closed categories (HylSch03).
They also point out that an orthogonality on a traced symmetric monoidal category C
can be obtained by first considering their axioms applied to Int(C), the compact closure
of C, and then translating them down to C. Below we give this translation (not explicitly
calculated in (HylSch03)), using the so-called “GoI construction” G(C) (Abr96; Hagh00)
instead of Int(C). The categories G(C) and Int(C) are both compact closures of C, and
are shown to be isomorphic in (Hagh00). For more on compact closure constructions the
interested reader is referred to the above references.

As we are dealing with partial traces we need to take extra care in stating the axioms
below; namely, an axiom involving a trace should be read with the proviso: “whenever all
traces exist”. Finally hereafter, without loss of generality and for readability we consider
strict monoidal categories. It is well known that every monoidal category is equivalent
to a strict one.

Definition 3.1. Let C be a traced symmetric monoidal category. An orthogonality
relation on C is a family of relations ⊥UV between maps u : V −→ U and x : U −→ V

V
u−→ U ⊥UV U

x−→ V

subject to the following axioms:
(i) Isomorphism : Let f : U ⊗ V ′ −→ V ⊗ U ′ and f̂ : U ′ ⊗ V −→ V ′ ⊗ U be such that

TrV ′
(TrU ′

((1⊗1⊗sU ′,V ′)α−1(f⊗ f̂)α)) = sU,V and TrV (TrU ((1⊗1⊗sU,V )α−1(f̂⊗
f)α)) = sU ′,V ′ . Here α = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1) with s at appropriate types. Note
that this simply means that f : (U, V ) −→ (U ′, V ′) and f̂ : (U ′, V ′) −→ (U, V ) are
inverses of each other in G(C).
Then for all u : V −→ U and x : U −→ V,

u ⊥UV x iff TrU
V ′,U ′(sU,U ′(u⊗ 1U ′)fsV ′,U ) ⊥U ′V ′ TrV

U ′,V ′((1V ′ ⊗ x)f̂);

that is, orthogonality is invariant under isomorphism.
(ii)Tensor : For all u : V −→ U , v : V ′ −→ U ′ and h : U ⊗ U ′ −→ V ⊗ V ′,

u ⊥UV TrU ′

U,V ((1V ⊗ v)h) and v ⊥U ′V ′ TrU
U ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U )
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imply (u⊗ v) ⊥U⊗U ′,V⊗V ′ h.

(iii) Identity : For all u : V −→ U and x : U −→ V ,

u ⊥UV x implies 1I ⊥II Tr
V
I,I(xu).

(iv) Symmetry : For all u : V −→ U and x : U −→ V ,

u ⊥UV x iff x ⊥V U u.

Remark 3.2.

(i) The above axiomatisation is slightly simplified: there is an additional axiom consid-
ered in (HylSch03)
Implication : For all u : V −→ U , y : U ′ −→ V ′ and f : U ⊗ V ′ −→ V ⊗ U ′

u ⊥UV TrV ′

U,V ((1V ⊗ y)f) and TrU
V ′,U ′(sU,U ′(u⊗ 1U ′)fsV ′,U ) ⊥U ′V ′ y

imply f ⊥V⊗U ′,U⊗V ′ (u⊗ y).

For a (partially) traced symmetric monoidal category, the Tensor and Implication
axioms are equivalent in the presence of the Symmetry axiom, as can be easily seen
(cf. (HylSch03).) Thus we shall not consider the Implication axiom below.

(ii) Our work on GoI reveals that one needs another axiom which we observe as the
converse of the Tensor axiom. This is related to abstract computation and the no-
tion of datum in GoI. Hence, we shall replace the Tensor axiom by the following
stronger Tensor axiom which turns out to be the same as the Precise Tensor axiom
of (HylSch03).

Precise Tensor:
For all u : V −→ U , v : V ′ −→ U ′ and h : U ⊗ U ′ −→ V ⊗ V ′,

u ⊥UV TrU ′

U,V ((1V ⊗ v)h) and v ⊥U ′V ′ TrU
U ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U )

iff (u⊗ v) ⊥U⊗U ′,V⊗V ′ h.

whenever all traces exist.

Definition 3.3. Let C be a traced symmetric monoidal category. A (strong) orthogo-
nality relation is defined as in Definition 3.1 but with the Tensor axiom replaced by the
Precise Tensor axiom above.

In the context of GoI, we will be working with strong orthogonality relations on
endomorphism sets of objects in the underlying categories. Biorthogonally closed (i.e.
X = X⊥⊥) subsets of certain endomorphism sets are important as they define types (GoI
interpretation of formulae.) We have observed that all the orthogonality relations that
we work with in this paper can be characterized using trace classes. This suggests the
following, which seems to cover many known examples.

Example 3.4 (Orthogonality as trace class). Let (C,⊗, I, T r) be a partially traced
category where ⊗ is the monoidal product with unit I, and Tr is the partial trace operator
as in Section 2. Let A and B be objects of C. For f : A −→ B and g : B −→ A, we
can define an orthogonality relation by declaring f ⊥BA g iff gf ∈ TA

I,I . Axioms can be
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checked easily and we shall not include the verification here. It turns out that this is a
variation of the notion of Focussed orthogonality of Hyland and Schalk (HylSch03).

Hence, from our previous discussion on traces, we obtain the following examples:

— Vecfd . For A ∈ Vecfd , f, g ∈ End(A), define f ⊥ g iff I − gf is invertible. Here I
is the identity matrix of size dim(A).

— CMet . Let M ∈ CMet . For f, g ∈ End(M), define f ⊥ g iff gf has a unique fixed
point.

4. Multi-object (Typed) GoI: the multiplicative level

As presented in the Introduction, the principal aim of this paper is to give a typed
version of GoI, called Multiobject GoI for both multiplicative linear logic (MLL) and
multiplicative exponential linear logic (MELL).

We generalize the original GoI interpretation of formal proofs in linear logic from an
untyped to a typed setting. Moreover, we also interpret the units. This involves moving
from interpreting proofs in the endomorphism monoid of a reflexive object U in appropri-
ate totally traced categories, as in (AHS02; HS04a)), to a more abstract setting: general
endomorphism monoids in appropriate partially-traced monoidal ∗-categories. We begin
with the simpler case of MLL and in the next section discuss the exponential rules for
MELL.

4.1. The MGoI Interpretation of MLL

In this subsection we introduce the Multiobject Geometry of Interaction (MGoI) se-
mantics for multiplicative linear logic in a partially traced symmetric monoidal category
(C,⊗, I, T r,⊥) equipped with an orthogonality relation ⊥ as in the previous sections.
Here ⊗ is the monoidal product with unit I and Tr is a partial trace operator as in
Section 2. We do not require that the category C have a reflexive object, so uni-object
GoI semantics ((Gir89a; HS04a)) may not be possible to carry out in C.

The MGoI semantics, denoted θ, interprets formulas and proofs inductively in a struc-
ture (C,⊗, I, T r,⊥). The ideas below were inspired by Girard’s original uni-object GoI
semantics referred to above.

Interpreting formulas:

Let A be an object of C and let f, g ∈ End(A). We say that f is orthogonal to g,
denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A) we define

X⊥ = {f ∈ End(A) | ∀g ∈ X, f ⊥ g}.

We now define an operator on the objects of C as follows: given an object A, T (A) =
{X ⊆ End(A) |X⊥⊥ = X}. Elements of T (A) are often called types.

We first define a “compact” interpretation map − on the formulas of MLL as
follows. Given the value of − on the atomic propositions as objects of C, we extend it
to all formulas by:
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— 1 = ⊥ = I where I is the unit of C.

— A⊥ = A

— A
.................................................

............
.................................. B = A⊗B = A ⊗ B .

We then define the MGoI-interpretation θ for formulas as follows.

— θ(1) = {1I}⊥⊥, and θ(⊥) = {1I}⊥.

— θ(α) ∈ T ( α ), where α is an atomic formula.

— θ(α⊥) = θ(α)⊥, where α is an atomic formula.

— θ(A⊗B) = {a⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥

— θ(A .................................................
............
.................................. B) = {a⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

Easy consequences of the definition are: (i) for any formula A, (θA)⊥ = θ(A⊥), (ii)
θ(A) ⊆ End( A ), and (iii) θ(A)⊥⊥ = θ(A). Hence, θ interprets formulas as types.

Interpreting proofs:

We define the MGoI interpretation for proofs of MLL, similarly to (HS04a). Every
MLL sequent will be of the form ` [∆],Γ where Γ is a sequence of formulas and ∆ is a
sequence of cut formulas that have already been made in the proof of ` Γ (see (Gir89a;
HS04a)). This device is used to keep track of the cuts in a proof of ` Γ. A proof Π of
` [∆],Γ is represented by a morphism θ(Π) ∈ End(⊗ Γ ⊗ ∆ ). With Γ = A1, · · · , An,
⊗ Γ stands for A1 ⊗ · · · ⊗ An , similarly for ∆. We drop the double brackets
wherever there is no danger of confusion. We also define σ = s⊗· · ·⊗s (m-copies) where
s is the symmetry map at different types (omitted for convenience), and |∆| = 2m. The
morphism σ represents the cuts in the proof of ` Γ, i.e. it models ∆. In the case where
∆ is empty (that is for a cut-free proof), we define σ : I −→ I to be 1I where I is the
unit of the monoidal product in C.

Let Π be a proof of ` [∆],Γ. We define the MGoI interpretation of Π, denoted by θ(Π),
by induction on the length of the proof as follows.

1 Π be the axiom ` 1, then θ(Π) = 1I .
2 Π is obtained using the ⊥ rule applied to the proof Π′ of ` [∆],Γ′. Then θ(Π) =

θ(Π′)⊗ 1I = θ(Π′), as we are working with strict monoidal categories.
3 Π is an axiom ` A,A⊥, θ(Π) := sV,V where A = A⊥ = V .
4 Π is obtained using the cut rule on Π′ and Π′′ that is,

Π′
....

` [∆′],Γ′, A

Π′′
....

` [∆′′], A⊥,Γ′′

` [∆′,∆′′, A,A⊥],Γ′,Γ′′
cut

Define θ(Π) = τ−1(θ(Π′)⊗ θ(Π′′))τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗∆′ ⊗∆′′ ⊗A⊗A⊥

τ−→ Γ′ ⊗A⊗∆′ ⊗A⊥ ⊗ Γ′′ ⊗∆′′.

5 Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ′. That is Π
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is of the form
Π′
....

` [∆],Γ′

` [∆],Γ
exchange

where Γ′ = Γ′1, Ai, Ai+1,Γ′2 and Γ = Γ′1, Ai+1, Ai,Γ′2. Then,
θ(Π) = τ−1θ(Π′)τ , where τ = 1Γ′1

⊗ s⊗ 1Γ′2⊗∆.
6 Π is obtained using an application of the par rule, that is Π is of the form:

Π′

...
` [∆],Γ′, A,B
` [∆],Γ′, A .................................................

............
.................................. B

.................................................
............
..................................

. Then θ(Π) = θ(Π′).

7 Π is obtained using an application of the times rule, that is Π is of the form:

Π′
....

` [∆′],Γ′, A

Π′′
....

` [∆′′],Γ′′, B
` [∆′,∆′′],Γ′,Γ′′, A⊗B

⊗

Then θ(Π) = τ−1(θ(Π′)⊗ θ(Π′′))τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗A⊗B ⊗∆′ ⊗∆′′ τ−→ Γ′ ⊗A⊗∆′ ⊗ Γ′′ ⊗B ⊗∆′′.

When ∆′ and ∆′′ are empty sequences, this corresponds to the definition of tensor
product in Abramsky’s G(C) (see (Abr96; Hagh00).)

Example 4.1.

(a) Let Π be the following proof:

` A,A⊥ ` A,A⊥

` [A⊥, A], A,A⊥
cut

Then the MGoI semantics of this proof is given by

θ(Π) = τ−1(s⊗ s)τ = sV⊗V,V⊗V

where τ = (1⊗ 1⊗ s)(1⊗ s⊗ 1) and A = A⊥ = V .
(b) Now consider the following proof

` B,B⊥ ` C,C⊥

` B,C,B⊥ ⊗ C⊥

` B,B⊥ ⊗ C⊥, C

` B⊥ ⊗ C⊥, B, C

` B⊥ ⊗ C⊥, B
.................................................

............
.................................. C .

Its denotation is sV⊗W,V⊗W , where B = B⊥ = V and C = C⊥ = W .
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4.2. Dynamics

Dynamics is at the heart of the GoI interpretation as compared to denotational se-
mantics and it is hidden in the cut-elimination process. The mathematical model of
cut-elimination is given by the so called execution formula defined as follows:

EX(θ(Π), σ) = Tr⊗∆
⊗Γ,⊗Γ((1⊗ σ)θ(Π)) (2)

where Π is a proof of the sequent ` [∆],Γ, σ = s⊗ · · · ⊗ s (m times) models ∆, and 2m
is the number of formulas in ∆. Note that EX(θ(Π), σ) is a morphism from ⊗Γ −→ ⊗Γ,
when it exists. We shall prove below (see Theorem 4.6) that the execution formula always
exists for any MLL proof Π.

Example 4.2.

Consider the proof Π in Example 4.1 above. Recall also that σ = s in this case (m = 1).
Then EX(θ(Π), σ) = Tr((1⊗ sV,V )sV⊗V,V⊗V ) = sV,V .

Note that in this case we have obtained the MGoI interpretation of the cut-free proof
of ` A,A⊥, obtained by applying Gentzen’s Hauptsatz to the proof Π.

4.3. Soundness of the MGoI Interpretation for MLL

In this section we present one of the main results of this paper: the soundness of the
MGoI interpretation. We show that if a proof Π is reduced (via cut-elimination) to
another proof Π′, then EX(θ(Π), σ) = EX(θ(Π′), τ); that is, EX(θ(Π), σ) is an invariant
of reduction. In particular, if Π′ is cut-free (i.e. a normal form) we have EX(θ(Π), σ) =
θ(Π′). Intuitively this says that if one thinks of cut-elimination as computation then θ(Π)
can be thought of as an algorithm. The computation takes place as follows: if EX(θ(Π), σ)
exists then it yields a datum (cf. cut-free proof). This intuition will be made precise below
(Theorems 4.6 & 4.8).

The next fundamental lemma (which features in several of Girard’s papers) follows
directly from our trace axioms. It is essentially a version of the Church-Rosser theorem.

Lemma 4.3 (Associativity of cut). Let Π be a proof of ` [Γ,∆],Λ and σ and τ be
the morphisms representing the cut-formulas in Γ and ∆ respectively. Then

EX(θ(Π), σ ⊗ τ) = EX(EX(θ(Π), τ), σ) = EX(EX((1⊗ s)θ(Π)(1⊗ s), σ), τ),

whenever all traces exist.

Proof.
EX(EX(θ(Π), τ), σ) =
= Tr((1⊗ σ)Tr((1⊗ τ)θ(Π))) definition of EX formula
= Tr(Tr((1⊗ σ ⊗ 1)(1⊗ τ)θ(Π))) naturality of trace
= Tr((1⊗ σ ⊗ τ)θ(Π)) vanishing II property of trace
= EX(θ(Π), σ ⊗ τ).

As for the second equality: (we drop the subscripts for s, as there is no danger of
confusion!)
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EX(EX((1⊗ s)θ(Π)(1⊗ s), σ), τ) =
= Tr((1⊗ τ)Tr((1⊗ σ)(1⊗ s)θ(Π)(1⊗ s))) def. of EX formula
= Tr(Tr((1⊗ τ ⊗ 1)(1⊗ 1⊗ σ)(1⊗ s)θ(Π)(1⊗ s))) naturality of trace
= Tr(Tr((1⊗ τ ⊗ σ)(1⊗ s)θ(Π)(1⊗ s))) functoriality of tensor
= Tr(Tr((1⊗ s)(1⊗ σ ⊗ τ)θ(Π)(1⊗ s))) naturality of symmetry
= Tr(Tr((1⊗ σ ⊗ τ)θ(Π))) dinaturality of trace
= Tr((1⊗ σ ⊗ τ)θ(Π)) vanishing II property of trace
= EX(θ(Π), σ ⊗ τ).

The next definitions, of fundamental importance to the original GoI framework, are
analogous to concepts arising in realizability and Girard’s method of candidats (cf.
(GLT)).

In the sequel we shall be working in a partially traced symmetric monoidal category
equipped with an orthogonality relation. We shall suppress mentioning the use of the
Symmetry axiom of the orthogonality relation.

Definition 4.4. Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi −→ ⊗iVi such that for any ai ∈ θ(A⊥i ),
⊗iai ⊥M and

M .a1 := TrV1(s−1
⊗i6=1Vi,V1

(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn)Ms⊗i6=1Vi,V1)

and

M .̂(a2 ⊗ · · · ⊗ an) := TrV2⊗···⊗Vn((1⊗ a2 ⊗ · · · ⊗ an)M)

both exist.
• An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ ∆ −→ ⊗iVi ⊗ ∆ for

some ∆ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 = B⊥
i for i =

1, 3, · · · , 2m− 1, such that if σ : ⊗2m
i=1 Bi −→ ⊗2m

i=1 Bi is ⊗2m−1
i=1 ,odd s Bi , Bi+1

,

EX(M,σ) exists and is a datum of type θΓ.

Lemma 4.5. Let Γ̃ = A2, · · · , An and Γ = A1, Γ̃. Let Vi = Ai , and M : ⊗iVi −→
⊗iVi, for i = 1, · · · , n. Then, M is a datum of type θ(Γ) iff for all ai ∈ θ(A⊥i ), M .a1

and M .̂(a2 ⊗ · · · ⊗ an) (defined as above) exist and are in θ(Γ̃), and θ(A1), respectively.

Proof. First note that we interpret θ(Γ̃) as θ(A2
.................................................

............
.................................. · · · .................................................

............
.................................. An). Let ai ∈ θ(A⊥i ) for

i = 1, · · · , n, suppose M is a datum of type θ(Γ). Then (a1 ⊗ (a2 ⊗ · · · ⊗ an)) ⊥ M ,
and M .a1 = Tr(s(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn

)Ms) and M .̂(a2 ⊗ · · · ⊗ an) = Tr((1 ⊗ a2 ⊗
· · · ⊗ an)M) both exist by definition. By the Precise Tensor axiom of the orthogonality
relation, M .a1 ⊥ (a2 ⊗ · · · ⊗ an) and M .̂(a2 ⊗ · · · ⊗ an) ⊥ a1, so M .a1 ∈ θ(Γ̃) and
M .̂(a2 ⊗ · · · ⊗ an) ∈ θ(A1). Conversely, suppose that for all ai ∈ θ(A⊥i ) (i = 1, · · · , n),
M .a1 and M .̂(a2 ⊗ · · · ⊗ an) exist and are in θ(Γ̃) and θ(A1) respectively. Then for all
ai ∈ θ(A⊥i ), M .a1 ⊥ (a2 ⊗ · · · ⊗ an), and M .̂(a2 ⊗ · · · ⊗ an) ⊥ a1, so again by the Precise
Tensor axiom, M ⊥ (a1 ⊗ · · · ⊗ an). Hence M is datum of type θ(Γ).

Theorem 4.6 (Proofs as algorithms). Let Π be an MLL proof of a sequent
` [∆],Γ. Then θ(Π) is an algorithm of type θΓ.
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Proof.

— Let Π be the axiom ` 1, clearly θ(Π) = 1I ⊥ a for every a ∈ θ(1)⊥ and so θ(Π) is an
algorithm of type θ(1).

— Let Π be the proof obtained using the ⊥ rule applied to the proof Π′ of ` [∆],Γ′, also
suppose that θ(Π′) is an algorithm of type θ(Γ′). Recall that θ(Π) = θ(Π′) ⊗ 1I =
θ(Π′), and thus θ(Π) is an algorithm of type θ(Γ′) = θ(Γ′ .................................................

............
.................................. ⊥) = θ(Γ′,⊥).

— Let Π be an axiom, where Γ = A,A⊥ and ∆ is empty. Let a ∈ θA⊥ and b ∈ θA, and
A = V , so a, b : V −→ V and a ⊥ b. Note that sV,V .a = Tr(s(a ⊗ 1)ss) = a by

generalized yanking. By the Precise Tensor axiom, a⊗b ⊥ sV,V . Thus EX(θ(Π), 1I) =
θ(Π) is a datum of type θΓ.

— Suppose Π is obtained by applying the cut rule to the proofs Π′ and Π′′ of ` [∆′],Γ′, A
and ` [∆′′], A⊥,Γ′′ respectively. We assume first that ∆′ and ∆′′ are empty and
Γ′ = B′ and Γ′′ = B′′ are single formulas. Recall that θ(Π) = τ−1(θ(Π′) ⊗ θ(Π′′))τ .
We need to show that (with σ = s):

(i) EX(θ(Π), σ) exists.
(ii)EX(θ(Π), σ) is a datum of type θ(B′, B′′).

Let b′ ∈ θ(B′⊥), and a denote θ(Π′).b′. Then a ∈ θ(A), and θ(Π′′).a ∈ θ(B′′), by
inductive hypothesis. We shall show that EX(θ(Π), σ).b′ ∈ θ(B′′). Many steps in the
following equations have been compressed: they all follow from trace properties and
naturality of symmetry morphisms. Let A = V , B′ = U and B′′ = W
θ(Π′′).a
= TrV (sV,W (a⊗ 1)θ(Π′′)sW,V )
= TrV (sV,W (TrU (sV,U (b′ ⊗ 1)θ(Π′)sU,V )⊗ 1)θ(Π)sW,V )
= TrU (sU,W (b′ ⊗ 1)(TrV ((1⊗ sV,W )(θ(Π′)⊗ 1)(sV,U ⊗ 1)(1⊗ sW,U )
(θ(Π)⊗ 1)(sW,V ⊗ 1)(1⊗ sU,V ))))
= TrU (sU,W (b′ ⊗ 1)TrV⊗V ((1⊗ 1⊗ sV,V )(1⊗ sV,W ⊗ 1)(1⊗ 1⊗ sV,W )
(θ(Π′)⊗ θ(Π))(1⊗ 1⊗ sW,V )(1⊗ sW,V ⊗ 1))sW,U )
= EX(θ(Π), σ).b′

However, by inductive hypothesis θ(Π′′).a ∈ θ(B′′). Now, let b′′ ∈ θ(B′′)⊥ and let a
denote θ(Π′′)̂.b′′. By inductive hypothesis a ∈ θA⊥ and θ(Π′)̂.a ∈ θB′. One can, simi-
larly to above, show that EX(θ(Π), σ)̂.b′′ = θ(Π′)̂.a. The case of nonsingleton Γ′ and
Γ′′ is similar. This proves (ii) above. As for (i), consider TrU (sU,W (b′⊗1)TrV⊗V ((1⊗
1⊗sV,V )(1⊗sV,W ⊗1)(1⊗1⊗sV,W )(θ(Π′)⊗θ(Π′′))(1⊗1⊗sW,V )(1⊗sW,V ⊗1))sW,U )
and the fact that TrV⊗V ((1⊗1⊗sV,V )(1⊗sV,W ⊗1)(1⊗1⊗sV,W )(θ(Π′)⊗θ(Π′′))(1⊗
1⊗ sW,V )(1⊗ sW,V ⊗ 1)) = EX(θ(Π), σ)
In this and all the following cases we assume that ∆ is empty. The nonempty case
can be reduced to the empty case using the associativity of cut. More explicitly, we
would like to prove the result for EX(θ(Π), σ), where σ represents the cut formulas in
∆. We remove all the cuts in Π except the one occurring as the last rule by first pre-
and post-composing θ(Π) with appropriate permutations (see the rightmost formula
in Lemma 4.3) and then applying the execution formula. Then we apply this theorem
and get back to EX(θ(Π), σ) using the associativity of cut.
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— Suppose that Π is obtained from a proof Π′ of Γ′ by an application of an exchange rule.
Let Γ′ = A1, · · · , Ai, Ai+1, · · · , An and Γ = A1, · · · , Ai+1, Ai, · · · , An. By inductive
hypothesis θ(Π′) is a datum of type θ(Γ′), so for ai ∈ θ(A⊥i ), we have that (a1⊗· · ·⊗
an) ⊥ θ(Π′) and so

τ−1(a1 ⊗ · · · ⊗ an) ⊥ θ(Π′)τ Isomorphism axiom

(a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an)τ−1 ⊥ θ(Π′)τ

(a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an) ⊥ τ−1θ(Π′)τ = θ(Π).

— Suppose that Π is obtained from the proofs Π′ and Π′′ of ` Γ′, A and ` Γ′′, B respec-
tively by an application of a ⊗-rule. We let Γ′ = C ′ and Γ′′ = C ′′ be single formulas,
the general case is similar. Let A = V, B = W, C ′ = U , and C ′′ = Y .
Recall that θ(Π) = τ−1(θ(Π′)⊗ θ(Π′′))τ.
We need to show that θ(Π) is a datum of type θ(C ′, C ′′, A ⊗ B) which by Precise
Tensor axiom and Lemma 4.5 is equivalent to showing that 1. for all γ′ ∈ θ(C ′⊥),
θ(Π).γ′ ∈ θ(C ′′, A⊗ B) and 2. for all γ′′ ∈ θ(C ′′)⊥, α ∈ θ(A⊗ B)⊥, θ(Π)̂.(γ′′ ⊗ α) ∈
θ(C ′).
To show (1), we need to prove that for γ′, γ′′, and α as above, (θ(Π).γ′).γ′′ ⊥ α, and
(θ(Π).γ′)̂.α ⊥ γ′′. We show these in order below:
By inductive hypotheses, a = θ(Π′).γ′ and b = θ(Π′′).γ′′ exist, and a ∈ θA and
b ∈ θB.

a⊗ b = a⊗ TrY (sY,W (γ′′ ⊗ 1)θ(Π′′)sW,Y )

= TrY (a⊗ sY,W (γ′′ ⊗ 1)θ(Π′′)sW,Y )

= TrY (TrU (sU,V (γ′ ⊗ 1)θ(Π′)sV,U )⊗ sY,W (γ′′ ⊗ 1)θ(Π′′)sW,Y )

= TrU (TrY (1⊗ sU,W ⊗ 1)(sU,V (γ′ ⊗ 1)θ(Π′)sV,U ⊗
sY,W (γ′′ ⊗ 1)θ(Π′′)sW,Y )(1⊗ sW,U ⊗ 1))

= TrU⊗Y (α−1(γ′ ⊗ γ′′ ⊗ 1⊗ 1)(1⊗ sV,Y ⊗ 1)(θ(Π′)⊗ θ(Π′′))

(1⊗ sY,V ⊗ 1)α)

where α = (1⊗ sV,Y ⊗ 1)(sV,U ⊗ sW,Y )(1⊗ sW,U ⊗ 1)

= (θ(Π).γ′).γ′′

by definition of type for tensor, (θ(Π).γ′).γ′′ ∈ θ(A⊗B).
Similarly using naturality properties and trace axioms one can show that (θ(Π).γ′)̂.α =
θ(Π′′)̂.(α.(θ(Π′).γ′)) which is in θ(C ′′) using inductive hypotheses.
To show part (2), note that using trace axioms and naturality properties one can show
that θ(Π)̂.(γ′′ ⊗ α) = θ(Π′)̂.(α.̂(θ(Π′′).γ′′)) and the latter is in θ(C ′) by inductive
hypotheses.

— Suppose Π is obtained from a proof Π′ of ` Γ′, A,B by an application of a par rule.
Then θ(Π) = θ(Π′) and there is nothing to prove.
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Corollary 4.7 (Existence of Dynamics). Let Π be an MLL proof of a sequent
` [∆],Γ. Then EX(θ(Π), σ) exists.

Theorem 4.8 (EX is an invariant). Let Π be an MLL proof of a sequent
` [∆],Γ. Then,

(i) If Π reduces to Π′ by any sequence of cut-eliminations, then EX(θ(Π), σ) =
EX(θ(Π′), τ). So EX(θ(Π), σ) is an invariant of reduction.

(ii)In particular, if Π′ is any cut-free proof obtained from Π by cut-elimination, then
EX(θ(Π), σ) = θ(Π′).

Proof. It suffices to check the following key cases:

1 Suppose Π is of the form

Π′
....
` Γ
` Γ,⊥ ` 1
` [⊥,1],Γ

cut

EX(θ(Π), σ) = TrI⊗I ((1⊗ σ)θ(Π))
= TrI⊗I ((1⊗ sI,I)(θ(Π′)⊗ 1I ⊗ 1I))
= TrI⊗I (θ(Π′)⊗ 1I ⊗ 1I)
= TrI (θ(Π′)⊗ 1I) , C is strict
= θ(Π′), Vanishing I and strictness.

2 Suppose Π′ is a cut-free proof of ` Γ, A and Π is obtained by applying the cut rule
to Π′ and the axiom ` A⊥, A. Then
EX(θ(Π), σ)
= Tr

(
(1⊗ 1⊗ s)τ−1(θ(Π′)⊗ s)τ

)
= Tr ((1⊗ 1⊗ s)(1⊗ s⊗ 1)(θ(Π′)⊗ 1⊗ 1)(1⊗ 1⊗ s)(1⊗ s⊗ 1))
= (1⊗ Tr(s))θ(Π′)(1⊗ Tr(s)) = θ(Π′).

3 Suppose Π is of the form

Π′
....

` Γ′, A

Π′′
....

` A⊥,Γ′′

` [A,A⊥],Γ′,Γ′′
cut

We assume that the last rules in Π′ and Π′′ are logical rules applied to A or A⊥.
Hence in the syntax the cut rule for A will be replaced by other cuts. We use σ to
represent the cuts of Π and τ for those of Ξ, which is obtained from Π by one step
reduction (cut-elimination). We shall ignore the exchange rule.
There is only one case: A ≡ B⊗C and hence A⊥ ≡ B⊥ .................................................

............
.................................. C⊥. Hence Π′ is obtained

from Π′
1 of ` Γ′1, B and Π′

2 of ` Γ′2, C using the times rule. Also Π′′ is obtained from
Π′′

1 of ` B⊥, C⊥,Γ′′ using the par rule. Ξ is obtained by first applying the cut rule to
Π′

1 and Π′′
1 to get Π0 and then by applying the cut rule again to Π0 and Π′

2. We shall,
without loss of generality, assume that Γ′1,Γ

′
2 and Γ′′ consist of single formulas. The
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following derivation contains many compressed steps, all follow from trace axioms.
Below, α, α′, β, η, γ, and ρ are appropriate permutations.
EX(θ(Π), σ)
= Tr(α′α−1(θ(Π′

1)⊗ θ(Π′
2)⊗ θ(Π′′

1))α)
= Tr(β−1(1⊗ 1⊗ θ(Π′′

1))(1⊗ s⊗ 1⊗ 1)(θ(Π′
1)⊗ θ(Π′

2)⊗ 1)(1⊗ s⊗ 1⊗ 1)β)
= Tr((1⊗ 1⊗ 1⊗ s)ηTr((1⊗ 1⊗ 1⊗ 1⊗ s)(1⊗ 1⊗ 1⊗ θ(Π′

2)⊗ 1)
(1⊗ 1⊗ 1⊗ s⊗ 1)(1⊗ 1⊗ 1⊗ 1⊗ s)(θ(Π′

1)⊗ θ(Π′′
1)⊗ 1)

(1⊗ 1⊗ 1⊗ s⊗ 1)(1⊗ 1⊗ 1⊗ 1⊗ s))γ)
= Tr(ρ−1(θ(Π′

1)⊗ θ(Π′′
1)⊗ θ(Π′

2))ρ)
= EX(θ(Ξ), τ)

5. MGoI for MELL in *-Categories

We now wish to extend the above multi-object GoI interpretation for multiplicative linear
logic to the exponential structure of MELL. To this end, we add additional structure
to a monoidal category, namely a contravariant involutive endofunctor (−)∗, to obtain a
notion of a monoidal ∗-category. We then introduce GoI categories as ∗-categories with
an orthogonality, an additional endofunctor T , and certain monoidal retractions suitable
for treating the exponential structure, as in (AHS02).

In the following we are motivated by the definition of monoidal ∗-categories from
(ABP99). Nevertheless, our definition is different from theirs, as we do not require a
conjugation functor, and we demand stronger conditions on (−)∗. Categories such as
these with further structure on the homsets (W ∗-categories) were first introduced in
(GLR85). The idea there was to generalize the notions and machinery of von Neumann
algebras to a categorical setting. Later, similar categories (C∗-categories) were defined
in (DopR89) and studied in depth. The motivation in this work was to present a new
duality theory for compact groups, itself motivated by the work in the early seventies
on superselection structure in quantum field theory. Both (GLR85) and (DopR89) are
excellent sources for examples of the kinds of ∗-categories we define here.

Definition 5.1. A symmetric monoidal ∗-category C is a symmetric monoidal category
with a strict symmetric monoidal functor ( )∗ : Cop −→ C which is strictly involutive
and the identity on objects. Note that this in particular implies that (f ⊗ g)∗ = f∗ ⊗ g∗,
and s∗A,B = sB,A where sA,B is the symmetry morphism.

We say that a morphism f : A −→ A is Hermitian if f∗ = f . A morphism f : A −→ B

is called a partial isometry if f∗ff∗ = f∗ or equivalently, if ff∗f = f . A morphism
f : A −→ A is called a partial symmetry if it is Hermitian and a partial isometry. That
is, if f∗ = f and f3 = f . Note that there is no underlying Hilbert space structure on the
homsets of C; the terminology here is borrowed from operator algebras to account for
the similar properties of such morphisms, which can be expressed in the more general
setting of ∗-categories.

An obvious example is the category Hilb⊗ of Hilbert spaces and bounded linear maps
with tensor product of Hilbert spaces as the monoidal product. Given f : H −→ K,
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f∗ : K −→ H is given by the adjoint of f , defined uniquely by 〈f(x), y〉 = 〈x, f∗(y)〉. It
is not hard to see that all the required properties are satisfied. Note that the category
Hilb⊕ of Hilbert spaces and bounded linear maps but with direct sum as the monoidal
product is a ∗-category too, with the same definition for the ( )∗ functor.

Another example is the category Rel× of sets and relations with the cartesian product
of sets as the monoidal product. Given f : X −→ Y , f∗ = f where f is the converse
relation. Again, note that the category Rel⊕ of sets and relations with monoidal product,
the disjoint union (categorical biproduct) is a monoidal ∗-category too, with the same
definition for the ( )∗ functor.

Yet another example that shows up frequently in the context of GoI is the category
PInj] of sets and partial injective maps, with disjoint union as the monoidal product.
Given f : X −→ Y , f∗ = f−1.

Other examples include Hilbfd of finite dimensional Hilbert spaces and bounded linear
maps, URep(G), finite representations of a compact group G, etc. For more details,
examples and the ways that such categories show up in logic and computer science, see
(ABP99).

Definition 5.2. A GoI category is a triple (C, T,⊥) where C is a partially traced ∗-
category, T = (T, ψ, ψI) : C −→ C is a traced symmetric monoidal functor, that is if f ∈
TU

X,Y , then ψ−1
Y,UT (f)ψX,U ∈ TTU

TX,TY and TrTU
TX,TY (ψ−1

Y,UT (f)ψX,U ) = T (TrU
X,Y (f)).

Here ⊥ is an orthogonality relation on C as in the above. Furthermore, we require that
• The following monoidal natural retractions exist (here KI denotes the constant I func-
tor).

(i) KI � T (w,w∗), i.e. retractions, natural in X, I � TX (wX , w
∗
X).

(ii) Id� T (d, d∗) i.e. retractions, natural in X, X � TX (dX , d
∗
X).

(iii) T 2 � T (e, e∗) i.e. retractions, natural in X, TTX � TX (eX , e
∗
X).

(iv) T ⊗ T � T (c, c∗) i.e. retractions, natural in X, TX ⊗ TX � TX (cX , c∗X).

• The orthogonality relation must be GoI compatible, that is, it must satisfy the following
additional axioms:

(c0) For all f : V −→ U and g : U −→ V ,

f ⊥U,V g implies Tf ⊥TU,TV Tg.

(c1) For all f : TV −→ TU and g : U −→ V ,

f ⊥TU,TV Tg implies eU (Tf)e∗V ⊥TU,TV Tg.

(c2) For all f : V −→ U , g : U −→ V ,

f ⊥U,V g implies dUfd
∗
V ⊥TU,TV Tg.

(c3) For all f : U −→ U and g : I −→ I,

wUgw
∗
U ⊥TU,TU Tf.

(c4) For all f : TV ⊗ TV −→ TU ⊗ TU and g : U −→ V ,

f ⊥TU⊗TU,TV⊗TV Tg ⊗ Tg implies cUfc∗V ⊥TU,TV Tg.
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• The functor T commutes with ( )∗, that is (T (f))∗ = T (f∗). Moreover, ψ∗ = ψ−1 and
ψ∗I = ψ−1

I .

Proposition 5.3. Suppose C is a partially traced ∗-category that is in addition equipped
with an endofunctor T and monoidal retractions as in Definition 5.2. Then, the orthog-
onality relation ⊥ defined as in Example 3.4 is GoI compatible.

Proof. We shall verify the compatibility axioms of Definition 5.2.
(c0) TrTV (T (g)T (f)) = T (TrV (gf)).
(c1) TrTV (T (g)eUT (f)e∗V ) = TrTV (eV T

2(g)T (f)e∗V ) = TrT 2V (T 2(g)T (f)) =
T (TrTV (T (g)f)).

(c2) TrTV (T (g)dUfd
∗
V ) = TrTV (dV gfd

∗
V ) = TrV (gf).

(c3) TrTU (T (f)wUgw
∗
U ) = TrTU (wUgw

∗
U ) = TrI(g).

Recall that TI
I,I = C(I, I).

(c4) TrTV (T (g)cUfc∗V ) = TrTV (cV (Tg ⊗ Tg)fc∗V ) = TrTV⊗TV ((Tg ⊗ Tg)f).

GoI categories are the main mathematical structures in our semantic interpretation in
the following section. Here are a few examples of GoI categories.

Examples 5.4.
(a) (PInj], T,⊥)
We define f ⊥ g iff gf is nilpotent. It can be easily checked that this definition satisfies

the axioms for an orthogonality relation. We also define TA = N×A for any set A, with
monoidal retractions as defined in (HS04a).

Let us verify the compatibility axioms:

— For f : V −→ U and g : U −→ V , suppose gf is nilpotent, say (gf)n = 0, then
(T (g)T (f))n = T ((gf)n) = 0 as T is a traced and thus an additive functor.

— For f : TV −→ TU and g : U −→ V , suppose T (g)f is nilpotent, say (T (g)f)n = 0,
then (T (g)eUT (f)e∗V )n = (eV T

2(g)T (f)e∗V )n = (T 2(g)T (f))n = T ((T (g)f)n) = 0.
— For f : V −→ U and g : U −→ V , suppose gf is nilpotent, say (gf)n = 0,

then (T (g)dUfd
∗
V )n = (dV gfd

∗
V )n by naturality of dU , but as d∗V dV = 1V we have

(dV gfd
∗
V )n = dV (gf)nd∗V = 0.

— As I = ∅ and wI = 0, we have that T (f)wUgw
∗
U is nilpotent.

— For f : TV ⊗ TV −→ TU ⊗ TU and g : U −→ V , suppose (Tg ⊗ Tg)f is nilpotent,
say ((Tg ⊗ Tg)f)n = 0, Then (T (g)cUfc∗V )n = (cV (Tg ⊗ Tg)fc∗V )n, by naturality of
cV , but as c∗V cV = 1TV⊗TV we have (cV (Tg ⊗ Tg)fc∗V )n = cV ((Tg ⊗ Tg)f)nc∗V = 0.

Finally, for any f : X −→ Y , (Tf)∗ = T (f∗).

(b) (Hilb⊕, T,⊥), where Hilb is the category of Hilbert spaces and bounded linear
maps. The monoidal product is the direct sum of Hilbert spaces. It turns out that Hilb⊕
is a partially traced ∗-category: the partial trace is defined as in the case of finite di-
mensional vector spaces and the proof uses Lemmas 2.4 and 2.5 that remain valid for
operator matrices. T (H) = `2 ⊗H where `2 is the space of square summable sequences.
The monoidal retractions are as defined in (HS04a).
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We define f ⊥ g iff (1−gf) is an invertible linear transformation. Compatibility follows
from Proposition 5.3, because for f : H −→ K , g : K −→ H, f ⊥ g iff gf ∈ TH .

Finally, as Hilb⊕ is also a ∗-category with f∗ the adjoint of f , we have that for any
f : H −→ K, (Tf)∗ = T (f∗).

(c) (Rel⊕, T,⊥) is a GoI-category with the same definitions for T and ⊥ as in the case
of PInj. Note that disjoint union, denoted ⊕, is in fact the categorical biproduct in Rel.

Multiobject Geometry of Interaction (MGoI) was introduced in (HS05a) and was used
to interpret MLL without units. It was later extended to exponentials in (Hagh06).
The main idea in (HS05a) was to keep the types of the formulas that were defined by
a denotational semantics map during the GoI interpretation. For the multiplicative case
this also implied that, in contrast to the usual GoI, there was no need for a reflexive object
U and this made the interpretation possible in categories like finite dimensional vector
spaces. On the other hand, for MELL it is no longer possible to carry out the MGoI
interpretation in finite dimensions, as for example we are forced to admit a retraction
TT �T in the model category. Note that, although in this way reflexive objects reappear,
they are not used to collapse types as in the untyped GoI interpretation using a single
object U (HS04a; HS10).

5.1. MGoI Interpretation of formulas

Given a GoI category (C, T,⊥), with the definition of orthogonality as in Section 4 we
extend the interpretation map − on the formulas of MELL as follows.

— !A = ?A = T A .

The MGoI-interpretation for formulas is extended as follows.

— θ(!A) = {Ta | a ∈ θ(A)}⊥⊥
— θ(?A) = {Ta | a ∈ θ(A⊥)}⊥

The following are still valid facts: (i) for any formula A, (θA)⊥ = θA⊥, (ii) θ(A) ⊆
End( A ), and (iii) θ(A)⊥⊥ = θ(A).

5.2. MGoI Interpretation of proofs

In this section we define the MGoI interpretation for proofs of MELL. All references
from now on refer to this MGoI interpretation unless stated otherwise.

As before, every MELL sequent will be of the form ` [∆],Γ where Γ is a sequence of
formulas and ∆ is a sequence of cut formulas that have already been made in the proof of
` Γ. A proof Π of ` [∆],Γ is represented by a morphism θ(Π) ∈ End(⊗ Γ ⊗ ∆ ). With
Γ = A1, · · · , An, ⊗ Γ stands for A1 ⊗· · ·⊗ An , and with ∆ = B1, B

⊥
1 , · · ·Bm, B

⊥
m,

∆ = T k( B1 ⊗ · · · ⊗ B⊥
m ), for some non-negative integer k, with T 0 being the

identity functor. Note that this is slightly different from the interpretation in Section 4
due to the presence of the functor T and its powers. However, the MLL case can be
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recovered easily by letting k = 0 and recalling that T 0 = id, the identity functor. As
before, we drop the double brackets wherever there is no danger of confusion.

Definition 5.5 (The MGoI Interpretation). Let Π be a proof of ` [∆],Γ. We define
the MGoI interpretation of Π, denoted by θ(Π), by induction on the length of the proof
as follows. Note that some cases are identical to those in Section 4. However, we include
all MLL cases here due to appearance of T k in their interpretation in the presence of
exponential connectives.

1 Π be the axiom ` 1, then θ(Π) = 1I .

2 Π is obtained using the ⊥ rule applied to the proof Π′ of ` [∆],Γ′. Then θ(Π) =
θ(Π′)⊗ 1I = θ(Π′).

3 Π is an axiom ` A,A⊥, θ(Π) := sV,V where A = A⊥ = V .

4 Π is obtained using the cut rule on Π′ and Π′′ that is,

Π′
....

` [∆′],Γ′, A

Π′′
....

` [∆′′], A⊥,Γ′′

` [∆′,∆′′, A,A⊥],Γ′,Γ′′
cut

Define θ(Π) = τ−1(θ(Π′)⊗ θ(Π′′))τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗∆′ ⊗∆′′ ⊗A⊗A⊥

τ−→ Γ′ ⊗A⊗∆′ ⊗A⊥ ⊗ Γ′′ ⊗∆′′.
(double brackets and ⊗ are dropped for the sake of readability).

5 Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ′. That is Π
is of the form

Π′
....

` [∆],Γ′

` [∆],Γ
exchange

where Γ′ = Γ′1, Ai, Ai+1,Γ′2 and Γ = Γ′1, Ai+1, Ai,Γ′2. Then, θ(Π) is obtained from
θ(Π′) by interchanging the rows i and i + 1. So, θ(Π) = τ−1θ(Π′)τ , where τ =
1Γ′1

⊗ s⊗ 1Γ′2⊗∆.

6 Π is obtained using an application of the par rule, that is Π is of the form:

Π′

...
` [∆],Γ′, A,B
` [∆],Γ′, A .................................................

............
.................................. B

.................................................
............
..................................

. Then θ(Π) = θ(Π′).

7 Π is obtained using an application of the times rule, that is Π is of the form:

Π′
....

` [∆′],Γ′, A

Π′′
....

` [∆′′],Γ′′, B
` [∆′,∆′′],Γ′,Γ′′, A⊗B

⊗
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Then θ(Π) = τ−1(θ(Π′)⊗ θ(Π′′))τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗A⊗B ⊗∆′ ⊗∆′′ τ−→ Γ′ ⊗A⊗∆′ ⊗ Γ′′ ⊗B ⊗∆′′.

8 Π is obtained from Π′ by an of course rule, that is Π has the form :
Π′

...
` [∆], ?Γ′, A
` [∆], ?Γ′, !A

of course

Then θ(Π) = (eΓ′ ⊗ 1TA ⊗ 1∆)ϕ−1T (θ(Π′))ϕ(e∗Γ′ ⊗ 1TA ⊗ 1∆), where TT � T (e, e∗),
with Γ′ = A1, · · · , An, eΓ′ = eA1 ⊗ · · · ⊗ eAn

, similarly for e∗, and ϕ is the canonical
isomorphism: The isomorphism ϕ : T 2(Γ′) ⊗ TA ⊗ T (∆) −→ T (T (Γ′) ⊗ A ⊗ ∆) is
defined using the isomorphism ψX,Y : TX⊗TY −→ T (X⊗Y ). With Γ′ = A1, · · · , An,
T (Γ′) is a shorthand for TA1 ⊗ · · · ⊗ TAn, and ∆ is as before.

9 Π is obtained from Π′ by the dereliction rule, that is, Π is of the form :

Π′

...
` [∆],Γ′, A
` [∆],Γ′, ?A

dereliction

Then θ(Π) = (1Γ′ ⊗ dA ⊗ 1∆)θ(Π′)(1Γ′ ⊗ d∗A ⊗ 1∆) where Id� T (d, d∗).

10 Π is obtained from Π′ by the weakening rule, that is, Π is of the form:
Π′

...
` [∆],Γ′

` [∆],Γ′, ?A
weakening

Then θ(Π) = (1Γ′ ⊗ wA ⊗ 1∆)θ(Π′)(1Γ′ ⊗ w∗A ⊗ 1∆), where KI � T (w,w∗).

11 Π is obtained from Π′ by the contraction rule, that is, Π is of the form :

Π′

...
` [∆],Γ′, ?A, ?A
` [∆],Γ′, ?A

contraction

Then θ(Π) = (1Γ′ ⊗ cA ⊗ 1∆)θ(Π′)(1Γ′ ⊗ c∗A ⊗ 1∆), where T ⊗ T � T (c, c∗).

Examples 5.6. (a) Let Π be the following proof:

` A,A⊥

` A .................................................
............
.................................. A⊥

`!(A .................................................
............
.................................. A⊥)

` B,B⊥

`?(A⊥ ⊗A), B,B⊥

` [!(A .................................................
............
.................................. A⊥), ?(A⊥ ⊗A)], B,B⊥ cut
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Given A = V and B = W , we have
θ(Π) = τ−1(T (sV,V ) ⊗ ((wT (V⊗V ) ⊗ 1W⊗W )sW,W (w∗T (V⊗V ) ⊗ 1W⊗W )))τ where τ is

the permutation: B ⊗ B⊥ ⊗ !(A .................................................
............
.................................. A⊥) ⊗ ?(A⊥ ⊗A) τ−→ !(A .................................................

............
.................................. A⊥) ⊗

?(A⊥ ⊗A) ⊗ B ⊗ B⊥ .

(b) Now consider the following proof

` A,A⊥

` A, ?A⊥

`!A, ?A⊥ ` B,B⊥

`!A⊗B, ?A⊥ .................................................
............
.................................. B⊥

Given A = V and B = W , we have θ(Π) = (1⊗s⊗1)(1⊗e⊗1⊗1)(ψ−1T (h)ψ⊗
s)(1⊗ e∗ ⊗ 1⊗ 1)(1⊗ s⊗ 1) where h = (1⊗ dV )s(1⊗ d∗V ).

Proposition 5.7. Let Π be an MELL proof of ` [∆],Γ. Then θ(Π) is a partial sym-
metry.

Proof. Proof follows by induction on the length of the proofs, noting that the functor
( )∗ is a strict symmetric monoidal functor, T (f)∗ = T (f∗), ψ∗ = ψ−1, and ψ∗I = ψ−1

I .

5.3. Interpretation of cut-elimination

As we saw previously, the mathematical model of cut-elimination is given by the execution
formula as in (2), defined as follows:

EX(θ(Π), σ) = Tr⊗∆
⊗Γ,⊗Γ((1⊗ σ)θ(Π))

where Π is a proof of the sequent ` [∆],Γ, and σ = s⊗m models ∆, where |∆| = 2m.
Note that EX(θ(Π), σ) is a morphism from ⊗Γ −→ ⊗Γ, when it exists. We shall prove
below (see Theorem 5.12) that the execution formula always exists for any MELL proof
Π.

Example 5.8. Let Π be the following proof from Example 5.6:

` A,A⊥

` A .................................................
............
.................................. A⊥

`!(A .................................................
............
.................................. A⊥)

` B,B⊥

`?(A⊥ ⊗A), B,B⊥

` [!(A .................................................
............
.................................. A⊥), ?(A⊥ ⊗A)], B,B⊥ cut

Recall that given A = V and B = W , we have
θ(Π) = τ−1(T (sV,V )⊗ ((wT (V⊗V ) ⊗ 1W⊗W )sW,W (w∗T (V⊗V ) ⊗ 1W⊗W ))τ where τ is the

appropriate permutation. In this case, σ = s, (m = 1).
Then
EX(θ(Π), σ) = Tr((1 ⊗ sT (V⊗V ),T (V⊗V ))θ(Π)) = sW,W , the GoI interpretation of

` B,B⊥ to which Π reduces after cut-elimination.
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5.4. Soundness of the Interpretation

In this section we discuss the soundness of the MGoI interpretation. We show that if
a proof Π is reduced (via cut-elimination) to another proof Π′, then EX(θ(Π), σ) =
EX(θ(Π′), τ); that is, EX(θ(Π), σ) is an invariant of reduction. In particular, if Π′ is
cut-free (i.e. a normal form) we have EX(θ(Π), σ) = EX(θ(Π′), 1I) = θ(Π′).

The following lemma is valid for MELL too with the exact same proof as in Section
4.

Lemma 5.9 (Associativity of cut). Let Π be a proof of ` [Γ,∆],Λ and σ and τ be
the morphisms representing the cut-formulas in Γ and ∆ respectively. Then

EX(θ(Π), σ ⊗ τ) = EX(EX(θ(Π), τ), σ) = EX(EX((1⊗ s)θ(Π)(1⊗ s), σ), τ),

whenever all traces exist.

The definition of a datum is the same as in the case of MLL and is repeated for ease
of reference. However, the definition of an algorithm needs to be slightly changed to take
into account the presence of the functor T and its powers.

Definition 5.10. Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi −→ ⊗iVi such that for any ai ∈ θ(A⊥i ),
⊗iai ⊥M and

M .a1 := TrV1(s−1
⊗i6=1Vi,V1

(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn)Ms⊗i6=1Vi,V1)

and

M .̂(a2 ⊗ · · · ⊗ an) := TrV2⊗···⊗Vn((1⊗ a2 ⊗ · · · ⊗ an)M)

both exist.
• An algorithm of type θΓ is a morphismM : ⊗iVi⊗ ∆ −→ ⊗iVi⊗ ∆ for some ∆ =

B1, B2, · · · , B2m withm a nonnegative integer andBi+1 = B⊥
i for i = 1, 3, · · · , 2m−1,

and ∆ as before, such that with σ : T k(⊗2m
i=1 Bi ) −→ T k(⊗2m

i=1 Bi ) defined as
T k(⊗2m−1

i=1 ,odd s Bi , Bi+1
), for some non-negative integer k, EX(M,σ) exists and is

a datum of type θΓ.

The following lemma is valid for MELL with the exact same proof as in Section 4.

Lemma 5.11. Let Γ̃ = A2, · · · , An and Γ = A1, Γ̃. Let Vi = Ai , and M : ⊗iVi −→
⊗iVi, for i = 1, · · · , n. Then, M is a datum of type θ(Γ) iff for all ai ∈ θ(A⊥i ), M .a1

and M .̂(a2 ⊗ · · · ⊗ an) (defined as above) exist and are in θ(Γ̃), and θ(A1), respectively.

Theorem 5.12 (Proofs as algorithms). Let Π be an MELL proof of a sequent `
[∆],Γ. Then θ(Π) is an algorithm of type θΓ.

Proof. The proof of the cases that do not involve exponentials was already given in
Section 4 and we shall not repeat them here. The modification due to T and its powers
does not change the proof for MLL proofs.

In all the cases below we shall assume that ∆ is an empty sequence and that the
context Γ′ = B is a single formula. The general case of |Γ′| > 1 follows similarly and
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the case of non-empty ∆ follows from the associativity of cut. For a discussion regarding
these assumptions in the case of uni-object GoI, see (HS04a). We shall use A for A ,
for any formula A.

— Suppose Π is obtained from Π′ using the of course rule. Recall that θ(Π) = (eB ⊗
1)ϕ−1(Tθ(Π′))ϕ(e∗B ⊗ 1). Let b = T (α) with α ∈ θ(B⊥), we then have,

θ(Π).b = [(eB ⊗ 1)ϕ−1(Tθ(Π′))ϕ(e∗B ⊗ 1)].b

= Tr(s(b⊗ 1)(eB ⊗ 1)ϕ−1(Tθ(Π′))ϕ(e∗B ⊗ 1)s)

= Tr(s(eB ⊗ 1)(Tb⊗ 1)ϕ−1(Tθ(Π′))ϕ(e∗B ⊗ 1)s),naturality of e

= Tr(s(Tb⊗ 1)ϕ−1(Tθ(Π′))ϕ)s),dinaturality of trace and e∗BeB = 1

= T (Tr(s(b⊗ 1)θ(Π′)s))

= T (θ(Π′).b)

By inductive hypothesis θ(Π′).b ∈ θ(A), and then we have that θ(Π).b = T (β) for
some β ∈ θ(A), thus θ(Π).b ∈ θ(!A). Note that we have proven the result for every
b = T (α) with α ∈ θ(B⊥), and that {Tα |α ∈ θ(B⊥)} is a dense subset of θ(!B⊥)
with respect to biorthogonality, and hence we conclude the result for all b ∈ θ(!B⊥),
(see also (Gir89a), page 247.)
Now suppose α ∈ θ(?A⊥), we need to show that θ(Π)̂.α ∈ θ(?B). Using (c0) and the
properties of orthogonality relation on types, it suffices to show that θ(Π)̂.Ta ∈ θ(?B)
for all a ∈ θA⊥. By inductive hypothesis, θ(Π′)̂.a ∈ θ(?B) and thus by (c1)
eB(T (θ(Π′))̂.Ta)e∗B ∈ θ(?B). The latter is nothing but θ(Π)̂.Ta using the trace ax-
ioms.
Note that this is where infinity sneaks in: the equations and inductive hypothesis
force us to have e∗BeB = 1 and this cannot be realized in finite dimensions.

— Suppose Π is obtained from Π′ using the dereliction rule. Recall that θ(Π) =
(1 ⊗ dA)θ(Π′)(1 ⊗ d∗A). Let b ∈ θ(B⊥) and a ∈ θ(A⊥), by induction hypothesis
θ(Π′).b ∈ θ(A) and thus θ(Π′).b ⊥ a. On the other hand, θ(Π).b = [(1⊗ dA)θ(Π′)(1⊗
d∗A)].b = dA(θ(Π′).b)d∗A using trace axioms. Now, by axiom (c2) of compatibility we
have dA(θ(Π′).b)d∗A ⊥ Ta, which shows that θ(Π).b ∈ θ(?A).
For a ∈ θA⊥, Ta ∈ θ(!A⊥) = θ(?A)⊥. We have θ(Π)̂.Ta = θ(Π′)̂.a using trace axioms
and d∗AdA = 1A. Also by inductive hypothesis θ(Π′)̂.a ∈ θ(B). We conclude by noting
that {Ta | a ∈ θA⊥} is dense in θ(!A⊥).

— Suppose Π is obtained from Π′ using the weakening rule. Recall that θ(Π) = (1 ⊗
wA)θ(Π′)(1⊗w∗A). Let b ∈ θ(B⊥) and note that θ(Π).b = [(1⊗wA)θ(Π′)(1⊗w∗A)].b =
wA(θ(Π′).b)w∗A using trace axioms. Note, further that θ(Π′).b : I −→ I. Now, by ax-
iom (c3) of compatibility, wA(θ(Π′).b)w∗A ⊥ Ta for all a : A −→ A, thus in particular
for those a ∈ θ(A⊥). Thus, θ(Π).b ∈ θ(?A).
For a ∈ θA⊥, Ta ∈ θ(!A⊥) = θ(?A)⊥. We have θ(Π)̂.Ta = θ(Π′) using trace axioms
and w∗AwA = 1I . Also by inductive hypothesis θ(Π′) ∈ θ(B). We conclude by noting
that {Ta | a ∈ θA⊥} is dense in θ(!A⊥).

— Suppose Π is obtained from Π′ using the contraction rule. Recall that θ(Π) =
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(1 ⊗ cA)θ(Π′)(1 ⊗ c∗A). Let b ∈ θ(B⊥) and note that by inductive hypothesis
θ(Π′).b ∈ θ(?A, ?A). Let a ∈ θ(A⊥). Then, Ta ∈ θ(!A⊥) and θ(Π′).b ⊥ Ta ⊗ Ta.
On the other hand, θ(Π).b = cA(θ(Π′).b)c∗A using trace axioms. Now, by axiom (c4)
of compatibility, cA(θ(Π′).b)c∗A ⊥ Ta and so θ(Π).b ∈ θ(?A).
For a ∈ θA⊥, Ta ∈ θ(!A⊥) = θ(?A)⊥. We have θ(Π)̂.Ta = θ(Π′)̂.(Ta⊗Ta) using trace
axioms and c∗AcA = 1TA⊗TA. Also by inductive hypothesis θ(Π′)̂.(Ta ⊗ Ta) ∈ θ(B).
We conclude by noting that {Ta | a ∈ θA⊥} is dense in θ(!A⊥).

Corollary 5.13 (Existence of Dynamics). Let Π be an MELL proof of a sequent
` [∆],Γ. Then EX(θ(Π), σ) exists.

Theorem 5.14 (EX is an invariant). Let Π be an MELL proof of a sequent
` [∆],Γ such that ?A does not occur in Γ for any formula A. Then,

— If Π reduces to Π′ by any sequence of cut-elimination steps, then EX(θ(Π), σ) =
EX(θ(Π′), τ). So EX(θ(Π), σ) is an invariant of reduction.

— In particular, if Π′ is any cut-free proof obtained from Π by cut-elimination, then
EX(θ(Π), σ) = EX(θ(Π′), 1I) = θ(Π′).

Proof. We suppose Π is of the form

Π′
....

` Γ′, A

Π′′
....

` A⊥,Γ′′

` [A,A⊥], Γ′,Γ′′
cut

We further assume that the last rules in Π′ and Π′′ are logical rules applied to A or
A⊥. Hence in the syntax the cut rule for A will be replaced by other cuts. We use σ
to represent the cuts of Π and τ for those of Ξ, which is obtained from Π by one step
reduction (cut-elimination). We shall ignore the exchange rule.

It suffices to check the following key cases: note that the key cases of cut versus an
axiom and cut between A⊗B and its dual were covered in the proof of Theorem 4.8 and
will not be repeated here.

1 Suppose that A ≡ !B and so A⊥ ≡ ?B⊥, and Π is given by the following proof.

Π′
1 Π

′′

1
...

...
`?Γ′1, B
`?Γ′1, !B

(!)
`?B⊥, ?B⊥,Γ′′

`?B⊥,Γ′′
(contraction)

` [!B, ?B⊥], ?Γ′1,Γ
′′ (cut)
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The proof Ξ is obtained by first cutting Π′ against Π′′
1 to get a proof Π0 of

` [!B, ?B⊥], ?B⊥, ?Γ′1,Γ
′′, next cutting Π′ against Π0 to get Ξ0 ending with `

[!B, ?B⊥, !B, ?B⊥], ?Γ′1, ?Γ
′
1,Γ

′′ and finally doing a sequence of contractions on for-
mulas in ?Γ′1.
Recall that by assumption, Γ′1 has to be empty. In fact the following equations (in all
cases) are not valid otherwise. The problem is that in the presence of a non-empty
context, we cannot use the naturality of c, w, e or d which is necessary for the proof.
Without loss of generality, in all cases below, we let Γ′′ = C be a single formula with
C = C. Also, let !B = ?B⊥ = T (U). We shall assume we are working with

strict monoidal categories, therefore A⊗ I = A and f ⊗ 1I = f for any object A, and
any morphism f .

EX(θ(Π), σ) =

= TrTU⊗TU [(1⊗ s)ρ∗(T (θΠ′
1)⊗ (cU ⊗ 1)θΠ′′

1 (c∗U ⊗ 1))ρ]

= TrTU⊗TU⊗TU [(1⊗ β)α∗(cU (T (θΠ′
1)⊗ T (θΠ′

1))⊗ θΠ′′
1 (c∗U ⊗ 1))α]

dinaturality of trace and naturality of c

= TrTU⊗4
[(1⊗ β′)δ∗(T (θΠ′

1)⊗ T (θΠ′
1)⊗ θΠ′′

1 )δ]

dinaturality of trace, c∗c = 1

= TrTU⊗4
[(1⊗ s⊗ s)γ∗(s(T (θ(Π′))⊗ T (θ(Π′)))s⊗ θΠ′′

1 )γ]

= EX(θ(Ξ), s⊗ s)

Here all lower case Greek letters stand for appropriate permutations. E.g., β = (1⊗
s)(s⊗ 1), etc.

2 Suppose Π is given as:

Π′
1 Π

′′

1
...

...

` B
`!B

(!)
` B⊥,Γ′′

`?B⊥,Γ′′
(dereliction)

` [!B, ?B⊥],Γ′′
(cut)

and Ξ is obtained as

Π′
1 Π

′′

1
...

...
` B ` B⊥,Γ′′

` [B,B⊥],Γ′′
(cut)
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We have
EX(θ(Π), σ) =
= TrTU⊗TU [(1⊗ s)ρ∗(T (θΠ′

1)⊗ (dU ⊗ 1)θΠ′′
1(d∗U ⊗ 1))ρ]

= TrTU⊗TU [(1⊗ s)ρ∗(T (θΠ′
1)dU ⊗ θΠ′′

1(d∗U ⊗ 1))ρ]
dinaturality of trace

= TrTU⊗TU [(1⊗ s)ρ∗(dUθΠ′
1 ⊗ θΠ′′

1(d∗U ⊗ 1))ρ] naturality of d

= TrU⊗U [(1⊗ s)ρ∗(θΠ′
1 ⊗ θΠ′′

1)ρ] dinaturality of trace and d′d = 1

= EX(θ(Ξ), s)
Here ρ = (1⊗ s)(s⊗ 1).

3 Suppose Π is given as:
Π′

1 Π
′′

1
...

...
` B
`!B

(!)
` Γ′′

`?B⊥,Γ′′
(weakening)

` [!B, ?B⊥],Γ′′
(cut)

and Ξ = Π′′
1 .

We have
EX(θ(Π), σ) =

= TrTU⊗TU [(1⊗ s)ρ∗(T (θΠ′
1)⊗ (wU ⊗ 1)(1I ⊗ θΠ′′

1)(w∗U ⊗ 1))ρ]

= TrTU⊗TU [(1⊗ s)ρ∗(T (θΠ′
1)wU ⊗ (1I ⊗ θΠ′′

1)(w∗U ⊗ 1))ρ]
dinaturality of trace

= TrTU⊗TU [(1⊗ s)ρ∗(wU ⊗ (1I ⊗ θΠ′′
1)(w∗U ⊗ 1))ρ] naturality ofw

= TrI [sI,C(1I ⊗ θΠ′′
1)sC,I ] dinaturality of trace and w∗w = 1

= θΠ′′
1 vanishing I and coherence theorem.

4 The last case is where Π is given as in below. For simplicity we shall ignore the
monoidal functor isomorphism ϕ, its inclusion does not make any changes to the
correctness of the proof below.

Π′
1 Π

′′

1
...

...

` B
`!B

(!)
`?B⊥, C

`?B⊥, !C
(!)

` [!B, ?B⊥], !C
(cut)
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and Ξ is

Π′
1 Π

′′

1
...

...
` B
`!B

(!) `?B⊥, C

` [!B, ?B⊥], C

` [!B, ?B⊥], !C
(!)

We have

EX( Π , σ) =

= TrTU⊗TU [(1⊗ s)ρ∗(T ( Π′
1 )⊗ (eU ⊗ 1)T ( Π′′

1 )(e∗U ⊗ 1))ρ]

= TrTU⊗TU [(1⊗ s)ρ∗(T Π′
1 eU ⊗ T ( Π′′

1 )(e∗U ⊗ 1))ρ] dinaturality of trace

= TrT2U⊗TU [(1⊗ s)ρ∗(eUT 2( Π′
1 )⊗ T ( Π′′

1 )(e∗U ⊗ 1))ρ] naturality of e

= TrT2U⊗TU [(1⊗ s)ρ∗(T 2( Π′
1 )⊗ T ( Π′′

1 ))ρ] dinaturality of trace and e∗e = 1

= EX(Ξ, s).

Here, ρ = (1⊗s)(s⊗1); of course the type of s depends on the particular permutation.

6. MGoI and Denotational Semantics

6.1. Comparison with Int categories

In the original paper on traced monoidal categories (JSV96), Joyal, Street, and Verity
say

This notion of trace also appears in the geometry of interaction as the ‘execution formula’.

The authors go on to construct a notion of free compact closure of a traced monoidal
category, Int(C), in which composition is given by the trace. An equivalent notion (in the
symmetric case) was introduced independently by Abramsky, in his construction G(C).

There have been several works interpreting various logics in Int-like “GoI” categories,
beginning with the Abramsky-Jagadeesan paper (AJ94) as well as unpublished lectures
of Hyland, to more recent (and interesting) interpretations of classical logic by Fuhrman
and Pym (FP04). In all cases, cut is interpreted as composition in the associated Int

category.
We are often asked to compare our view of Girard’s GoI (in this article, MGoI) with the

above-style denotational interpretations into some G(C). We show below that: (i) when it
makes sense to ask the question, the two semantics are different on formulas and on proofs
with cuts, but (ii) they do agree on cut-free proofs (even though the interpretations of the
associated formulas are different). Thus, in a rough sense, the denotational (categorical)
interpretation of closed (cut-free) proof-terms is the same as the GoI interpretation.

There are, however, some caveats:
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(i) In MGoI we work with partial traces. At the moment, there is no suitable published
account of compact categories analogous to forming G(C) or Int(C) for our notion of
partial trace. Indeed, this is connected with the notion of partial category. Work in this
direction, based on Freyd’s paracategories (see Section 6.2 below) will appear in (Mal10).
So to make the comparison meaningful, let us suppose we are working in a totally traced
category C.

(ii) MGoI (and untyped GoI) interpret formulas as types, which of course is not the
same as a direct denotational interpretation of formulas as objects in some G(C).

Nevertheless, let us see to what extent we can compare the two kinds of GoI interpre-
tations in a category G(C). We shall roughly follow Abramsky and Jagadeesan (AJ94).
Interpreting formulas:

Formulas will be interpreted as diagonal objects in G(C), that is as pairs of objects
in C of the form (V, V ). We shall indicate the denotational semantics in G(C) as − D

to distinguish it from − , which is used in the MGoI interpretation of formulas given
earlier. We assign arbitrary objects to atomic formulas: p D = (V, V ), where V is

an object in C. Relative to such an assignment, we define A⊥ D = A ⊥
D. Also, we

define A⊗B D = A
.................................................

............
.................................. B D = A D⊗ B D. Note that A⊥ D = A D for every

formula A; indeed suppose A D = (V, V ), then A⊥ D = (V, V )⊥ = (V, V ).

Remark 6.1. Notice that if we choose p D = ( p , p ) for atomic formulas p, then
A D = ( A , A ) for any formula A, (see Proposition 6.2 below.) This is as far as the

resemblance goes, however, since the MGoI interpretation of formulas is θ(A), not A .

Interpreting proofs: In the denotational semantics into the category G(C) we shall
ignore the information about cuts collected in ∆; thus let Π be a proof of ` [∆],Γ,
with Γ = A1, · · · , An. Then Π D : I −→ ⊗ Ai D in G(C); in other words, Π D :
V1 ⊗ V2 ⊗ · · · ⊗ Vn −→ V1 ⊗ V2 ⊗ · · · ⊗ Vn in C, where Ai D = (Vi, Vi). For a morphism
h : A⊗B −→ C in G(C), let Λ(f) : A −→ B∗ ⊗ C denote its transpose.

— Axiom ` A,A⊥. Then Π D = Λ(1 A D
). Let A D = (V, V ). Then, when trans-

lated into C, we have Π D = sV,V .
— Cut: Suppose Π is obtained by applying the cut rule on A,A⊥ to proofs Π′ and Π′′.

Suppose also that Π′
D = f : I −→ ⊗ Γ′ D ⊗ A D and Π′′

D = g : I −→
A⊥ D ⊗ Γ′′ D. Then

Π D : I −→ Γ′ D ⊗ Γ′′ D = Λ(Λ−1(g)Λ−1(f)) .

Let Γ′ = A′1, · · · , A′n and Γ′′ = A′′1 , · · · , A′′m, A′i D = (V ′
i , V

′
i ) and A′′i D =

(V ′′
i , V

′′
i ), and A D = (V, V ). When translated into C we get:

Λ−1(f) : V ′
1 ⊗ · · · ⊗ V ′

n ⊗ V −→ V ′
1 ⊗ · · · ⊗ V ′

n ⊗ V and
Λ−1(g) : V ⊗ V ′′

1 ⊗ · · · ⊗ V ′′
m −→ V ⊗ V ′′

1 ⊗ · · · ⊗ V ′′
m. So

Π D = TrV⊗V ((1Γ′ ⊗ 1Γ′′ ⊗ sV,V )ρ−1(Λ−1(f)⊗ Λ−1(g))ρ)

where ρ is the permutation, ρ : Γ′ D⊗ Γ′′ D⊗V ⊗V −→ Γ′ D⊗V ⊗V ⊗ Γ′′ D

— Exchange: Given Π′
D : I −→ ⊗ Γ′ D with Γ′ = Γ′1, Ai, Ai+1,Γ′2, Γ′1 =

A1, · · · , Ai−1, Γ′2 = Ai+2, · · · , An, and Ai D = (Vi, Vi) for all i. We define
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Π D = (1Γ′1
⊗ sVi,Vi+1 ⊗ 1Γ′2

) Π′
D. When we translate this into C we get: given

Π′
D : V1 ⊗ · · · ⊗ Vi ⊗ Vi+1 ⊗ · · · ⊗ Vn −→ V1 ⊗ · · · ⊗ Vi ⊗ Vi+1 ⊗ · · · ⊗ Vn,

Π D = ρ−1 Π′
Dρ where ρ = 1Γ′1

⊗ sVi+1,Vi ⊗ 1Γ′2
.

— Tensor: Given Π′
D = f : I −→ ⊗ Γ′ D ⊗ A D and Π′′

D = g : I −→
⊗ Γ′′ D ⊗ B D, then we define

Π D : I −→ ⊗ Γ′ D ⊗ Γ′′ D ⊗ A D ⊗ B D = ρ(f ⊗ g)

where ρ is the permutation ρ : ⊗ Γ′ D⊗ Γ′′ D⊗ A D⊗ B D −→ Γ′ D⊗ A D⊗
Γ′′ D ⊗ B D. Let Γ′ = A′1, · · · , A′n and Γ′′ = A′′1 , · · · , A′′m, A′i D = (V ′

i , V
′
i ) and

A′′j D = (V ′′
j , V

′′
j ), A D = (V, V ), and B D = (W,W ). When translated into C

we get f : V ′
1 ⊗ · · · ⊗ V ′

n ⊗ V −→ V ′
1 ⊗ · · · ⊗ V ′

n ⊗ V and g : V ′′
1 ⊗ · · · ⊗ V ′′

m ⊗W −→
V ′′

1 ⊗ · · · ⊗ V ′′
m ⊗W . Then

Π D = ρ−1(f ⊗ g)ρ

where ρ is the permutation, ρ = 1Γ′ ⊗ sΓ′′,V ⊗ 1W

— Par: Given Π′
D : I −→ ⊗ Γ′ D ⊗ A D ⊗ B D, define Π D = Π′

D.

Proposition 6.2. Let Π be an MLL proof of ` [∆],Γ and σ model ∆. Suppose p D =
( p , p ) for all atomic formulas p. Then,

1 A D = ( A , A ), for any formula A.
2 EX(θ(Π), σ) = Π D. In particular, if Π is cut-free (i.e., |∆| = 0, σ = 1I ), then

θ(Π) = Π D.

Proof.
(1). By induction on formulas. (2). By induction on proofs.

— Axiom: Let Π be ` A,A⊥ and A D = (V, V ), then from above,

Π D = sV,V = θ(Π).

— Cut: Let Π be the cut of Π′ and Π′′ on cut formulas A,A⊥, Π′
D = f and Π′′

D =
g, A D = (V, V ). We know that θ(Π) = TrV⊗V ((1Γ′ ⊗ 1Γ′′ ⊗ sV,V )ρ−1(Λ−1(f) ⊗
Λ−1(g))ρ), but for f and g as above Λ−1(f) = f and Λ−1(g) = g as morphisms in C.
Hence we get that

θ(Π) = TrV⊗V ((1Γ′ ⊗ 1Γ′′ ⊗ sV,V )ρ−1(f ⊗ g)ρ).

Assume that the cuts ∆′ and ∆′′ are represented by σ′ and σ′′ respectively. Then we
have:
EX(θ(Π), σ′ ⊗ σ′′ ⊗ sV,V ) = EX(EX(θ(Π), sV,V ), σ′ ⊗ σ′′) assoc. of cut

= EX(EX(τ−1(θ(Π′)⊗ θ(Π′′))τ, sV,V ), σ′ ⊗ σ′′)
(by MGoI interpretation)

= EX(ρ−1(EX(θ(Π′), σ′)⊗ EX(θ(Π′′), σ′′))ρ, sV,V )
(Naturality and dinaturality)

= EX(ρ−1(f ⊗ g)ρ, sV,V )
= Π D

— Exchange: Let Π be obtained from Π′ by exchanging Ai, Ai+1 and σ represent ∆.
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We know that Π D = ρ−1 Π′
Dρ where ρ = 1Γ′1

⊗ sVi+1,Vi
⊗ 1Γ′2

, where Ai D =
(Vi, Vi), for all i. Moreover,

EX(θ(Π), σ) = EX(τ−1θ(Π′)τ, σ), MGoI int.

= ρ−1EX(θ(Π′), σ)ρ, naturality of trace

= ρ−1 Π′
Dρ, inductive hyp.

= Π D.

— Tensor: Suppose Π is obtained from Π′ and Π′′ and that ∆′ and ∆′′ are represented
by σ′ and σ′′ respectively.
EX(θ(Π), σ′ ⊗ σ′′) = EX(τ−1(θ(Π′)⊗ θ(Π′′))τ, σ′ ⊗ σ′′)

= ρ−1(EX(θ(Π′), σ′)⊗ EX(θ(Π′′), σ′′))ρ
= ρ−1( Π′

D ⊗ Π′′
D)ρ

= Π D.

— Par: As EX(θ(Π′), σ) = Π′
D and θ(Π) = Π′

D, the result follows.

Example 6.3. Observe that even at the simple level of two axioms joined by a cut, the
MGoI and denotational interpretations differ. For let Π be the proof obtained by applying
the cut rule to two axioms ` A,A⊥, and suppose A D = (V, V ) with V = A an object
of C. Then the denotational semantics of Π, Π D = sV,V . On the other hand, for the
MGoI semantics of Π, θ(Π) = sV⊗V,V⊗V . However, observe that (as in Proposition above,
in the case of Cut)

EX(sV⊗V,V⊗V , sV,V ) = sV,V .

Thus, as we have seen above, the two semantics differ in how they interpret the formulas,
and the proof interpretations are related by the Proposition 6.2 above. Note that deno-
tational semantics (in the compact Int-categories above) is not set up to explicitly keep
track of the cuts nor for modelling the cut-elimination process. The removal of cuts is
hidden in the composition in the model category.

In our paper (HS04b) we discussed a “natural” noncompact *-autonomous category
closely connected with GoI. In the next section we discuss a related construction for
MGoI.

6.2. The paracategory of types

As we saw above, Girard’s Geometry of Interaction interprets formulas as types (i.e.
biorthogonally closed sets of morphisms with respect to an orthogonality ⊥). One may
ask: is there a natural ∗-autonomous category of such “types” whose arrows are induced
from the GoI interpretation of proofs?

In our paper (HS04b) we introduced such a category, called O(C), based on a GoI situ-
ation (C, T, U), where U was a reflexive object and C was a traced Unique Decomposition
Category. These latter categories, which are Σ-monoid enriched, are useful in discussing
sum-style total traces (AHS02; Hagh00a; HS04a).



Typed Geometry of Interaction 37

In what follows, we generalize this construction to the case of a “partial” category,
also denoted O(C), but now arising from a general GoI category (C, T,⊥) in the sense
of this paper. The intuition behind this construction is to use the MGoI interpretation
for formulae to define the objects in O(C), and to use the MGoI interpretation of a
cut-free proof of ` A⊥, B to define a morphism f : A −→ B in O(C). Here, the situation
is complicated by the fact that traces are now partial, so we need a notion of partial
category, i.e. structures like categories but for which composition of morphisms is only
partially defined (even between morphisms of composable form).

There are various notions of partial category in the literature. We shall use a slightly
modified version of Freyd’s paracategories. The latter theory has been exposed in work
of Hermida and Mateus (HerMat03). We shall call our notion a Kleene precategory, or
simply a precategory.

Definition 6.4. A Kleene precategory C consists of a class of objects and for any two
objects A and B a set of arrows from A to B, denoted C(A,B). Every homset C(A,A)
has an identity morphism 1A and there is a partially defined composition operation on
homsets

◦ : C(A,B)× C(B,C) −→ C(A,C)

such that ◦(f, g) : A −→ C for any f : A −→ B and g : B −→ C whenever it is defined.
We shall use gf instead of ◦(f, g) as is common. These data need to satisfy the following
axioms:

(i) For any f : A −→ B, 1Bf and f1A are defined and 1Bf = f and f1A = f .
(ii) For any f : A −→ B, g : B −→ C, and h : C −→ D, h(gf) ∼ (hg)f .

In the second item above ∼ stands for Kleene equality, meaning: the left side of the
equality is defined iff the right side is, and in either case the two sides are equal.

Let C and D be two precategories; a Kleene functor F : C −→ D consists of two maps:

— F : ob(C) −→ ob(D) and
— For every A and B objects in C, FAB : C(A,B) −→ D(FA,FB) such that

(i) For every A ∈ ob(C), FAA(1A) = 1FA,
(ii) For every f : A −→ B and g : B −→ C, F (gf) ∼ F (g)F (f).

Given a GoI category (C, T,⊥), we define the precategory O(C) as follows. Note: we
will only use the (C,⊥) structure here; in particular we will not be using the functor T
as we will not discuss modeling the exponentials of Linear Logic.

• Objects: An object A of O(C) is a bi-orthogonally closed subset of C(U,U) for some
object U in C. The definition of objects is motivated by the notion of a type, the MGoI
interpretation of formulas. In fact, if A is a formula of MLL with A = U , then A, as
an object of O(C), is the type we called θ(A).

• Arrows: Let A and B be objects in O(C) where A is a bi-orthogonally closed subset
of C(U,U) and B is a bi-orthogonally closed subset of C(V, V ). Then a morphism f :
A −→ B in O(C) is a morphism f : U ⊗ V −→ U ⊗ V in C such that (1) for any
a ∈ A, f .a := TrU

V,V (sU,V (a ⊗ 1V )fsV,U ) exists and is in B, and (2) For any b ∈ B⊥,
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f .̂b := TrV
U,U ((1U ⊗ b)f) exists and is in A⊥. Intuitively we think of f as the MGoI

denotation of a cut-free proof of the sequent ` A⊥, B. Note that we do not require that
f actually be the denotation of a proof: this just motivates the definition.

• Identity: The identity morphism on A ⊆ C(U,U), denoted 1A, is given by sU,U , the
symmetry morphism in C on U . Note that for any a ∈ A, 1A.a = TrU

U,U (sU,U (a ⊗
1U )sU,UsU,U ) = TrU

U,U (sU,U (a ⊗ 1U )) = a ∈ A. The latter equality is known as
generalized yanking in TMC’s (see (Hagh00; Hagh00a).) Similarly for any a ∈ A⊥,
1A .̂a = TrU

U,U ((1U ⊗ a)sU,U ) = a ∈ A⊥. This definition of identity morphisms is mo-
tivated by the MGoI interpretation of the cut-free proof of ` A,A⊥.

• Composition: Composition is defined as follows: given f : A −→ B and g : B −→ C

in O(C), with A ⊆ C(U,U), B ⊆ C(V, V ), and C ⊆ C(W,W ),

gf = TrV⊗V
U⊗W,U⊗W ((1U ⊗ 1W ⊗ sV,V )τ−1(f ⊗ g)τ).

where τ = (1U ⊗ 1V ⊗ sW,V )(1U ⊗ sW,V ⊗ 1V ). First, note that this trace may not exist
as we are in a partially traced category and thus the composition operation is a partially
defined one.

The intuition behind this definition is the following: we think of f and g as denotations
of cut-free proofs Π1 and Π2 of ` A⊥, B and ` B⊥, C respectively. We then apply
the MGoI interpretation for the cut rule applied to θ(Π1) and θ(Π2), which yields the
interpretation of the proof Π of ` [B,B⊥], A⊥, C obtained from Π1 and Π2. But we
need a cut-free proof, so we normalize the proof by applying the execution formula to
θ(Π). This yields the MGoI interpretation of the cut-free proof of ` A⊥, C obtained from
Π1 and Π2. As before, the f and g here are not assumed to be denotations of the proofs
above, we just think of them as such to motivate our definition.

Note that the above composition is the same as the formula for composition in the
Int-category G(C) (called symmetric feedback in (Abr96)), see (Hagh00; AHS02; HS04b);
of course this is no surprise, as the definition of composition in G(C) is also motivated
by the execution formula applied to the cut of two proofs. Composition is illustrated in
Figure 1 below.

f

g

Fig. 1. Composition.

Proposition 6.5. Let (C, T,⊥) be a GoI category, then, O(C) is a Kleene precategory.

Proof. Clearly identity morphisms exist. We shall use a graphical calculus for the
proofs that follow. Figure 2 below shows the proofs for h(gf) ∼ (hg)f , where the dashed
box shows definedness, and f1A = f . The proof of 1Bf = f is similar.
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f

h

g

f

h

g

Iff

f

f=

f

=

Fig. 2. Graphical proof that h(gf) ∼ (hg)f and f1A = f

Remark 6.6. Note by restricting to genuine formulas and proofs of MLL, we obtain a
subcategory of “definable” types and arrows in O(C). Since the definitions of morphisms
are motivated directly by the MGoI interpretation of cut-free proofs, they will be well-
defined. This is because by Theorem 4.6, the MGoI denotations of proofs are algorithms,
and thus in the cut-free case are data of appropriate type, which implies well-definedness
of morphisms. More generally, it is clear for morphisms of O(C) constructed following
the logical rules of MLL, we can follow the lines of the inductive proof of Theorem 4.6
to conclude their well-definedness.

How do we extend O(C) to the ∗-autonomous level?

6.2.1. Towards a ∗-autonomous structure of Types
Unfortunately, there is no universally agreed-upon definition of ∗-autonomous paracat-

egories into which to fit the above paracategory O(C) of types. The thesis of Malherbe
(Mal10) discusses strict compact paracategories, but the question of even defining non-
strict ∗-autonomous pre- or paracategory structure is still an open problem. Rather than
do so, as a final remark, we sketch below the appropriate modification of the definitions
in (HS04b) which we suggest will be relevant to the ultimate theory.

• Tensor: Given A ⊆ C(U,U) and B ⊆ C(V, V ), objects in O(C), define:

A⊗B = {a⊗ b | a ∈ A, b ∈ B}⊥⊥ ⊆ C(U ⊗ V,U ⊗ V ).

Given f : A −→ B and g : A′ −→ B′, with A′ ⊆ C(U ′, U ′) and B′ ⊆ C(V ′, V ′), we define

f ⊗ g = (1U ⊗ sV,U ′ ⊗ 1V ′)(f ⊗ g)(1U ⊗ sU ′,V ⊗ 1V ′).

Notice that the tensor product used on the righthand side is the one in C. Here is the
formal proof that motivates this definition (ignoring the exchange rule):

` A⊥, B , ` A′⊥, B′

` A⊥, A′⊥, B ⊗B′
times

` A⊥.................................................
............
.................................. A′

⊥
, B ⊗B′

par
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• Tensor Unit: The unit of tensor is given by I = {1I}⊥⊥ ⊆ C(I, I).

• Symmetry: The symmetry sA,B : A⊗B −→ B⊗A with A ⊆ C(U,U) and B ⊆ C(V, V )
is defined as

sA,B = (sV,U ⊗ 1V ⊗ 1V )(1V ⊗ sV,U ⊗ 1U )(sV,V ⊗ sU,U )(1V ⊗ sU,V ⊗ 1U )(sU,V ⊗ 1V ⊗ 1U ).

Here is the formal proof that motivates this definition:
` B⊥, B ` A⊥, A
` B⊥, A⊥, B ⊗A

times

` A⊥, B⊥, B ⊗A
exchange

` A⊥ .................................................
............
.................................. B⊥, B ⊗A

par

• Duality: Given A ⊆ C(U,U) define

A⊥ = {f ∈ C(U,U) | g ∈ A implies f ⊥ g} ⊆ C(U,U).

Given f : A −→ B, with A ⊆ C(U,U) and B ⊆ C(V, V ), we definef⊥ : B⊥ −→ A⊥ as
f⊥ = sU,V fsV,U .

• Par product: This arises via de Morgan duality from ⊗. Thus given A and B objects
of O(C) with A ⊆ C(U,U) and B ⊆ C(V, V ), we define

A
.................................................

............
.................................. B = {a⊗ b | a ∈ A⊥, b ∈ B⊥}⊥.

Given f : A −→ B and g : A′ −→ B′, with A′ ⊆ C(U ′, U ′) and B′ ⊆ C(V ′, V ′)we define
f

.................................................
............
.................................. g = (f⊥ ⊗ g⊥)⊥.

• Par Unit, defined by ⊥= {1I}⊥ ⊆ C(I, I).

One may show that ⊗ and (−)⊥ are (in the appropriate sense) Kleene functors. We then
conjecture the following:

Conjecture 6.7. Let (C, T,⊥) be a GoI category. Then the Kleene precategory of types
O(C) may be endowed with a ∗-autonomous precategory structure, following the above
definitions.

It is left as an open question how to extend this to the full exponentials of MELL,
using the functorial properties of T .

7. Conclusion and Future Work

In this paper we give the details of a new categorical semantics, MGOI, for Girard’s
Geometry of Interaction (Gir89a; Gir95a; AHS02; Gir07; HS10) for both multiplicative
and multiplicative exponential linear logic. This semantics, while inspired by GoI, differs
from it in significant points. First, MGoI is typed: we do not assume nontrivial reflexive
objects in the ambient models. It is based on a new theory of partial traces and trace
classes, as well as a version of GoI localized to endomorphism monoids of types. This
permits giving a general semantical framework for the solution of feedback equations
associated to Girard’s execution formula (Gir07; Gir08), as in our tutorial (HS10). As
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well, we provide an analysis of the critical features needed for analyzing how the execution
formula converges (i.e. gives an invariant of cut-elimination).

There are several open questions and directions we believe worth exploring.

1 Is it possible to develop a natural notion of ∗-autonomous pre- or paracategory, which
includes the pre-category of types O(C) in subsection 6.2.1 above? Is there a fac-
torization theorem of the denotational versus the GoI interpretation, analogous to
(HS04b)?

2 The problem of extending MGoI to the additives is still very much open.
3 Are there examples of partially traced categorical models of MGoI connected to op-

erator algebras (e.g. von Neumann algebras) as in the recent Girard work (Gir08)? In
particular, in such models, discuss the analytic convergence of the Execution formula

EX(θ(Π), σ) = Tr⊗∆
⊗Γ,⊗Γ((1⊗ σ)θ(Π))

for proofs Π as well as EX(f, σ) more generally.
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