

Development of a Humanoid Avatar in Java3D

Mihaela D. Petriu

University of Ottawa,
Ottawa, ON, Canada

mpetriu@discover.uottawa.ca

Nicolas D. Georganas
University of Ottawa,
Ottawa, ON, Canada

georganas@discover.uottawa.ca

Thom E. Whalen
Research Centre Canada,

Ottawa, ON, Canada
Thom.Whalen@crc.ca

Abstract

The paper discusses implementation details for the
construction and animation of a human avatar taking
advantage of the built-in features of Java3D.

1. Introduction

There is an ongoing interest for realistic
anthropomorphic models, called avatars, for a multitude
of virtual reality applications such as: multimedia
communications, computer graphics in entertainment,
experiments in natural language interactions,
interpersonal collaboration, and interfaces for interactive
virtual environments, [1] and [2].

Due to its powerful graphics construction tools,
VRML proved to be a convenient language for the model
development of anthropomorphic avatars in virtual reality
environments, [3] and [4]. However, it appears to be less
powerful when it comes to avatar animation.

More recently, Java3D, sitting between OpenGL and
VRML in the computer graphics capability spectrum,
appears to offer more advanced methods for the creation
and animation of three-dimensional geometric shapes. It
has more built-in graphics manipulation and user
interface methods than OpenGL, but less graphics
construction methods than VRML. Although, unlike
VRML, Java3D can animate the virtual objects it creates.

This paper discusses implementation details for the
construction and animation of a human avatar taking
advantage of the built-in features of Java3D, [5] and [6].

2. Avatar design

The design of the humanoid avatar in Java3D is based
on the H-Anim standard [7]. Of particular interest in the
H-Anim definition are the relative locations of the joints
and body segments shown in Figure 1 and the hierarchical
organizations of the body parts shown in Figure 2. Some
features from the H-Anim representation such as the
eyebrow and eye features and the clavicle and scapula
joints, were deemed unnecessary for the scope of this
project and dropped from the Java3D avatar model.

The built-in Java3D Triangulator method was used to
make most of the avatar’s anatomy. It works by taking an
array of vertices describing an outer polygonal contour
and an optional inner contour and constructing the
polygon out of triangles.

Figure 1. H-anim structure from [7]

The Triangulator is powerful, but idiosyncratic in that
when given vertices describing a surface curving in three-
dimensions, it will draw triangles between vertices that
were not meant to be joined simply because they are
closer together than the vertices that were meant to be
joined, [5] and [6].

Head

Pelvis

Left_leg_0

Left_leg_1

Left_foot

Spinal_0

Spinal_1

Spinal_2

Spinal_3

Spinal_4

Spinal_5

Spinal_6

Spinal_7

Left_arm_0

Left_arm_1

Left_hand

Left_thumb_0

Left_thumb_1

Left_index_0

Left_index_1

Left_index_2

Left_middle_0

Left_middle_1

Left_middle_2

Left_ring_0

Left_ring_1

Left_ring_2

Left_pinky_0

Left_pinky_1

Left_pinky_2

Figure 2. Java3D avatar structure

2.1. The face and hands

The face, Figure 3, and the hands, Figure 4, were
designed in greatest detail – every single triangle was
planned. Every vertex of one side of the face and one
hand, excluding fingers, was determined using Corel
Draw 11. Taking advantage of the symmetry of the
human body, values of the vertices of the other side of the
face and the other hand were defined as the reflections
about the y-axis of those original vertices.

Once defined, the vertices, or sometimes whole
polygonal contours were passed to the Triangulator
allowing it to automatically generate the triangles making
up the polygon. Other times, groups of three were passed
so only one specific triangle was constructed. It must be
noted that to make the y-axis reflections of the original
side of the face and original hand, the reflection vertices
had to be placed in their array in the opposite order of
their original counterparts’. This is because Java3D
makes a surface visible only if its vertices were defined
counter-clockwise in relation to the viewer. It’s the test
used by Java3D to determine whether a surface is
"visible" or not, [6].

Figure 3. The plan for the face from the profile
and front

Figure 4. The original plan for the left hand
viewed from the front, side and back

2.2. The fingers and arms

The fingers and arms were each constructed not by
triangles as originally planned but by attaching the end of
a Cylinder primitive that would be the segment to a
Sphere primitive that would be the joint. Using this
method, only the radius and the length of the segments
had to be determined. However, since Cylinder primitives
are constructed by Java3D with their centers at origin and
their height along the y-axis, they had to be repositioned
in each case so that one end was attached to the Sphere-
joint and that they rested at the proper angle. It is
important to note that the rotation must be applied before
the translation. This is because rotation is always around
origin and moving the object away from the center of
rotation will yield unexpected results, [5] and [6].

For each segment, a new TransformGroup was created
for the Cylinder and made the child of the
TransformGroup of the Sphere. The Cylinder’s
TransformGroup then had its coordinate system rotated
so that its y-axis now stuck out from the Sphere at the
desired angle. A translation down the y-axis by half its
own length was then applied to get the Cylinder to attach

to the Sphere at one end. The next joint-Sphere’s
TransformGroup was made the child of that Cylinder’s
TransformGroup and translated down along the y-axis
half the length of the Cylinder as shown in Figure 5.

2.3. The torso and abdomen

The torso had to be able to bend, so it was broken
down into eight segments. The segments were designed to
overlap slightly so that when they were rotated to produce
a torso flex there would be no gaps.

TransformGroup

Arm0

Translation TransformGroup

Arm01

TransformGroup

Arm1

Translation

Rotation

TransformGroup

Arm11

Transform3D

Transform3D

Translation Transform3D

Translation

Rotation Transform3D

The torso was constructed segment by segment from
the waist up to the top of the neck. Each segment was a
child of a TransformGroup that was itself the child of
another TransformGroup that was the parent of the
segment below. The abdomen was constructed in a
similar way, but, as it would not have to bend, all its
segments were the children of the same TransformGroup
and no overlap was required.

In designing the torso and abdomen segments, it
became clear that they could be constructed from
flattened octagonal tubes. As the cross-sections of these
tubes would be symmetric about the z-axis and all
centered at their respective origins, their vertices would
all have a repeating elements and a repeating pattern. This
introduced one level of abstraction: a few variables were
used in all the vertices of one segment and in half of the
vertices of the next. Thus the code was made more
readable and modification of the tubes more efficient as
they could be reshaped by only changing one variable
instead of a number of vertices, as shown in Figure 7.

Figure 5. The hierarchy of the geometric, control
and managing nodes of the arm

Once more the symmetry of the body was taken

advantage of as only the position of one shoulder joint
and one set of knuckle joints had to be determined. The
position of their counterparts on the other side was simply
the reflection along the y-axis of the original position
points. Similarly with the angles of the Cylinders: the
angles of their other side counterparts were simply the
negative of the original angles as shown in Figure 6.

01

2

3

4 5

6

7

89

10

11

15

12 13

14

AZ
AZ

BZ
BZ

CZ
CZ

DZ
DZ

AX BX

CXDX

-AX-BX

-CX -DX

AX BX

CXDX

-AX-BX

-CX -DX

x

y-axis
a-a

-b b

d-d

c-c

Figure 7. View of a torso segment from top
shows the bottom (grey) and top (black)
contours and the parameters for the x- and z-
vertices' coordinates (the y-values are the same
for all the vertices of one contour)

The createTube() method which uses the Triangulator
was developed for tube construction. It takes the top and
bottom contours and constructs each rectangular facet
individually so as to avoid the Triangulator’s incorrect
vertex joining tendency. The createTube() returns an
array of facets that make up the tube as shown in Figure
8.

Figure 6. Diagram shows the reflection of the
arm about the y-axis and the required negation
of joint position (a and b) and segment rotation
(c and d)

 The foot vertices did have to be reflected about the y-
axis due to their asymmetric formation, so a new array
was required for the foot on the other side. Once vertices
have been reflected they have to have an order opposite to
that of their original counterparts within their array.
Fortunately, because of the way the tube was constructed,
this only meant that the top and bottom contours of the
tube had to be swapped within their array.

01

2
3 4 5

6

7

89
10

11

15

12 13
14

2.5. The back of the head Figure 8. Final product of the createTube()

method
The back of the head was the last structure to be

constructed. The tube edges were arranged in concentric
octagonal ellipses and where attached to the sides of the
face by a 16-sided tube. The back-most (smallest) 16-
edge contour was then converted into an octagonal
contour by taking only its even vertices to make an
octagonal tube with the second smallest contour, Figure
10. The rest of the head was then made of octagonal tubes
with the back-most tube ending with an 8-vertex contour
that was simply the same vertex repeated eight times
(dot). All the tube segments of the head were made the
children of the same TransformGroup since there was no
need for articulation within the cranium. Once more
symmetry was taken advantage of, and abstraction was
applied in the form of variables that were used repeatedly
in contour definitions.

2.4. The legs and feet

The legs were initially constructed using Cylinder
primitives like the arms and fingers, but this did not yield
the desired tapered look, so the createTube() method was
used instead. The tubes’ ends where designed to fit
around the Sphere-joints which became successively
smaller from hip to knee to ankle. Thus the tampered
form of the legs was achieved. The legs were then
finished off with feet made from tubes that taper at the
ankle and broadened at the soles.

Unlike Cylinders, the tubes required the vertices of
their upper and lower contours to be determined.
However, since these contours were fitted around
Spheres, they formed a perfect circle. Therefore only one
quarter of the vertices had to be determined by
measurement, and the rest were then determined through
symmetry about the x- and z-axes. The abstraction
technique developed in the torso building stage was used
once more with even greater efficiency.

0
01

1

2

2

3
3

4

4

5

5

6
6

7

7
8

8
9

9 10
10 11

11 12

12

13
13
14

14

15
15

For one leg, the measured values needed were the
lengths of the upper and lower leg. The feet, however,
weren’t symmetric along any axis, Figure 9, so the only
value that could be parameterized was the height of the
feet.

z

x

 Figure 10. Front view of the contours for the
back of the head. The outermost black contour
attaches to the sides of the face and forms a
tube with the second outermost gray contour

Figure 9. Top view of right foot. The top contour
(black) is where the foot attaches to the ankle
joint and the bottom (gray) contour is the sole

Once the point defining the position in space of the

hip joint was defined, the hip joint position of the other
side was determined using the reflection about the y-axis
method. Fortunately, unlike with the face and hands, the
vertices of the tubes did not have to be put in new arrays
in reverse order to be displayed on the other side.

The only problem that arose during this final
construction phase was that the face that had been
constructed first turned out to be proportionally too large
for the rest of the body. This problem was overcome by
applying a scaling factor along with a translation to the
face’s TransformGroup.

3. Animation design

Java3D uses a class of objects called Interpolator for
rotation, translation and/or scaling motions so called
because they interpolating linearly from one given point
to another. Once defined, the Interpolator object is
attached as a child-node to the TransformGroup it will
apply its animation to. The key concept of animation and
the reason the avatar was constructed with a definite
hierarchical structure is that the animation is applied to
not only to its parent TransformGroup but also to all of
this parent’s children and its children’s children. For the
avatar, only translation and rotation Interpolations are of
interest, [5].

The Interpolator type defines whether it will cause
only one kind of motion or a combination. It’ll take the
end points for each type of motion:

· rotation end points – minimum and maximum
angles of rotation;
· translation end points – minimum and maximum
points in space of translation.
The Interpolator can be defined as being increasing

(goes from minimum to maximum), decreasing (goes
from maximum to minimum) or both (goes from
minimum to maximum and back to minimum), [5].

Each Interpolator also takes an Alpha object, which
defines the following parameters for its Interpolator:

· trigger time – the time allowed to elapse from the
start of the Java application run to the time the
Interpolator becomes active
· delay – the wait-time between Interpolator
activation and the actual start of the animation
· increasing ramp – the speed at which the
Interpolator starts and stops its linear interpolation
from minimum to maximum
· increasing – the rate of the linear interpolation
from minimum to maximum
· at one – the pause duration at the maximum
· decreasing ramp – the speed at which the
Interpolator starts and ends its linear interpolation
from maximum to minimum
· decreasing – the rate of the linear interpolation
from maximum to minimum
· at zero – the pause length at the minimum
· loop – the number of times to repeat the motion.
The actual values of the Alpha object parameters can

be defined by the programmer and by extension the user
if the input mechanism is coded within the application,
[5].

Ultimately the avatar requires Interpolators only for
rotation and for translation: RotationInterpolator and,
respectively, PositionInterpolator. These will need to be

attached to the TransformGroups containing explicit
joints such as the shoulders and the TransformGroups
acting as implicit joints such as those of the torso
segments. Only rotations will be required for the parts of
the avatar while rotations and translations will be needed
to move the whole avatar through the scene, [6].

3.1. Walking Animation

So far only stationary walking (i.e. walking on the
spot, without forward or backward motion) animation has
actually been implemented. In this animation the legs and
arms swing at the same rate while the knees and the
ankles flex.

A createRotation() method was written to achieve the
walking motion. The method takes these parameters:

· parent TransformGroup of the TransformGroup to
be animated
· minimum angle of rotation (in degrees)
· maximum angle of rotation (in degrees)
· trigger time
· duration of one increase-decrease
· pause duration at the end points
This createRotation() sets an Alpha object with

internal default values and the given values. It then passes
the Alpha object to the RotationInterpolator that is also
given the minimum and maximum angles. The
RotationInterpolator is made the child of a
TransformGroup and that TransformGroup is made the
child of the given TransformGroup.

The values of the createRotation() parameters for each
part of the right leg is shown in Figure 11. Note that the
trigger, duration and pause values are the same for all
animation behaviors, and only the minimum and
maximum angles are different. To achieve the reflection
of this animation on the left leg, the same behaviors were
applied with the minimum and maximum angles swapped.
For the arms’ swing, the behavior of the left hip joint was
applied to the right shoulder joint and vice versa.

4. Conclusion

The developed Java3D techniques like the reflection
about the axes, reversal of vertex arrays and the
Triangulator method to make tubes could be further
refined. The following are the possible future extensions:

· The use of createTube() to construct the face,
hands, finger and arms. This would be more
efficient and make for cleaner code. It would also
allow for a more natural looking arms and fingers.

pause
duration/4

trigger

max angle = 25

pause pause
duration/4 duration/4 duration/4

min angle = -25
max angle = -25
max angle = 50

min angle = 0
min angle = -25

Figure 11. Animation for the upper leg, lower leg and foot

· The development of more Interpolator-based
animation methods to achieve a broader range of
motion. This would require applying an Interpolator
to every joint and the definition of more animation
variables to increase abstraction.
· The development of a user-interface to allow for
user-control of avatar posing and animation. The
ultimate goal is to have an interface that would
actually allow the user to click and drag a piece of
the avatar to pose it instead of just inputting
numerical values into a field box.

5. Acknowledgements

This work was funded in part by the Natural Sciences
and Engineering Research Council of Canada, the
National Capital Institute of Telecommunications, and the
Communications Research Centre Canada.

The first author thanks Dr. Xiao Li Yang for her
encouragement and valuable discussions during the
implementation of this project.

6. References

 [1] N.M. Thalmann and D. Thalmann, Synthetic Actors in

Computer Generated 3D Films, Springer-Verlag, Berlin,
Germany, 1990.

[2] H.J.W. Spoelder, E.M. Petriu, T. Whalen, D.C. Petriu, M.
Cordea, “Knowledge-Based Animation of Articulated
Anthropomorphic Models for Virtual Reality
Applications,” Proc. IMTC/99, IEEE Instrum. Meas.
Technol. Conf., pp. 690-695, Venice, Italy, May 1999.

[3] D.C. Petriu, X.L. Yang, and T.E. Whalen, "Behavior-Based
Script Language for Anthropomorphic Avatar Animation in
Virtual Environments," VIMS'02, IEEE Intl. Symposium on
Virtual and Intelligent Measurement Systems, Anchorage,
AK, USA, May 2002.

[4] X.L. Yang, D.C. Petriu, T.E. Whalen, and E.M. Petriu,
“Script Language for Avatar Animation in 3D Virtual
Environments,” Proc. VECIMS'03, IEEE Intl. Symposium
on Virtual Environments, Human-Computer Interfaces and
Measurement Systems, pp. 101-106, Lugano, Switzerland,
July 2003.

[5] S. Daniel, Java 3D Programming, Manning Publications
Co., 2002.

[6] Sun Microsystems, Java 3D API Documentation,
http://java.sun.com/products/java-
media/3D/forDevelopers/J3D_1_3_API/j3dapi/index.html
(last visited April 2003).

[7] WEB3D Consortium, Humanoid Animation Working
Group of the WEB3D Consortium, http://www.h-anim.org/
(last visited April 2003).

