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Many have written about categories of par-

tial maps

• Di Paola and Heller, 1986

• Carboni, 1987

• Robinson and Rosolini, 1988

• Curien and Obtulowicz, 1989

• Jay, 1990

• Mulry, 1992

• Fiore, 1996
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For C a category,M a stable system of monics,

the partial morphism category

Par(C,M)

has morphisms equivalence classes [m, f ] with

X
m←− f−→ Y and m ∈ M. Composition is via

pullback as usual.

The “domain of definition” of [m, f ] can be

modelled as the restriction endomorphism

[m,m].
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Cockett and Lack’s idea was to make restric-

tion a primitive.

Robin Cockett and Stephen Lack, Restriction

Categories I: Categories of Partial Maps, Theo-

retical Computer Science 279, 2002, 223-259.

A restriction category is an “abstract cate-

gory of partial morphisms”, being a category

with a restriction operator

f : X → Y 7→ f : X → X

satisfying the axioms R.1, . . . , R.4 on the board.

Note that a full subcategory of a restriction

category again is one.
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For a restriction category C denote by R(C) the

set of restriction idempotents

R(C) = {x : x = x} = {f : f a morphism}

The restriction itempotents X → X form a

semilattice by (D), R.2, (A).
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A split restriction category has the property

that all restriction idempotents split.
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In that case, the set of all m as above form a

stable system of monics.
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Theorem (Cockett & Lack) Par(C,M) is a

split restriction category. For every restriction

category C there exists D,M for which C is a

full restriction category of Par(D,M)

Proof Idea: Let E be the itempotent com-

pletion of C splitting R(C). E is a restriction

category: e1
f−→ e2 has restriction fe1.

In any restriction category, f is total if f = id.

Take D to be the total morphisms of E. Take

M as the monics that arise in the splittings of

restriction itempotents in E. (Though f is not

total, all monics are total).

The embedding is

f 7→ [X
m←− m−→ X

f−→ Y ]

where m is the monic in the splitting of f .
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Via the Yoneda embedding of the previous con-

struction, one sees further that C is a full re-

striction category of

Par(SetD
op
,N )

for a suitably-chosen stable system of monics

N .
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Summary

• Restriction categories have captured par-

tial morphism categories.

• There is no use of universal properties in

the axioms. Any full subcategory continues

to be a restriction category.
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Earlier work by some theoretical programmers

had a different emphasis.

• The logic is classical (Boolean)

• But programs can have nondeterministic

behavior.

Edsger Dijkstra, A Discipline of Programming,

Prentice-Hall, 1976:

“In this book –and that may turn out

to be one of its distinctive features– I

shall treat nondeterminancy as the rule

and determinacy as the exception . . . ”

Dijkstra’s guards are precisely restrictions.
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Ernie Manes, Predicate Transformer Seman-

tics, Cambridge University Press, 1992.

Boolean Categories

(B.l) X + Y , initial 0

(B.2) Coproduct injections is stable system of

monics

(B.3) Coproduct injections pull back binary

coproducts

(B.4) Except for 0, coproduct injections in

X +X are different
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Coproduct-injection subobjects are called sum-

mands.

Theorem The poset Summ(X) of summands

of X forms a Boolean algebra.

The pullback of X
f−→ Y ←− 0 is the kernel of

f , Ker(f)→ X.

Dom(f) = (Ker(f))′.

f is total if Ker(f) = 0.

Dom(f) is the largest summand restricted to

which f is total.

f is undefined if f factors through 0.
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To define restrictions requires canonical unde-

fined maps.

In a Boolean category, these are provided by

“projection systems” which correspond bijec-

tively to maximal Boolean subcategories with

zero maps. Let us fix one of these so that

We now work in a Boolean category

with a zero object.
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Here’s how restrictions are defined in a Boolean

category with zero:
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Fact: R.1, R.2, R.3 hold. Restriction idempo-

tents split.

What is the situation with R.4?
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Proposition Restrictions X → X form a Boolean

algebra (with a ∧ b = ab = ba) isomorphic to

Summ(X).

Proof Idea

A
i−→ X ←− A′ 7→ a = i

a = a : X → X 7→ A = eq(idX , a)
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In our Boolean category with zero, f : X → Y

is deterministic if

P X- P ′�

Q Y- Q′�

? ?

f
?

∀Y = Q+Q′ ∃X = P +P ′ and a commutative

diagram as above.

Deterministic maps form a Boolean subcate-

gory.
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Toward an interpretation of Axiom R.4

Theorem In a Boolean category with zero,

(R.4) holds for f : X → Y , i.e. for all g : Y → Z,

gf = fgf if and only if f is deterministic.

Thus a Boolean category with zero is a restric-

tion category if and only if all morphisms are

deterministic.

Thus, for each Boolean category with zero, the

determinisic morphisms constitute a restriction

category.
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Toward restrictions for semigroups

Semigroup theorists should be interested in re-

striction!

Let’s start with some basic semigroup stuff.
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Let S be a semigroup. a ∈ S is regular if

∃x ∈ S with axa = a.

S is regular if all of its elements are regular.

An inverse of a is x with axa = a and xax = x.

Example Let S = A × B with (a, b)(c, d) =

(a, d). Then S is a semigroup in which each

element is inverse to all elements.

Every regular element has an inverse.
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An inverse semigroup is a semigroup in which

each element a has a unique inverse a−1.

Inverse semigroups are equationally definable:

x(yz) = (xy)z
(x−1)−1 = x

(xy)−1 = y−1x−1

xx−1yy−1 = yy−1xx−1

Example Any group.

Example Injective partial functions X → X.

Proposition A semigroup is an inverse semi-

group if and only if it is regular and any two

idempotents commute.

20



Vagner-Preston Theorem If S is an inverse

semigroup then

S
λ−−−→ Pfn(S,S), a 7→ λa

λa x =

{
ax if x ∈ a−1aS
⊥ otherwise

is an injective semigroup homomorphism. Each

λa is an injective partial function.
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Books on inverse semigroups

• Petrich, 1984 (674 pages)

• Lipscomb, 1996

• Lawson, 1998 “Self-similarities are exam-

ples of what we term partial symmetries...”.

There has been literature on semigroups with

x 7→ x? satisfying

(xy)? = y?x?

x?? = x
xx?x = x
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Inverse semigroups are “abstract injective Pfn(X,X)”.

What plays the role of “abstract Pfn(X,X)”?

Restriction algebras!
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A restriction algebra is a semigroup equipped

with a unary operation x 7→ x which satisfies

axioms (R.1, . . . , R.4)

Thus restriction algebras constitute an equa-

tionally definable class of universal algebras.

Example The endomorphisms of any object in

a restriction category.
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Example Let C be a restriction category. Let

S be the morphisms of C together with a new

element 0. Then S is a restriction algebra if

xy =

{
xy if x 6= 0 6= y, cod(y) = dom(x)
0 otherwise

x =

{
x if x 6= 0
0 if x = 0
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The Robinson-Rosolini P -categories / Cockett

copy categories produce a restriction category

by

f = A
4−→A⊗A f⊗1−−→ B ⊗A !⊗1−→ I ⊗A ∼= A

whose endomorphism monoids are restriction

algebras.

Not an example semigroup theorists would rush

to.
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Example Let S be a semigroup, a ∈ S. Define

x = a. This is a restriction algebra if and only

if a is a unit for S.

Example Let S be a left cancellative semi-

group which is not a monoid. Then no restric-

tion operator exists to make S a restriction

algebra. (Proof: x y = x x y ⇒ x y = y.

As restriction itempotents commute, the same

proof gives x y = y. Now use the previous ex-

ample.)

Example Every meet semilattice xy = x ∧ y
is a restriction algebra if x = x. We say a

restriction algebra “is a semilattice” if it is of

this form.
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Exercise for you: Show that the center

Z(S) = {x ∈ S : ∀y ∈ S xy = yx}

is a restriction subalgebra.

Hint: Use all four axioms.
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Proposition (Cockett and Lack) Every inverse

semigroup is a restriction algebra with x =

x−1x. Inverse semigroups are a full coreflec-

tive subcategory of restriction algebras with

the coreflection I(S) of S given by

{x ∈ X : ∃a ∈ S with xa = a, ax = x}

I(S) is analogous to the group of units of

monoid.
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By a partially ordered semigroup we mean a

semigroup with a partial order such that

x ≤ y ⇒ ∀a∀b axb ≤ ayb

Every restriction algebra is a partially ordered

semigroup if x ≤ y means yx = x.

Restriction algebra homomorphisms are monotone.
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“Vagner-Preston Theorem” for restriction

algebras If S is a restriction algebra then

S
λ−−−→ Pfn(S,S), a 7→ λa

λa x =

{
ax if ax = x
⊥ otherwise

is an injective restriction algebra homomorphism

mapping I(S) to injective partial functions.

This recaptures the classical theorem for in-

verse semigroups.

When S is a monoid with x = 1, get usual

Cayley theorem.

Every meet semilattice can be embedded in a

Boolean algebra.
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Corollary Every small restriction category C

is isomorphic to a restriction subcategory of

Pfn.

Proof idea Cockett and Lack obtained this

also. But the same constructions as “Vagner-

Preston” give a more direct proof. Discover

the details by regarding such a category as a

restriction algebra as per earlier example.

Form itempotent completion Ĉ of C so objects

are restriction itempotents and maps α : e→ f

satisfy fαe = α. Then

Ĉ
ψ−→ Pfn, ψe = {t : et = t}

ψ(e
α−→ f)t =

{
αt if αft = t
⊥ otherwise
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But, to paraphrase Marshall Stone,

One must topologize!
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Let T be a topology of open sets on X.

For A ⊂ X write the closure of A as

A no, wait, that’s restriction.

A? no, wait, that’s the free monoid

Â

A function f is continuous
⇔ ∀A f(Â ) ⊂ (fA)̂

⇔ ∀A ∀B Â = Bˆ ⇒ (fA)̂ = (fB)̂
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A pospace is a topological space in which any

intersection of open sets is open.

Let PoSp be the category of pospaces and

continuous maps.

Proposition (Lorrain, 1969) The category PreO

of sets with reflexive and transitive relation

and monotone maps is isomorphic over Set

to PoSp.

x ≤ y ⇔ y ∈ {x}̂ (specialization order)
open set = lower set

closed set = upper set
Â = ↑ A
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A right topological semigroup is (X, ·,T ) with

(X, ·) a semigroup and (X, T ) a topological

space such that

∀x ∈ X ρxy = yx is continuous

• Use rts for right topological semigroup

• Use rtm for right topological monoid
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The forgetful functor from monoids to semi-

groups has a left adjoint S 7→ S1.

Here S1 = S + {1} with x1 = x = 1x.

The same is true for rtm and rts (let 1 be an

isolated point).
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Proposition Let X be rts. Let C be the family

of closed subsets of X. Then

S = X1 × C

is a restriction algebra if

(x,C)(y,D) = (xy, (Cy)̂ ∪D)

(x,C) = (1, C)

Call this the full restriction algebra of X.

Observation Every semigroup X is a subsemi-

group of a restriction algebra S whose restric-

tion itempotents form a Boolean algebra.

For let S be the full restriction algebra of X

where X has the discrete topology. Use the

embedding x 7→ (x,X)
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Let X be any semigroup. Green’s left order

is

x ≤L y ⇔ x ∈ X1y

Being reflexive and transitive, this induces the

pospace

Â = ↑ A = {y : ∃x ∈ S1 xy ∈ A}

and S is rts because x = zy ⇒ xa = z(ya),

i.e., right translations are monotone.
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Predecessors in Semigroup theory:

• Scheiblich, 1973

• Munn, 1974

• Schein, 1975

Theorem (Cockett and Lack) The free re-

striction algebra generated by a semigroup X

is the sub-restriction algebra of the full one

X1 × C, C = closed sets of the L-topology, of

all

(x, {a1, . . . , an}̂ ), x 6= 1 ⇒ x ∈ {a1, . . . , an}̂

The inclusion of the generators is

x 7→ (x, {x}̂ )
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The literature on topological semigroups is pri-

marily about the Hausdorff case, often com-

pact Hausdorff.

Here’s a rich supply of compact Hausdorff topo-

logical restriction algebras.

Start with a compact Hausdorff monoid M .

Let C be the “hyperspace” of closed subsets

of M with the “finite topology” (see Vietoris

1923, and Michael, 1951). Then C is compact

Hausdorff.

The full restriction algebra M × C is then a

compact Hausdorff restriction algebra.
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Ai yai yai, another new structure

A band with restriction is a semigroup xy

with unary x 7→ x satisfying (R.1), (R.2), (R.3)

as well as axiom (α) on the board.

Extremal example A semilattice xy = x ∧ y
with x = x. This is the only example if a unit

exists –consider axiom (α) with x = 1.

Extremal example A left zero semigroup xy =

x with x = e any fixed e

Observation A restriction algebra satisfies (α)

if and only if x = x, in which case it is a semi-

lattice.

42



We are interested in bands with restriction be-

cause there is a forgetful functor over Set from

restriction algebras to bands with restriction.

Given a restriction algebra S with multiplica-

tion xy and restriction x,

x ∗ y = xy

with the same restriction gives a band with

restriction.

The example of partial functions X → X shows

that a great deal of information is lost.
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A band is a semigroup in which each element

is itempotent.

Three extremal cases are

• Left zero semigroup: xy = x

• Right zero semigroup: xy = y

• Rectangular band: axa = a

The varieties of left zero and right zero semi-

groups are isomorphic to Set, the algebras of

the identity monad. Rectangular bands are the

algebras of id× id.
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Let V0 be the class of all semigroups for which

x exists yielding a band with restriction. Let V
be the variety generated by V0

Theorem V is the variety of all left normal

bands:

x2 = x
axy = ayx
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Proof Idea C. F. Fennemore, 1971 classified

all varieties of bands. Consider the band with

restriction {0, α, a} with

0x = x = 0
aaα = aa = a
αα = αa = α

and with restriction

0 = 0, α = a = a
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Example The free left normal band generated

by {a, b} has multiplication table

a b ab ba

a a ab ab ab
b ba b ba ba
ab ab ab ab ab
ba ba ba ba ba

No x 7→ x exists making this a band with re-

striction.
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Let W be any class of semigroups. A semi-

group S is a semilattice of type W if there

exists a semilattice L and a surjective semi-

group homomorphism ψ : S → L such that

each ψ−1(e) (obviously a subsemigroup of S

is in W.

Thus S is partitioned into subsemigroups Se =

ψ−1(e) with SeSf ⊂ Sef .

Example every semilattice is a semilattice of

groups.
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Theorem (Clifford 1941, McLean 1954) Every

band is a semilattice of rectangular bands.
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The following strengthening is due to Clifford:

Let L be a meet semilattice and let

F : (L,≤)op→ Semigroups

be a functor. Let

S =
∐

e∈L
Fe

Then S is a semigroup with multiplication

x ∈ Fe, y ∈ Ff 7→ xy = Fe,ef(x)Ff,ef(y)

a product in the semigroup F(ef).

Such S is a strong semilattice of the semi-

groups Fe.
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A band is normal if axya = ayxa. Note that

every rectangular band is normal.

Left normal (recall axy = ayx) is stronger than

normal.

Theorem (Yamada and Kimura 1958) The

normal bands are precisely the strong semilat-

tices of rectangular bands.

Corollary The left normal bands are precisely

the strong semilattices of left zero semigroups.
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We can now characterize V0, the class of semi-

groups of bands with restriction.

A semilattice of semigroups ψ : S → L is split

if ψ is split epic in the category of semigroups.

Theorem A semigroup has the structure of a

band with restriction if and only if it is a split

strong semilattice of left zero semigroups.
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A band with restriction is a partially ordered

semigroup via

x ≤ y if yx = x

Notice that the order on a restriction algebra is

exactly this order on its underlying band with

restriction.

Homomorphisms of bands with restriction are

monotone.
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Theorem The category of restriction algebras

and monotone maps is cartesian closed. The

category of bands with restriction and monotone

maps is cartesian closed.

Theorem (Linton 1966) The variety of bands

with restriction is a symmetric monoidal closed

category.
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For any partially ordered semigroup S, the neg-

ative cone N(S) is defined by

N(S) = {x ∈ S : ∀y xy ≤ y, yx ≤ y}

For any semigroup S, let its center be denoted

Z(S). If S is a restriction algebra or a band

with restriction, let the set of restriction item-

potents of form x be denoted R(S).

Proposition For bands with restriction,

N(S) = Z(S) ⊂ R(S)

For restriction algebras,

N(S) = R(S)
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You did it!

You got through

56 slides!

Quiz tonight at 3 AM
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