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Abstract 
 
The paper discusses implementation details for the 
construction and animation of a human avatar taking 
advantage of the built-in features of Java3D. 
 
 
1. Introduction 
 

There is an ongoing interest for realistic 
anthropomorphic models, called avatars, for a multitude 
of virtual reality applications such as: multimedia 
communications, computer graphics in entertainment, 
experiments in natural language interactions, 
interpersonal collaboration, and interfaces for interactive 
virtual environments, [1] and [2].  

Due to its powerful graphics construction tools, 
VRML proved to be a convenient language for the model 
development of anthropomorphic avatars in virtual reality 
environments, [3] and [4]. However, it appears to be less 
powerful when it comes to avatar animation. 

More recently, Java3D, sitting between OpenGL and 
VRML in the computer graphics capability spectrum, 
appears to offer more advanced methods for the creation 
and animation of three-dimensional geometric shapes. It 
has more built-in graphics manipulation and user 
interface methods than OpenGL, but less graphics 
construction methods than VRML. Although, unlike 
VRML, Java3D can animate the virtual objects it creates.  

This paper discusses implementation details for the 
construction and animation of a human avatar taking 
advantage of the built-in features of Java3D, [5] and [6]. 
 
2. Avatar design 
 

The design of the humanoid avatar in Java3D is based 
on the H-Anim standard [7]. Of particular interest in the 
H-Anim definition are the relative locations of the joints 
and body segments shown in Figure 1 and the hierarchical 
organizations of the body parts shown in Figure 2. Some 
features from the H-Anim representation such as the 
eyebrow and eye features and the clavicle and scapula 
joints, were deemed unnecessary for the scope of this 
project and dropped from the Java3D avatar model.  

The built-in Java3D Triangulator method was used to 
make most of the avatar’s anatomy. It works by taking an 
array of vertices describing an outer polygonal contour 
and an optional inner contour and constructing the 
polygon out of triangles.  

 
Figure 1. H-anim structure from [7] 

The Triangulator is powerful, but idiosyncratic in that 
when given vertices describing a surface curving in three-
dimensions, it will draw triangles between vertices that 
were not meant to be joined simply because they are 
closer together than the vertices that were meant to be 
joined, [5] and [6]. 
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Figure 2. Java3D avatar structure 

 
2.1. The face and hands 
 

The face, Figure 3, and the hands, Figure 4, were 
designed in greatest detail – every single triangle was 
planned. Every vertex of one side of the face and one 
hand, excluding fingers, was determined using Corel 
Draw 11. Taking advantage of the symmetry of the 
human body, values of the vertices of the other side of the 
face and the other hand were defined as the reflections 
about the y-axis of those original vertices. 

Once defined, the vertices, or sometimes whole 
polygonal contours were passed to the Triangulator 
allowing it to automatically generate the triangles making 
up the polygon. Other times, groups of three were passed 
so only one specific triangle was constructed. It must be 
noted that to make the y-axis reflections of the original 
side of the face and original hand, the reflection vertices 
had to be placed in their array in the opposite order of 
their original counterparts’. This is because Java3D 
makes a surface visible only if its vertices were defined 
counter-clockwise in relation to the viewer. It’s the test 
used by Java3D to determine whether a surface is 
"visible" or not, [6]. 

 

 
Figure 3. The plan for the face from the profile 
and front 
 

 

 
Figure 4. The original plan for the left hand 
viewed from the front, side and back 

 
2.2. The fingers and arms 
 

The fingers and arms were each constructed not by 
triangles as originally planned but by attaching the end of 
a Cylinder primitive that would be the segment to a 
Sphere primitive that would be the joint. Using this 
method, only the radius and the length of the segments 
had to be determined. However, since Cylinder primitives 
are constructed by Java3D with their centers at origin and 
their height along the y-axis, they had to be repositioned 
in each case so that one end was attached to the Sphere-
joint and that they rested at the proper angle. It is 
important to note that the rotation must be applied before 
the translation. This is because rotation is always around 
origin and moving the object away from the center of 
rotation will yield unexpected results, [5] and [6]. 

For each segment, a new TransformGroup was created 
for the Cylinder and made the child of the 
TransformGroup of the Sphere. The Cylinder’s 
TransformGroup then had its coordinate system rotated 
so that its y-axis now stuck out from the Sphere at the 
desired angle. A translation down the y-axis by half its 
own length was then applied to get the Cylinder to attach 



to the Sphere at one end. The next joint-Sphere’s 
TransformGroup was made the child of that Cylinder’s 
TransformGroup and translated down along the y-axis 
half the length of the Cylinder as shown in Figure 5. 

 
2.3. The torso and abdomen 
 

The torso had to be able to bend, so it was broken 
down into eight segments. The segments were designed to 
overlap slightly so that when they were rotated to produce 
a torso flex there would be no gaps.  
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The torso was constructed segment by segment from 
the waist up to the top of the neck. Each segment was a 
child of a TransformGroup that was itself the child of 
another TransformGroup that was the parent of the 
segment below. The abdomen was constructed in a 
similar way, but, as it would not have to bend, all its 
segments were the children of the same TransformGroup 
and no overlap was required. 

In designing the torso and abdomen segments, it 
became clear that they could be constructed from 
flattened octagonal tubes. As the cross-sections of these 
tubes would be symmetric about the z-axis and all 
centered at their respective origins, their vertices would 
all have a repeating elements and a repeating pattern. This 
introduced one level of abstraction: a few variables were 
used in all the vertices of one segment and in half of the 
vertices of the next. Thus the code was made more 
readable and modification of the tubes more efficient as 
they could be reshaped by only changing one variable 
instead of a number of vertices, as shown in Figure 7. 

Figure 5. The hierarchy of the geometric, control 
and managing nodes of the arm 

 
Once more the symmetry of the body was taken 

advantage of as only the position of one shoulder joint 
and one set of knuckle joints had to be determined. The 
position of their counterparts on the other side was simply 
the reflection along the y-axis of the original position 
points. Similarly with the angles of the Cylinders: the 
angles of their other side counterparts were simply the 
negative of the original angles as shown in Figure 6. 
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Figure 7. View of a torso segment from top 
shows the bottom (grey) and top (black) 
contours and the parameters for the x- and z- 
vertices' coordinates (the y-values are the same 
for all the vertices of one contour) 

The createTube() method which uses the Triangulator 
was developed for tube construction. It takes the top and 
bottom contours and constructs each rectangular facet 
individually so as to avoid the Triangulator’s incorrect 
vertex joining tendency. The createTube() returns an 
array of facets that make up the tube as shown in Figure 
8. 

Figure 6. Diagram shows the reflection of the 
arm about the y-axis and the required negation 
of joint position (a and b) and segment rotation 
(c and d) 

 



 The foot vertices did have to be reflected about the y-
axis due to their asymmetric formation, so a new array 
was required for the foot on the other side. Once vertices 
have been reflected they have to have an order opposite to 
that of their original counterparts within their array. 
Fortunately, because of the way the tube was constructed, 
this only meant that the top and bottom contours of the 
tube had to be swapped within their array. 
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2.5. The back of the head Figure 8.  Final product of the createTube() 

method  
The back of the head was the last structure to be 

constructed. The tube edges were arranged in concentric 
octagonal ellipses and where attached to the sides of the 
face by a 16-sided tube. The back-most (smallest) 16-
edge contour was then converted into an octagonal 
contour by taking only its even vertices to make an 
octagonal tube with the second smallest contour, Figure 
10. The rest of the head was then made of octagonal tubes 
with the back-most tube ending with an 8-vertex contour 
that was simply the same vertex repeated eight times 
(dot). All the tube segments of the head were made the 
children of the same TransformGroup since there was no 
need for articulation within the cranium. Once more 
symmetry was taken advantage of, and abstraction was 
applied in the form of variables that were used repeatedly 
in contour definitions. 

 
2.4. The legs and feet 
 

The legs were initially constructed using Cylinder 
primitives like the arms and fingers, but this did not yield 
the desired tapered look, so the createTube() method was 
used instead. The tubes’ ends where designed to fit 
around the Sphere-joints which became successively 
smaller from hip to knee to ankle. Thus the tampered 
form of the legs was achieved. The legs were then 
finished off with feet made from tubes that taper at the 
ankle and broadened at the soles. 

Unlike Cylinders, the tubes required the vertices of 
their upper and lower contours to be determined. 
However, since these contours were fitted around 
Spheres, they formed a perfect circle. Therefore only one 
quarter of the vertices had to be determined by 
measurement, and the rest were then determined through 
symmetry about the x- and z-axes. The abstraction 
technique developed in the torso building stage was used 
once more with even greater efficiency.  
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For one leg, the measured values needed were the 
lengths of the upper and lower leg. The feet, however, 
weren’t symmetric along any axis, Figure 9, so the only 
value that could be parameterized was the height of the 
feet. 

z

x

 Figure 10. Front view of the contours for the 
back of the head. The outermost black contour 
attaches to the sides of the face and forms a 
tube with the second outermost gray contour 

Figure 9. Top view of right foot. The top contour 
(black) is where the foot attaches to the ankle 
joint and the bottom (gray) contour is the sole 

 
Once the point defining the position in space of the 

hip joint was defined, the hip joint position of the other 
side was determined using the reflection about the y-axis 
method. Fortunately, unlike with the face and hands, the 
vertices of the tubes did not have to be put in new arrays 
in reverse order to be displayed on the other side.  

The only problem that arose during this final 
construction phase was that the face that had been 
constructed first turned out to be proportionally too large 
for the rest of the body. This problem was overcome by 
applying a scaling factor along with a translation to the 
face’s TransformGroup. 

 



3. Animation design 
 

Java3D uses a class of objects called Interpolator for 
rotation, translation and/or scaling motions so called 
because they interpolating linearly from one given point 
to another. Once defined, the Interpolator object is 
attached as a child-node to the TransformGroup it will 
apply its animation to. The key concept of animation and 
the reason the avatar was constructed with a definite 
hierarchical structure is that the animation is applied to 
not only to its parent TransformGroup but also to all of 
this parent’s children and its children’s children. For the 
avatar, only translation and rotation Interpolations are of 
interest, [5]. 

The Interpolator type defines whether it will cause 
only one kind of motion or a combination. It’ll take the 
end points for each type of motion: 

· rotation end points – minimum and maximum 
angles of rotation; 
· translation end points – minimum and maximum 
points in space of translation. 
The Interpolator can be defined as being increasing 

(goes from minimum to maximum), decreasing (goes 
from maximum to minimum) or both (goes from 
minimum to maximum and back to minimum), [5]. 

Each Interpolator also takes an Alpha object, which 
defines the following parameters for its Interpolator: 

· trigger time – the time allowed to elapse from the 
start of the Java application run to the time the 
Interpolator becomes active 
· delay – the wait-time between Interpolator 
activation and the actual start of the animation 
· increasing ramp – the speed at which the 
Interpolator starts and stops its linear interpolation 
from minimum to maximum 
· increasing – the rate of the linear interpolation 
from minimum to maximum 
· at one – the pause duration at the maximum 
· decreasing ramp – the speed at which the 
Interpolator starts and ends its linear interpolation 
from maximum to minimum 
· decreasing – the rate of the linear interpolation 
from maximum to minimum 
· at zero – the pause length at the minimum 
· loop – the number of times to repeat the motion. 
The actual values of the Alpha object parameters can 

be defined by the programmer and by extension the user 
if the input mechanism is coded within the application, 
[5]. 

Ultimately the avatar requires Interpolators only for 
rotation and for translation: RotationInterpolator and, 
respectively, PositionInterpolator. These will need to be 

attached to the TransformGroups containing explicit 
joints such as the shoulders and the TransformGroups 
acting as implicit joints such as those of the torso 
segments. Only rotations will be required for the parts of 
the avatar while rotations and translations will be needed 
to move the whole avatar through the scene, [6]. 
 
3.1. Walking Animation 
 

So far only stationary walking (i.e. walking on the 
spot, without forward or backward motion) animation has 
actually been implemented. In this animation the legs and 
arms swing at the same rate while the knees and the 
ankles flex.  

A createRotation() method was written to achieve the 
walking motion.  The method takes these parameters: 

· parent TransformGroup of the TransformGroup to 
be animated 
· minimum angle of rotation (in degrees) 
· maximum angle of rotation (in degrees) 
· trigger time 
· duration of one increase-decrease 
· pause duration at the end points 
This createRotation() sets an Alpha object with 

internal default values and the given values. It then passes 
the Alpha object to the RotationInterpolator that is also 
given the minimum and maximum angles. The 
RotationInterpolator is made the child of a 
TransformGroup and that TransformGroup is made the 
child of the given TransformGroup.  

The values of the createRotation() parameters for each 
part of the right leg is shown in Figure 11. Note that the 
trigger, duration and pause values are the same for all 
animation behaviors, and only the minimum and 
maximum angles are different. To achieve the reflection 
of this animation on the left leg, the same behaviors were 
applied with the minimum and maximum angles swapped. 
For the arms’ swing, the behavior of the left hip joint was 
applied to the right shoulder joint and vice versa. 
 
4. Conclusion 
 

The developed Java3D techniques like the reflection 
about the axes, reversal of vertex arrays and the 
Triangulator method to make tubes could be further 
refined. The following are the possible future extensions: 

· The use of createTube() to construct the face, 
hands, finger and arms. This would be more 
efficient and make for cleaner code. It would also 
allow for a more natural looking arms and fingers. 
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Figure 11. Animation for the upper leg, lower leg and foot 

 
· The development of more Interpolator-based 
animation methods to achieve a broader range of 
motion. This would require applying an Interpolator 
to every joint and the definition of more animation 
variables to increase abstraction. 
· The development of a user-interface to allow for 
user-control of avatar posing and animation. The 
ultimate goal is to have an interface that would 
actually allow the user to click and drag a piece of 
the avatar to pose it instead of just inputting 
numerical values into a field box. 
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