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Abstract

The problem of learning from imbalanced
data sets, while not the same problem as
learning when misclassification costs are un-
equal and unknown, can be handled in a simi-
lar manner. That is, in both contexts, we can
use techniques from roc analysis to help with
classifier design. We present results from two
studies in which we dealt with skewed data
sets and unequal, but unknown costs of error.
We also compare for one domain these re-
sults to those obtained by over-sampling and
under-sampling the data set. The operations
of sampling, moving the decision threshold,
and adjusting the cost matrix produced sets
of classifiers that fell on the same roc curve.

1. Introduction

We are interested in the connection between learn-
ing from imbalanced or skewed data sets and learning
when error costs are unequal, but unknown. In this pa-
per, we argue that while these problem are not exactly
the same, they can be handled in the same manner. To
illustrate, we present results from two previous studies
in which we used techniques from roc analysis to cope
with data sets with different amounts of skew. We also
over-sampled (or up-sampled) and under-sampled (or
down-sampled) one of the data sets, showing that the
roc curves produced by this procedure are similar to
those produced by varying the decision threshold or
the cost matrix. roc analysis is most often associated
with cost-sensitive learning, but it is equally applica-
ble to the problem of learning from imbalanced data
sets, which we discuss further in the next section.

2. The Problem of Imbalanced Data

Sets

The problem of learning from imbalanced or skewed
data sets occurs when the number of examples in one

class is significantly greater than that of the other.1

Breiman et al. (1984) discussed the connection be-
tween the prior probability of a class and its error cost.
Classes with fewer examples in the training set have
a lower prior probability and a lower error cost. This
is problematic when true error cost of the minority
class is higher than is implied by the distribution of
examples in the training set.

When applying learning methods to skewed data sets,
some algorithms will find an acceptable trade-off be-
tween the true-positive and false-positive rates. How-
ever, others learn simply to predict the majority class.
Indeed, classifiers that always predict the majority
class can obtain higher predictive accuracies than
those that predict both classes equally well. Skewed
data sets arise frequently in many real-world appli-
cations, such as fraud detection (Fawcett & Provost,
1997), vision (Maloof et al., to appear), medicine
(Mac Namee et al., 2002), and language (Cardie &
Howe, 1997).

There have been several proposals for coping with
skewed data sets (Japkowicz, 2000). For instance,
there are sampling approaches in which we over-sample
(i.e., duplicate) examples of the minority class (Ling
& Li, 1998), under-sample (i.e., remove) examples of
the majority class (Kubat & Matwin, 1997), or both
(Chawla et al., 2002). We can also learn to predict the
minority class with the majority class as the default
prediction (Kubat et al., 1998). Schemes also exist to
weight examples in an effort to bias the performance
element toward the minority class (Cardie & Howe,
1997) and to weight the rules themselves (Grzymala-
Busse et al., 2000). There have also been proposals to
boost the examples of the minority class (Joshi et al.,
2001).

The analysis of Breiman et al. (1984) establishes the
connection among the distribution of examples in the
training set, the prior probability of each class, the

1For simplicity, we will restrict discussion to the two-
class case.
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costs of mistakes on each class, and the placement
of the decision threshold. Varying one of these ele-
ments is equivalent to varying any other. For exam-
ple, learning from a set of under-sampled data sets
is equivalent to evaluating a classifier at different de-
cision thresholds. However, the precise relationship
among these things is complex and task- and method-
specific. In the next section we discuss some basic
concepts of roc analysis, which is useful for analyzing
performance when varying the decision threshold, the
cost of misclassification, or the distribution of training
examples.

3. Basic Concepts of roc Analysis

Receiver Operating Characteristic (roc) analysis
(Swets & Pickett, 1982) has its origin in signal de-
tection theory, but most of the current work occurs in
the medical decision making community. Researchers
in the machine learning community have just recently
become interested in roc analysis as a method for
evaluating classifiers. Indeed, it is a method of analy-
sis unconfounded by inductive bias, by unknown, but
unequal error costs, and, as we describe in this pa-
per, by the class distribution of examples (Metz, 1978;
Provost et al., 1998; Maloof et al., to appear).

Parametric roc analysis is based on a binormal as-

sumption, meaning that the actually positive cases are
normally distributed and the actually negative cases
are normally distributed (Metz, 1978). Naturally, it
is the overlap between these two distributions that re-
sults in the Bayes error rate (Duda et al., 2000). Once
we have characterized in some way the training ex-
amples drawn from these two distributions, then we
are free to set a decision threshold most anywhere. It
is typically best to select the decision threshold that
minimizes the Bayes error rate. Alternatively, if er-
ror costs are unequal and known, then we can adjust
the decision threshold to minimize the overall cost of
errors.

As stated previously, there is a strong connection be-
tween the prior probability of a class and its error
cost. If the class distribution of examples is consis-
tent with the cost of errors, then building a classifier
consistent with those costs should pose little problem.
However, when data sets are skewed in a manner that
runs counter to the true cost of errors, then even if we
know the cost of errors, it may be difficult to build a
classifier that is consistent with those costs. To make
matters worse, we often have only anecdotal evidence
about the relationship between the class distribution
and the cost of errors. For instance, on a rooftop de-
tection task, which we discuss further in Section 5,
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Figure 1. A hypothetical Receiver Operating Characteris-
tic (roc) curve.

we had a highly skewed data set (i.e., 781 rooftops
versus 17,048 non-rooftops), we knew mistakes on the
rooftop class were much more expensive than those on
the other class, but we had no way of conducting a
cost analysis (Maloof et al., 1997).

In these situations, one way to proceed is to move
the decision threshold for a given classifier from the
point at which mistakes on the positive class are max-
imally expensive to the point at which mistakes on the
negative class are maximally expensive. Doing so will
produce a set of true-positive and false-positive rates.
Graphing these points yields an roc curve, similar to
the one pictured in Figure 1. There are also para-
metric methods for fitting to these points the curve
of maximum likelihood (Dorfman & Alf, 1969; Metz
et al., 1998).

It is often convenient to characterize roc curves using
a single measure. Many exist (Swets & Pickett, 1982),
but ubiquitous is the area under the roc curve. We
can use the trapezoid rule to approximate the area,
and it is also a simple matter to compute the area un-
der the curve of maximum likelihood (Bamber, 1975;
Thompson & Zucchini, 1986).

It is also possible to produce roc curves from case rat-

ings, whereby we modify the performance element to
produce a rating for each test case. For example, we
modified naive Bayes to output the posterior probabil-
ity of the negative class for each test example (Maloof
et al., 2002). Given m ratings of negative cases, r−,
and n ratings of positive cases, r+,

Â =
1

mn

m
∑

i=1

n
∑

j=1

I(r−i , r+

j ),

where

I(r−, r+) =







1 if r− > r+;
1

2
if r− = r+;

0 if r− < r+.



Table 1. Performance on a recidivism prediction task.

Classification Method tp Rate tn Rate
Proportional Hazardsa 0.72 0.53
Nearest Neighbor 0.45 0.70
c5.0 0.36 0.83
Naive Bayes 0.36 0.85
aAs reported by Schmidt & Witte, 1988.

This is the Mann-Whitney two-sample statistic, and
researchers have shown it to be equivalent to comput-
ing the area under the roc curve using the trapezoid
rule (DeLong et al., 1988). We can map the sorted
case ratings into, say, 10–12 bins (Wagner et al., 2001)
and use the number of true-positive and true-negative
cases to determine points on an roc curve (Metz et al.,
1998).

Area under the curve is most appropriate when each
curve dominates another. However, researchers have
proposed analyses for when curves cross (Provost &
Fawcett, 2001). There are also analyses for when only
a portion of the roc curve is of interest (McClish,
1989; Woods et al., 1997) and when analyzing more
than two decisions (Swets & Pickett, 1982; Mossman,
1999; Hand & Till, 2001). Cost curves are equivalent
to roc curves, but plot expected cost explicitly, which
can make for easier comparisons (Drummond & Holte,
2000).

To conduct a statistical analysis of roc curves and
their areas, one can use traditional tests, such as the
t-test or analysis of variance (anova) (Bradley, 1997;
Maloof et al., to appear), but these procedures do
not take into account the case-sample variance (Metz,
1989). Indeed, since anova does not take into ac-
count all sources of variance, it may have higher Type I
error than will such tests designed expressly for roc

curves (Maloof, 2002; Metz & Kronman, 1980). labm-

rmc takes into account case-sample variance using the
jackknife method, and then uses anova to determine
if treatment means are equal (Dorfman et al., 1992).
Naturally, anova carries with it an assumption of nor-
mality and is robust when this assumption is violated,
but researchers have recently proposed nonparametric
methods of analysis (Beiden et al., 2000).

4. Recidivism Prediction

To illustrate the value of roc analysis for learning
from imbalanced data sets, we first present results on
a recidivism prediction task (Maloof, 1999). We must
predict if an individual will re-commit a crime after
release from prison based on characteristics such as
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Figure 2. Results plotted in an roc graph for recidivism
prediction.

age, type of crime, history of alcohol and drug abuse,
and similar indicators. The distribution of training ex-
amples was 27.5% recidivist (i.e., positive) and 72.5%
non-recidivist (i.e., negative), which is not skewed as
severely as other reported data sets (e.g., Cardie &
Howe, 1997; Kubat et al., 1998; Maloof et al., to ap-
pear). Schmidt and Witte (1988) give further details
about this problem, including their results using a pro-
portional hazards model.2

Using the hold-out method, the same experimental de-
sign used by Schmidt and Witte (1988), we ran naive
Bayes (e.g., Langley et al., 1992), nearest neighbor
(e.g., Aha et al., 1991), and c5.0, the commercial suc-
cessor of c4.5 (Quinlan, 1993), which produced the
results appearing in Table 1. We also plotted these
results in an roc graph, and these appear in Figure 2.

As one can see, the proportional hazards model per-
formed better than did the other learners, mostly in
terms of the true-positive rate. We have only an in-
formal notion of error costs for this problem: mis-
takes on the positive class are more expensive than
those on the negative class. When taking this into ac-
count, we would prefer methods achieving higher true-
positive rates to those achieving higher true-negative
rates. Consequently, the results for the learning meth-
ods are actually worse than they appear.

The problem with this analysis is that we have not ac-
counted for differences in inductive bias, in error cost,
and in how each method copes with the imbalance of
the data set. Indeed, each method will yield a classi-
fier subject to these factors, but there is no guarantee

2This is a nonparametric technique that predicts the
time until recidivism using an individual’s characteristics.
We estimate the model by maximizing a partial likelihood
function that indicates the probability of failure (i.e., re-
cidivism) of individuals as a function of time.
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Figure 3. roc curves for recidivism prediction.

that the method will have found the right trade-off
among them. However, we can account for all three
by using cost-sensitive learning algorithms, evaluating
classifiers at different decision thresholds or with dif-
ferent cost matrices, and plotting performance as roc

curves. Therefore, we repeated the previous experi-
ment, but varied the cost matrix of c5.0 and the de-
cision thresholds of naive Bayes and nearest neighbor.
The results for this experiment appear in Figure 3. We
also plotted the original point for proportional hazard
model for the sake of comparison.

By finding the appropriate decision threshold, we were
able to compensate for the imbalance in the training
set and produce a naive Bayesian classifier with per-
formance equal to that of the proportional hazards
model. We did not have a cost-sensitive version of
proportional hazards, but we anticipate that its roc

curve would be similar to that of naive Bayes. We
also concluded the naive Bayes performed better on
this task than did nearest neighbor, since the former’s
roc curve covers a larger area. For this experiment,
naive Bayes produced an roc curve with an area of
0.667, while c5.0 produced one of area 0.635 and near-
est neighbor produced one of area 0.584. Note that the
diagonal line in Figure 3 represents discrimination at
the chance level; thus, none of the methods performed
much better than this.

5. Rooftop Detection

We applied a similar methodology to the problem of
learning to detect rooftops in overhead imagery, a
problem with a more severely imbalanced data set
(Maloof et al., 1998; Maloof et al., to appear). We
used the Building Detection and Description System
(Lin & Nevatia, 1998), or budds, to extract candi-
date rooftops (i.e., parallelograms) from six large-area
images. Such processing resulted in 17,829 such can-
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Figure 4. Results for the rooftop detection task plotted in
an roc graph. (Maloof et al., to appear). c© 2003 Kluwer
Academic Publishers.

didates, which an expert labeled as 781 positive ex-
amples and 17,048 negative examples of the concept
“rooftop.” Nine continuous attributes characterized
each example, taking into account the strength of
edges and corners, the degree to which opposing sides
are parallel, and other similar evidence.

Using a variety of learning methods, we conducted
a traditional evaluation using ten iterations of the
60/40% hold-out method. For the sake of comparison,
we also included the heuristic present in the budds

system, which we call the budds classifier. It is a lin-
ear classifier with handcrafted weights. Table 2 shows
results from the evaluation, and as before, we plot-
ted the true-positive and false-positive rates in an roc

graph, which appear in Figure 4.

c5.0 achieved the highest overall accuracy, but naive
Bayes was best at detecting rooftops. Unfortunately,
naive Bayes performed only slightly better than the
budds classifier, upon which we were trying to im-
prove. The perceptron algorithm performed well over-
all, but by learning to always predict the negative (i.e.,
majority) class.

We repeated this experiment using cost-sensitive learn-
ing algorithms and plotted the results as roc curves,
which appear in Figure 5. The areas under these
curves and their 95% confidence intervals appear in
Table 3. As with the previous domain, cost-sensitive
learning algorithms and roc analysis not only let us
cope with a skewed data set, but also let us better
visualize the performance of the learning methods.

Note that since we evaluated each method at the same
decision thresholds, we produced an average roc curve
by pooling (Swets & Pickett, 1982) the roc curves from
the ten runs; that is, we averaged the true-positive and



Table 2. Results for rooftop detection task. Measures are accuracy, true-positive (tp) rate, false-positive (fp) rate with
95% confidence intervals. Italics type shows the best measure in each column. (Maloof et al., to appear). c© 2003 Kluwer
Academic Publishers.

Method Accuracy tp Rate fp Rate
c5.0 0.963±0.003 0.23±0.022 0.0034±0.0011
k-nn (k = 17) 0.961±0.001 0.19±0.015 0.0037±0.0003
k-nn (k = 11) 0.960±0.001 0.21±0.017 0.0056±0.0006
k-nn (k = 5) 0.957±0.001 0.23±0.010 0.0097±0.0009
Perceptron 0.957±0.001 0.02±0.011 0.0001±0.0001

budds classifier 0.917±0.001 0.54±0.018 0.0657±0.0008
Naive Bayes 0.908±0.003 0.56±0.008 0.0761±0.0036
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Figure 5. roc curves for the rooftop detection task (Maloof
et al., to appear). c© 2003 Kluwer Academic Publishers.

Table 3. Areas under the roc curves and 95% confidence
intervals for the rooftop detection task (Maloof et al., to
appear). c© 2003 Kluwer Academic Publishers.

Classifier Area under roc Curve
c5.0 0.867±0.006
Naive Bayes 0.854±0.009
Perceptron 0.853±0.010
k-nn (k = 11) 0.847±0.006
budds classifier 0.802±0.014

false-positive rates over the ten runs and then plotted
the roc curve (cf. Provost et al. 1998). In other work,
to produce an average roc curve, we fit the curve of
maximum likelihood to case ratings under a binormal
assumption, averaged the roc-curve parameters a and
b (or a and ∆m), and produced an roc curve using
these averaged parameters.

6. Discussion

If we again look at the points in the roc graphs in
Figures 2 and 4, we see that each method performed
quite differently when presented with the same skewed

data set, a phenomenon due to each method’s induc-
tive bias. However, simply because a given classifier
produced a point in a better part of the roc graph,
this did not mean that the classifier’s roc curve would
dominate all other curves. This was true for naive
Bayes on the recidivism prediction task and true for
c5.0 on the rooftop detection task. Therefore, by vary-
ing the decision threshold or the cost matrix, we can
compensate for skewed data sets. In the next section,
we examine the connection between these operations
and sampling.

6.1. Why Sample?

In previous sections, we examined the use of cost-
sensitive learning algorithms and roc analysis to cope
with imbalanced data sets. As we have mentioned, sev-
eral researchers have investigated sampling approaches
for coping with skewed data sets. We anticipate that
sampling will produce the same effect as moving the
decision threshold or adjusting the cost matrix. To in-
vestigate this notion, we used c5.0 and naive Bayes on
the rooftops data to conduct an experiment in which
we under-sampled the negative, majority class and
then over-sampled the positive, minority class.

To execute this experiment, we randomly divided the
rooftops data into training (60%) and testing (40%)
portions. For the under-sampling condition, we cre-
ated ten training sets using all of the positive exam-
ples and decreasing amounts of negative examples. We
then built classifiers and evaluated them on the exam-
ples in the test set. We repeated this procedure ten
times and plotted the average true-positive and false-
positives rates for these runs as an roc curve.

For the over-sampling condition, we proceeded sim-
ilarly, but created training sets using increasing
amounts of positive examples. Specifically, we created
a total of ten training sets, and for each, we duplicated
the positive examples by ten fold. That is, for the first
run, we included ten copies of the positive data, for the
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Figure 6. roc curves for over-sampling and under-
sampling using naive Bayes on the rooftop detection task.

second, we included twenty copies, and so on. For each
of these runs, we constructed classifiers and evaluated
them using the test set. As before, we repeated this
procedure ten times, plotting the average true-positive
and false-positive rates as an roc curve. The results
for naive Bayes appear in Figure 6, and the results for
c5.0 appear in Figure 7.

As we can see in Figure 6, the over- and under-
sampling procedures produced roc curves almost
identical to that produced by varying the decision
threshold of naive Bayes. Because the three curves
are so similar, they are difficult to discern, but the
over-sampling curve ranges between (0.16, 0.74) and
(0.29, 0.85), while the under-sampled curve ranges be-
tween (0.08, 0.59) and (0.73, 0.97). In Figure 7, we see
similar curves for c5.0, although these curves are not
as tightly grouped as the ones for naive Bayes.

These results suggest that sampling produces classi-
fiers similar to those produced by directly varying the
decision threshold or cost matrix. A disadvantage of
under-sampling is that in order to produce a desired
point on an roc, we may need to under-sample below
the amount of available training data. Moreover, the
under-sampled training data may not be sufficient for
learning adequate concept descriptions.

Similarly, when over-sampling, to produce a desired
point on an roc curve, we may have to over-sample a
data set so much that the time to learn becomes im-
practical. Indeed, with our rooftops domain, to pro-
duce a data set with a prior probability of 0.9 for the
rooftop class, we would have to duplicate all exam-
ples of the positive class about 196 times, resulting
in a data set with more than 153,000 positive exam-
ples. Depending on the algorithm, this will lead to
unacceptable learning times, especially if we need to
learn from several over-sampled data sets. We may be
able to find some balance between over-sampling the
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Figure 7. roc curves for over-sampling and under-
sampling using c5.0 on the rooftop detection task.

positive class and under-sampling the negative class,
but because we are under-sampling, we are using fewer
examples for learning.

6.2. Selecting the Best Classifier

Regardless of how we produce roc curves—by sam-
pling, by moving the decision threshold, or by varying
the cost matrix—the problem still remains of selecting
the single best method and the single best classifier for
deployment in an intelligent system. If the binormal
assumption holds, the variances of the two distribu-
tions are equal, and error costs are the same, then the
classifier at the apex of the dominant curve is the best
choice.

When applying machine learning to real-world prob-
lems, rarely would one or more of these assumptions
hold, but to select a classifier, certain conditions must
exist, and we may need more information. If one roc

curve dominates all others, then the best method is
the one that produced the dominant curve, which is
also the curve with the largest area. This was gener-
ally true of our domains, but it is not true of others
(Bradley, 1997; Provost & Fawcett, 2001). To select a
classifier from the dominant curve, we need additional
information, such as a target false-positive rate. On
the other hand, if multiple curves dominate in differ-
ent parts of the roc space, then we can use the roc

Convex Hull method to select the optimal classifier
(Provost & Fawcett, 2001).

7. Concluding Remarks

In this paper, we have examined how varying the
decision threshold and roc analysis helped with the
problem of imbalanced data sets. We also presented
evidence suggesting that over-sampling and under-
sampling produces nearly the same classifiers as does



moving the decision threshold and varying the cost ma-
trix. We reported these results for only one data set
and for only two classification methods, but the anal-
ysis of Breiman et al. (1984) implies that sampling
and adjusting the cost matrix have the same effect.
Adjusting the cost matrix, in turn, has the same ef-
fect as moving the decision threshold. roc analysis
let us evaluate performance when varying any of these
aspects of the learning method or its training.

For future work, we hope to explore further the connec-
tions between sampling and cost-sensitive learning for
imbalanced data sets. We are also interested whether
weighting examples or concept descriptions produces
classifiers on the same roc curve produced by mov-
ing the decision threshold or varying error costs. For
instance, when boosting, are successive iterations pro-
ducing classifiers on the same roc curve, or generating
a series of curves of increasing area? Indeed, roc anal-
ysis may be a tool for developing a unified framework
for understanding sampling, adjusting costs, moving
decision thresholds, and weighting examples from un-
derrepresented classes.
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