
Business Process Decomposition based on Service Relevance Mining

Zicheng Huang, Jinpeng Huai, Xudong Liu, and Jiangjun Zhu
School of Computer Science & Engineering, Beihang University, Beijing, China

{huangzc,huaijp,liuxd,zhujj}@act.buaa.edu.cn

Abstract

Reuse is an important mechanism for improving the

efficiency of software development. For Internet-scale
software produced through service composition, the
simple reuse granularity at service is often inefficient
due to the large number of available services. This
paper proposes a novel architecture which enables
efficient reuse of process fragments. In the proposed
architecture, services are organized into a network,
called Service Composition Network (SCN), based on
their co-occurence in the existing composite services.
The reusable process fragments are extracted by
decomposing existing composite services according to
both the structural constraint of the process and the
relevance of services in the same process fragment.
The design principles and a prototype implementation
of this architecture are presented, the performance of
the proposed approach is analyzed, and an application
is described to demonstrate the effectiveness of it.

1. Introduction

In the open network environment, software
requirements are often diverse and constantly evolving,
thus are difficult to meet with traditional software
development methods. These requirements can be
better handled by service-oriented technologies where
users can quickly develop software by composing
available web services [1].

Recently, process-aware service composition
methods, which use process definitions to specify
possible interactions and operation invocations
between web services, are becoming increasingly
popular [2,3]. In these methods, business process
models are first created to meet business requirements
and facilitate communications between them and
developers. Orchestration and refinement are then
employed to create business processes based on the
pre-defined models in a top-down fashion.

Similar to traditional software development,
creating new services in an efficient and low-cost way

is an important goal of service composition. However,
designing a new composite service through top-down
methods is a highly complex and time consuming task
because these methods still face some challenging
issues. First, with the wide application range of SOA
technologies, the number of existing reusable services
is increasing rapidly. Meanwhile, the business logic of
composite service is becoming more and more
complicated. Developers need to learn sufficient query
technologies and domain knowledge to discover
appropriate services for composition. Secondly, when
incorporating new requirements into existing services
such as adding new components or adapting existing
ones into new ones, the reuse granularity of composite
services is low, since the reusable part of such services,
which we call business knowledge, is embedded in
many processes supported by diverse technologies
depending on the process modeling languages. This
knowledge can only be reused if it can be extracted as
an independent and uniform process fragment.

To overcome these shortcomings of traditional top-
down approaches, a novel bottom-up fashion for
service composition is proposed [4], which aims at
exploring the full potential of the service space without
prior knowledge of what exactly is in it. This will
alleviate the burden of service developers during
service discovery and thus increases the automation of
service composition. To apply the bottom-up approach
in process-aware service composition, we propose a
novel architecture of the Business Knowledge
Repository which enables reuse of business knowledge
in the form of process fragments. In the proposed
architecture, services are organized into a network,
called Service Composition Network (SCN), based on
their co-occurence in existing composite services. The
reusable process fragments are built by decomposing
existing composite services according to the structural
constraint of the process as well as the relevance of
services in the same process fragment. Algorithms for
decomposing a business process are described and a
prototype system is implemented and evaluated.

This paper makes the following major contributions:

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.21

573

1. We design a business knowledge repository for
reuse of process fragments in a bottom-up
fashion of service composition.

2. We propose a service composition network and
a service relevance mining method to evaluate
the co-occurrence of web services.

3. Unlike existing program decomposition
approaches, we propose primitives for
decomposing a business process into a
hierarchy of reusable process fragments that
takes into account both structural constraints
and service relevance in the generated fragment.

4. We do various experiments and analyses on a
real dataset of bioinformatics workflows. Initial
results show the proposed architecture is
effective and practical.

The rest of this paper is organized as follows.
Section 2 addresses a motivating scenario for business
process decomposition, and introduces the basic idea
of our architecture. In section 3 some preliminaries are
presented. In section 4 we describe the approach of
service relevance mining and algorithms for
decomposing business processes. Experimental
evaluations of the performance and effectiveness of the
proposed architecture are presented in section 5,
followed by a review of related work in section 6 and a
conclusion in section 7.

2. A motivating scenario

For process-aware service composition, business
analysts or domain experts usually use process
modeling languages such as BPMN [5] to generate
abstract business models which describe the business
requirement of composite services. These models are
then passed to developers. A further orchestration and
refinement of the models will usually be needed to
finally transform them into low-level executable
business processes. During the refinement, a set of
reusable process fragments extracted from existing
composite services will help to increase the efficiency.
Fig. 1 (upper) shows the context of service
composition, which includes a business model M and a
set of reusable process fragments. In this scenario, the
abstract fragments F1, F2 and F3 in M are refined to
concrete fragments F1’, F2’ and F3’ respectively. In
comparison to the direct orchestration of these
fragments, the development efficiency is obviously
improved. The lower part of Fig. 1 illustrates a service
repository which includes the business knowledge
repository and all the existing composite services.

In this paper, we discuss the business process
decomposition approach for existing composite
services. CSn in Fig. 1 represents a composite service

Process decomposition

CS1 CS2 CSn

M

Composition context

Service repository

Business knowledge repository

CS3

Fragment query

Process refinement

Fragment matching

Figure 1. Process decomposition and its application

in process-aware service composition

in service repository. Rn is the reusable process
fragment derived from it. The fragments are then
matched according to the query of developers and the
matched ones may provide a wealth of information for
the further orchestration of the composite service.

In order to implement the business process
decomposition mentioned above, we argue that the
following criteria are needed for describing a reusable
process fragment. First, it should be independent in
structure and connectable for other fragments.
Secondly, it should preserve the execution semantics as
it does in the original business process. Finally, it
should be the representation of a complicated task in a
certain domain. So our process decomposing algorithm
should take into account both the structural constraints
of process and the domain relevance of services.

3. Preliminaries

In this section we give the definition of SCN, and
recall a few standard definitions which will be required
for understanding the following descriptions of the
proposed algorithm.

3.1. Service composition network

We build an overlay network called Service
Composition Network (SCN) to capture the relevance
of web services. A node of SCN represents a web
service, and there is at most one undirected weighted
edge between two nodes if the corresponding services
both exist in at least one composite service. A weight
function is assigned to each node to describe the
existing times of the service. The weight function is

574

also assigned to each edge to describe the times that
the corresponding services of the edge both exist in the
same composite service.

The construction of SCN can be easily realized by
analyzing all composite services in the service
repository. When analyzing a composite service, we
obtain a list of web services LS in it and then check this
list. Every time we get a service sn from LS, we
compare the service endpoint address with those of
services which are already in SCN. If there is no
service having the same endpoint address as the current
checked one in LS, then it is a new encountered one and
a new node representing this service is added to SCN
and the weight function denoted as W(sn) is set to 1.
Otherwise, W(sn) is increased by 1. We then analyze
each service pair (si , sj) in LS. The edges in SCN is
adjusted in two cases: if an edge between si and sj exist
in SCN, then the weight function denoted as W(e(si , sj))
is increased by 1. Otherwise, a new edge e(si , sj) is
added to SCN and W(e(si , sj)) is set to 1.

3.2. Workflow graph and process fragment

Currently, business process modeling languages are
widely used in process-aware service composition, and
composite services are described in an inconsistent
way due to the use of different modeling languages. In
order to facilitate a consistent description for the
decomposition, we employ a more basic form named
as workflow graph [6], which is a directed graph
including a set of tasks, coordinators and control flow
relations. Our definition of reusable process fragment
is based on the workflow graph. And from now on,
when we talk about process fragment, it is the fragment
of a workflow graph.

The business knowledge is a representation of every
independent business task in business process. Thus it
should be captured and described by an independent
structure. In our decomposing algorithm, we use the
single-entry-single-exit fragment (SESE fragment for
short) in [7] to express the business knowledge. There
are two constraints in the definition of SESE fragment:
(1) the fragment has only two edges in common with
the other part of the same workflow graph, called the
entry and the exit edge respectively; (2) each node in
the fragment is on a path from the entry edge to the
exit edge. These constraints make sure that the
fragment is an independent and well-structured
representation of the underlying business knowledge.

4. Building reusable process fragments

The building of reusable process fragments is based
on the following heuristic: web services tend to

cooperate with each other to complete a complex
business task if they occur together and connect with
each other in the same composite service.

Directly applying the web service clustering [8] or
workflow parsing [7] algorithm in our context will not
work well, since two web services in the same cluster
may not be able to connect to each other, or otherwise,
web services in the same SESE fragment may not
express the same business knowledge since the
workflow parsing algorithm does not consider business
information. Our process decomposition approach is a
hybrid of the web service clustering and workflow
parsing algorithm. We exploit both the co-occurrence
and connectivity of web services in composite services
to form the criteria of the ideal process decomposition
approach which builds up a hierarchy of reusable
process fragments (RPF). The connectivity of web
services is described by the SESE fragment which is
formed by a set of connected web services. The co-
occurrence of web services is measured by service
relevance according to the clustering analysis of SCN.
The two criteria are put together to decompose existing
composite services into RPFs. We will first describe
the criteria for an ideal business process decomposing
algorithm in section 4.1, and then describe the
algorithm in detail in following sections.

4.1. Criteria for an ideal decomposition

Ideally, business process decomposition results
should have the following characteristics:

1. The process fragments should be reused
independently. That is, the RPFs should be
well-structured which meet the following two
conditions. First, a RPF should be connected so
that every node in it can be reached from the
entry edge. Second, every RPF should have
only the entry edge or the exit edge or both of
them in common with another fragment.

2. The cohesion of a RPF—the relevance between
web services inside the fragment—should be
strong; the correlation between RPFs of the
same business process—the relevance between
web services in different RPFs—should be
weak. The definitions of these criteria and
detailed solutions to support them are presented
in section 4.2.

Our process decomposing algorithm takes into
account the criteria mentioned above, which is a hybrid
of the structural parsing of business process and the
service relevance mining of SCN. The algorithm is
based on an iterative analysis of the workflow graph,
which is described in detail in section 4.3.

575

4.2. Service relevance mining based on SCN

We use SCN to measure the relevance of two
services or services in the same RPF, which is a key
step for the decomposition of business process.

According to the previously discussed heuristic of
building reusable process fragments, we measure the
relevance of services by exploiting their conditional
probabilities of occurrence in existing composite
services. The service relevance rule we are interested
in can be described in the following form:

si → sj (p, c) (1)

In this rule, si and sj are two services. The support, p,
is the probability that si and sj both occur in a

composite service; i.e., p = P(�� ∪ ��) =
��	
∪	��

, where

N is the total number of composite services in service
repository, and ���� ∪ ��� is the number of composite
services that contain both si and sj. The confidence, c,
is the probability that sj occurs in a composite service,
given that si is known to occur in it; i.e., c = P(si|sj) =
��	
∪	��

�(
)
, where �(��) is the number of composite

services that contain si. These rules can be efficiently
computed based on SCN. Here we assume that the total
number of composite services N in the service
repository has been computed as the result of
constructing SCN. According to the definition of SCN,
the value of ���� ∪ ��� is equal to the weight of the
corresponding edge that injects to nodes si and sj in
SCN. And the value of �(��) is equal to the weight of
node si that can be obtained directly.

One of our goals is to extract the frequently
occurring business tasks represented by process
fragments. We thus define the support of a process
fragment as the probability that all services in it occur
in a composite service to measure this property. Given
a process fragment F, the support of F is defined as
follow:

�������� = �(⋃ 	
�
∈�)

 (2)

In traditional data mining theory [9], cohesion is
defined as the sum of squares of Euclidean distances
from each point to the center of the cluster it belongs to;
correlation is defined as the sum of squares of
distances between cluster centers. This definition does
not apply well in our context given that the center of a
RPF is unknown. We hence quantify the cohesion and
correlation of RPF based on service relevance.

Given a process fragment F in a business process P,
we define the cohesion of F as the average value of
confidence in relevance rules of all service pairs in the
fragment. Formally,

��ℎ� = ∑��
��	
,	�∈�, 	
�	�, 	
→	�(!
�,�
�)"

�(�#$)
 (3)

where �� → ��(���, ���) is the relevance rule of si and sj,
and %� is the number of services in F. As a special
case, the cohesion of a single-service fragment is 1.

We use the correlation between F and its
complement according to P to measure the relevance
between services inside and outside of F. The
complement of F denoted by Fc consists of services in
P but not in F and the corresponding control flow
relation between them. We define the correlation
between F and Fc as the average value of confidence in
relevance rules of all service pairs cross them. Notice
that the rule si → sj (pij, cij) and sj → si (pji, cji) may have
different support and confidence values. So,

����,�& =
'$ + '*

2 ∙ %� ∙ %�&
 (4)

where

'$ = ∑������� ∈ ., �� ∈ .�, �� → ��(���, ���)", (5)

'* = ∑������� ∈ .�, �� ∈ ., �� → ��(���, ���)", (6)

and %�& is the total number of services in Fc.
Based on the Modularization Quality Function

which measures the quality of decomposing source
code components and relations into subsystem clusters
[10], we define the cohesion/correlation score as the
quality function of a fragment to evaluate the
effectiveness of building it. Formally, we have:

/�013�4� = �56�

�57�,�&
 (7)

Our goal is to obtain high qualityF, which indicates
a tight relevance inside a fragment and a loose
relevance between the fragment and other parts of the
same business process. We say that F is a RPF if its
qualityF is greater than a threshold qr. The threshold qr
is chosen manually to be the value that best separates
reusable and insignificance process fragments. To
measure the quality of a process decomposition D, the
average value of qualities of all RPFs derived by D is
defined as the overall quality. Formally,

/�013�48 =
∑ /�013�4��∈8

%8
 (8)

where ND is the total number of RPFs derived by D.

4.3. The decomposition algorithm

Based on the service relevance mining proposed in
section 4.2, we design an algorithm to automatically
decompose a business process into a hierarchy of RPFs

576

qualityF1

qualityF2 qualityF3

Step 1 Step 2

Step 3Step 4The output RFT
Figure 2. High-level steps of the decomposing

algorithm

which we call the Reusable Fragments Tree (RFT).
The algorithm iteratively analyzes a workflow graph to
build new fragments. It has four high-level steps that
are illustrated in Fig.2. In Step 1, the tree of all SESE
fragments named as SFT is computed, using the linear-
time algorithm presented in [11].

In Step 2, all connectable SESE fragment pairs are
derived from SFT. This can be done by analyzing SFT
bottom-up—all child fragments before a parent
fragment. During the analysis, a minimum support pr is
chosen to filter the fragments that do not occur
frequently. At each pass of this step, we firstly mark
the leaf node fragments which have a supportF score
(�� for short) greater than pr, a qualityF score (/� for
short) greater than qr and at least two services in it as
new RPFs. Then the solitary leaf node which has no
brother node is removed from SFT and the leaf node
set LN of SFT is analyzed. We check each node pair
(F1, F2) in LN and if they obey the following
conditions, they are defined as a connectable SESE
fragment pair: (1) F1 and F2 have the same parent
fragment; (2) F1 and F2 have a control flow in common
which will be the connecting edge of them; (3) the
support of .$ ∪ .* is greater than pr.

In Step 3, for each connectable SESE fragment pair,
we compute the /� of the merged fragment of them
and sort the scores in descending order.

The constructing of reusable process fragments is
proceeded in a greedy fashion. In Step 4, the
constructing is performed iteratively until a new
reusable process fragment is formed. At each pass of
this algorithm, the connectable SESE fragment pair
with the highest ranked /� is chosen and removed from
the list. The two fragments are then merged to a new
RPF if the /� of the merged one is greater than the
quality threshold qr. After merging we replace the
connectable SESE fragment pair with a tree node in
SFT which represents the new RPF. If a new RPF has
been found, the constructing algorithm is terminated
and a reconstruction of the SFT is performed. The
procedures from Step 2 to Step 4 of this algorithm are

Flight
Booking

Hotel
Booking

Clothes
Laundry

Room
Service

Car
Renting

F1: Travel Agency F2: Hotel Service

Clothes
Laundry

Room
Service

Car
Renting

F3: Ideal decomposition

Hotel
Booking

Figure 3. Problem of the greedy algorithm

iteratively performed until no more connectable SESE
fragment pairs can be derived from SFT or no new
reusable process fragment can be formed.

A greedy algorithm always pursues local optimal
solutions at each step, but usually cannot obtain the
global optimal solution. During the construction of
reusable process fragments, an inappropriate
construction decision at an early stage may prevent
subsequent appropriate constructing. Consider the
situation showed in Fig. 3. There is a reusable process
fragment F1 for Travel Agency TA which includes two
sequential services: a flight booking service FB
followed by a hotel booking service HB. This fragment
is formed because of the frequent occurrences of TA in
all existing composite service. But in the situation
showed in Fig. 3, a new reusable process fragment F2
for Hotel Service HS, which includes three sequential
services: a clothes laundry service CL, a room service
RS and a car renting service CR, has just been
constructed. Now we need to decide whether or not to
merge F1 with F2, where the service HB is closely
associated with CL, RS and CR, but service FB is not
because it also occurs often in other fragments such as
Airline Ticket Agent and Airline Company, which
typically do not co-occur with CL, RS or CR.
Consequently, the two fragments F1 and F2 cannot be
merged. And the ideal constructing result is the RPF F3
including four sequential services: HB, CL, RS and CR.
The solution to this problem is to split already-formed
RPFs to obtain a better set of RPFs with higher /�
scores. Here we also use the quality threshold qr to
determine which RPF should be split and how the
splitting and merging are done.

Alg. 1 shows the details of a single pass of the
refined RPF constructing function in Step 4. Based on
Step 3, all connectable SESE fragment pairs are sorted
according to their /� in descending order. At the start
of this function, the connectable SESE fragment pair
with the highest ranked /� is chosen. The result of
comparing /� with qr yields two branches of this
algorithm. If /� is greater than qr, then the fragment
pair is merged directly. Otherwise, we have to decide
whether to split one of them or both of them to achieve
a better constructing. Given a connectable SESE
fragment pair (F1, F2), our algorithm makes splitting
decision based on which of the following three cases
occurs:

577

Algorithm 1. ConstructingRPF
Input: The sorted connectable SESE fragment pair list sesesList.
Output: The formed RPF. If no new RPF can be formed, return null.
1 begin
2 while �9�9�:3�� ≠ ∅ do
3 // Get the fragment pair with the highest /�
4 (F1, F2) = HighestQualityPairt(sesesList);
5 // Remove this pair from the list
6 sesesList.remove((F1, F2));
7 // Determine whether to split or not
8 if /�((.$, .*)) > /7 then newRPF = .$ ∪ .*;
9 else if .$ = .$$ ∪ .$* and .* = .*$ ∪ .** then
10 // Both of the two fragments are merged fragments
11 if /�(.$* ∪ .*) > /�(.$) and

 /�(.$* ∪ .*) > /�(.*) and
 /�(.$* ∪ .*) > /�(.$ ∪ .*$) then

12 (F11, F12) = SplitMergedFragment(F1);
13 newRPF = .$* ∪ .*;
14 else if /�(.$ ∪ .*$) > /�(.$) and

 /�(.$ ∪ .*$) > /�(.*) and
 /�(.$ ∪ .*$) > /�(.$* ∪ .*) then

15 (F21, F22) = SplitMergedFragment(F2);
16 newRPF = .$ ∪ .*$;
17 else if .$ = .$$ ∪ .$* then
18 // F1 is a merged fragment
19 if /�(.$* ∪ .*) > /�(.$) 0?@

/�(.$* ∪ .*) > /�(.*) then
20 (F11, F12) = SplitMergedFragment(F1);
21 newRPF = .$* ∪ .*;
22 else if .* = .*$ ∪ .** then
23 // F2 is a merged fragment
24 if /�(.$ ∪ .*$) > /�(.$) 0?@

 /�(.$ ∪ .*$) > /�(.*) then
25 (F21, F22) = SplitMergedFragment(F2);
26 newRPF = .$ ∪ .*$;
27 // If a new fragment is formed, terminate the iterating
28 if ?9ABC. ≠ null then break;
29 return newRPF;
30 end

1. If F1 and F2 are both original SESE fragments

that are not the merging of other fragments,
then do nothing.

2. If only one of the two fragments, for example
F1, is the merging of a connectable SESE
fragment pair (F11, F12), then there are two
options: one is to split F1 into F11 and F12 and
then merge F12 with F2; the other is not to split
or merge. We compute the /� for F1, F2 and
.$* ∪ .* , and choose the first option if
/�013�4�DE∪�E is the higher one.

3. If both of the two fragments are merged
fragments. That is, F1 is the merging of (F11, F12)
and F2 is the merging of (F21, F22). Then there
are three options: one is to split F1 into F11 and
F12 and then merge F12 with F2; another one is
to split F2 into F21 and F22 and then merge F1
with F21; the last one is not to split or merge.
We compute the /� for F1, F2, .$* ∪ .* and
.$ ∪ .*$, and choose the option with the highest
quality score.

5. Experiments and evaluation

We have implemented a prototype system to
evaluate the proposed approach and algorithms. We
first evaluate the performance of building SCN with
different total number of composite services. Then the
performance of decomposing workflow graph into
RFT with different quality threshold is evaluated.
Finally, we give some empirical properties of the
reusable bioinformatics process fragment repository.

The data set used in the experiments is a workflow
repository that contains 445 bioinformatics workflows
taken from myexperiment1, which is a collaborative
environment where scientists can publish and share
their workflows and experiment plans [12]. These
workflows contain 2655 web services and the average
occurrence of them is 2.58. According to this context,
we say that a fragment which has a set of services with
more than 5 times of occurrence is a frequent fragment.
Thus the value of minimum support threshold pr is set
to be 0.01 in our experiments. The experiments were
conducted on a Windows machine with two 3GHz
Intel Xeon CPUs and 4G main memory.

Firstly, we evaluate efficiency of building SCN with
different total number of business processes. We use
CPU time as the standard measure of the performance.
The time costs of the building procedure are tested
with the increase of the number of bioinformatics
workflows and the results are showed in Fig. 4(a). We
can see that the building time increases in a linear way
with respect to the number of workflows. For a large
workflow repository, there may be a huge number of
workflows and it will take a long time to build SCN.
But as a preparation work of process decomposition,
the building of SCN can be done beforehand and an
incremental approach will make it more efficient.

The second evaluation case was to evaluate the
workflow graph decomposing time in the light of
increasing the value of quality threshold. We
performed tests of decomposing all the 445
bioinformatics workflows with quality threshold values
from 1.01 to 1.95 by increasing 0.01 each time. The
results are showed in Fig. 4(b). We can also see that
the decomposing algorithm is linear with respect to the
value of quality threshold. And at the worst situation in
the evaluating scenario, the time of decomposing 445
workflows is 1.31 seconds. The proposed process
decomposing algorithm is effective and practical.

Finally we present some empirical properties of the
reusable bioinformatics process fragment repository
generated by our algorithm. The quality threshold qr is
set to be 1.35 in this case. Fig. 5 presents the

1 www.myexperiment.org

578

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Ti
m

e
co

st
(m

s)

Total number of processes

 Time cost of building SCN
 Linear fit of time costs

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

500

600

700

800

900

1000

1100

1200

1300

1400

Ti
m

e
co

st
(m

s)

Value of quality threshold

 Time costs of analyzing all processes
 Linear fit of time costs

 (a) Time costs of building SCN (b) Time costs of process decomposition

Figure 4. Performance evaluation

0 100 200 300 400

0

1

2

3

4

5

6

 Number of new RPFs
 Average quality of all new RPFs

Index of bioinformatics workflows

N
um

be
r o

f n
ew

 R
PF

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0 A
verage quality of all new

 R
PFs

Figure 5. Case study and empirical analysis

distribution of RPF numbers formed in each
bioinformatics workflow and the distribution of
average quality score of them. In the 445
bioinformatics workflows there are 76 reusable process
fragments. The maximum number of all workflows is 6,
and the average number is 0.17. The maximum quality
score of the 76 reusable process fragments is 2.81 and
the average quality score is 1.68. It can be seen that our
process decomposing algorithm can produce a number
of high quality reusable process fragments.

6. Related work

Several research approaches have considered
decomposing existing software system into reusable
software components to reduce the duplicate work in
software development. These approaches can be
classified into three main categories:

(1) Knowledge-matching based approaches. These
approaches are based on the domain knowledge
obtained by doing domain analysis in some business
domains. The software components are checked with
the domain knowledge and the matched ones are
extracted into reusable software components. The
component mining process [13], the pattern identifying
approach for recovering software architecture [14] and

the feature-oriented reuse method [15] are of this type.
However, these approaches rarely have the ability to
obtain reusable software components from business
models automatically because the domain analysis is
not an automatic work and should be accomplished
with the aid of experiences of domain analyzers.

(2) Cohesion-coupling based clustering analysis
approaches. In these approaches, researchers try to
cluster business models according to “high cohesion
and low coupling” principle and encapsulate each
cluster into a component [16]. The graph clustering
method for software components capture [17] and the
spectral methods for software clustering [18] are of this
type and [19] gives a summary of these approaches.
Compared with these approaches that target at the
decomposition of procedural or object-oriented
program and are not fit well with the autonomous
nature of services [2], our process decomposing
algorithm is much more focused on the relevance of
web services in a composite service which is a loose-
couple, collaborative relation between web services
and is not consider by previous approaches.

(3) Business process parsing approaches. These
approaches decompose a business process into sub-
processes according to some structural constrains such
as well-structure, execution semantics preservation and
so on. The building of the program structure tree [7,11]
and the refined process structure tree [20] are of this
type. The first step of our process decomposing
algorithm is based on the work in [10].

In summary, current software system decomposition
methodologies do not bridge the gap between software
analysts and developers effectively as few approaches
take into account both the structural constrains of
business process and domain relation between web
services in process-aware service composition. The
presented work combines the structural constrains and
service relevance as the criteria of decomposing a
business process and provides an effective and
practical algorithm.

579

7. Conclusions and future work

In this paper, we have presented a novel business
process decomposition mechanism for discovering and
building reusable process fragments automatically, in a
bottom-up fashion. We have introduced criteria for the
building of fragments and presented an algorithm for
decomposing a business process into a hierarchy of
reusable process fragments, which catches not only
structural constraints, but also service relevance
information of the business process. Experimental
results show that the proposed business process
decomposition approach is effective and practical.

As future work, we are interested in improving the
description of a reusable process fragment and
providing an automatic query method for it, since
currently the query and discovery of those fragments
are done almost manually.

Acknowledgments. We would like to thank Jue Wang
of University Of Washington in Seattle for his fruitful
suggestions and kind help in the writing of this paper.
We would also like to thank the anonymous reviewers
for their constructive comments and suggestions. This
research was supported in part by China 863 High-tech
R&D Program (No.2007AA010301 and
No.2009AA01Z419) and China 973 Fundamental
R&D Program (No.2005CB321803).

References

[1] M.P., Papazoglou, W-J., van den Heuvel: Service-

Oriented Architectures: Approaches, Technologies and
Research Issues. In: VLDB Journal, vol. 16, pp. 389--
415 (2007)

[2] W.M.P., van der Aalst, M., Pesic: DecSerFlow:
Towards a Truly Declarative Service Flow Language.
In: Proceedings of International Conference on Web
Services and Formal Methods (WS-FM), LNCS, vol.
4184, pp. 1--23. Springer-Verlag, Berlin (2006)

[3] B., Benatallah, Q., Sheng, M., Dumas: The Self-Serv
Environment for Web Services Composition. In: IEEE
Internet Computing, January / February, pp. 40--48
(2003)

[4] G., Zheng, A., Bouguettaya: Service Mining on the
Web. In: IEEE Transactions on Services Computing,
vol. 2, pp. 65--78 (2009)

[5] ObjectManagementGroup. Business Process Modeling
Notation, V1.1. OMG Available Specification, January
(2008)

[6] W.M.P., van der Aalst, A., Hirnschall, H.M.W.,
Verbeek: An alternative way to analyze workflow
graphs. In: Proceedings of the 14th International
Conference on Advanced Information Systems
Engineering (CAiSE), LNCS, vol. 2348, pp. 535--552.
Springer (2002)

[7] J., Vanhatalo, H., Völzer, F., Leymann: Faster and

More Focused Control-flow Analysis for Business
Process Models though SESE Decomposition. In:
Proceedings of the 5th International Conference on
Service-Oriented Computing (ICSOC), LNCS, vol.
4749, pp. 43--55. Springer, Heidelberg (2007)

[8] X., Dong, A., Halevy, J., Madhavan, E., Nemes, J.,
Zhang: Similarity Search for Web Services. In:
Proceedings of the Thirtieth International Conference
on Very Large Data Bases (VLDB), vol. 30, pp. 372--
383 (2004)

[9] D., Hand, H., Mannila, P., Smyth: Principles of Data
Mining. The MIT Press, Cambridge, MA, USA (2001)

[10] B.S., Mitchell, S., Mancoridis: Comparing the
Decompositions Produced by Software Clustering
Algorithms using Similarity Measurements. In:
Proceedings of IEEE International Conference on
Software Maintenance (ICSM), pp. 744--753. IEEE
Computer Society Press, Florence (2001)

[11] R., Johnson, D., Pearson, K., Pingali: The Program
Structure Tree: Computing Control Regions in Linear
Time. In: Proceedings of the ACM SIGPLAN’94
Conference on Programming Language Design and
Implementation (PLDI), pp. 171--185 (1994)

[12] D., Roure, D., Goble, C., Bhagat, J., Cruickshank, D.,
Goderis, A., Michaelides, D., Newman, D.,:
myExperiment: Defining the Social Virtual Research
Environment. In: Proceedings of 4th IEEE International
Conference on e-Science, pp. 182--189. Indianapolis,
Indiana, USA (2008)

[13] D., Spinellis, K., Raptis: Component Mining: A
Process and Its Pattern Language. In: Information and
Software Technology, vol. 42(9), pp. 609--617 (2000)

[14] M., Pinzger, H., Gall: Pattern-supported Architecture
Recovery. In: Proceedings of the 10th International
Workshop on Program Comprehension, pp. 53--61.
IEEE Computer Society Press, Paris (2002)

[15] K.C., Kang, S., Kim, J., Lee, K., Kim, E., Shin, M.,
Huh: FORM: A Feature-oriented Reuse Method with
Domain-specific Reference Architectures. In: Annals of
Software Engineering, vol.5, pp.143--168 (1998)

[16] J.K., Lee, S.J., Jung, S.D., Kim: Component
Identification Method with Coupling and Cohesion. In:
Proceedings of 8th Asia–Pacific Software Engineering
Conference, pp.79--86. Macau, China (2001)

[17] Y., Chiricota, F., Jourdan, G., Melancon: Software
Components Capture using Graph Clustering. In:
Proceedings of the International Workshop on Program
Comprehension (IWPC), pp. 217--226 (2003)

[18] A., Shokoufandeh, S., Mancoridis, M., Maycock:
Applying Spectral Methods to Software Clustering. In:
Proceedings of the Working Conference on Reverse
Engineering (WCRE), pp. 3--10 (2002)

[19] K., Rainer: Atomic Architectural Component Recovery
for Program Understanding and Evolution. Ph.D.
dissertation, Institut für Informatik, Universität
Stuttgart (2000)

[20] J., Vanhatalo, H., Völzer, J., Koehler: The Refined
Process Structure Tree. In: Proceedings of the 6th
International Conference on Business Process
Management, LNCS, vol. 5240, pp. 100--115. Springer,
Heidelberg (2008)

580

