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Abstract

Imbalanced data sets are becoming ubiqui-
tous, as many applications have very few in-
stances of the “interesting” or “abnormal”
class. Traditional machine learning algo-
rithms can be biased towards majority class
due to over-prevalence. It is desired that
the interesting (minority) class prediction be
improved, even if at the cost of additional
majority class errors. In this paper, we
study three issues, usually considered sepa-
rately, concerning decision trees and imbal-
anced data sets — quality of probabilistic es-
timates, pruning, and effect of preprocessing
the imbalanced data set by over or under-
sampling methods such that a fairly balanced
training set is provided to the decision trees.
We consider each issue independently and in
conjunction with each other, highlighting the
scenarios where one method might be pre-
ferred over another for learning decision trees
from imbalanced data sets.

1. Introduction

A data set is imbalanced if the classes are not approxi-
mately equally represented. There have been attempts
to deal with imbalanced data sets in domains such as
fraudulent telephone calls (Fawcett & Provost, 1996),
telecommunications management (Ezawa et al., 1996),
text classification (Lewis & Ringuette, 1994; Dumais
et al., 1998; Mladenić & Grobelnik, 1999; Cohen, 1995)
and detection of oil spills in satellite images (Kubat
et al., 1998).

The compelling question, given the different class dis-
tributions, is: What is the correct distribution for a
learning algorithm? Weiss and Provost (2003) present
a detailed analysis of the effect of class distribution

on classifier learning. Our observations agree with
their work that the natural distribution is often not
the best distribution for learning a classifier. Also,
the imbalance in the data can be more characteris-
tic of “sparseness” in feature space than the class im-
balance. In that scenario, simple over-sampling and
under-sampling might not suffice (Chawla et al., 2002).
We extend our previous work of sampling strategies
under the setting of different levels of decision tree
pruning, and different probabilistic estimates at leaves.
We consider over-sampling with replication, under-
sampling, and synthetically creating minority class ex-
amples.

The representation or structure of a decision tree is
also important to consider. Pruned or unpruned trees
can have varied effects on learning from imbalanced
data sets. Pruning can be detrimental to learning
from imbalanced data sets as it can potentially collapse
(small) leaves belonging to the minority class, thus re-
ducing the coverage. Thus, it brings us to another
question: What is the right structure of the decision
tree? Do we need to use the completely grown tree or
pruning is necessary? Can pruning be useful if applied
with sampling strategies? Using C4.5 (Quinlan, 1992)
as the classifier, we investigate three different levels of
pruning: no pruning, default pruning, and pruning at
a certainty level of 1.

A decision tree, is typically, evaluated by predictive
accuracy that considers all errors equally. However,
predictive accuracy might not be appropriate when the
data is imbalanced and/or the costs of different errors
vary markedly. As an example, consider the classi-
fication of pixels in mammogram images as possibly
cancerous (Woods et al., 1993; Chawla et al., 2002).
A typical mammography data set might contain 98%
normal pixels and 2% abnormal pixels. A simple de-
fault strategy of guessing the majority class would give
a predictive accuracy of 98%. Ideally, a fairly high

Workshop on Learning from Imbalanced Datasets II, ICML, Washington DC, 2003.



rate of correct cancerous predictions is required, while
allowing for a small to moderate error rate in the ma-
jority class. It is more costly to predict a cancerous
case as non-cancerous, than otherwise.

Moreover, distribution/cost sensitive applications can
require a ranking or a probabilistic estimate of the in-
stances. For instance, revisiting our mammography
data example, a probabilistic estimate or ranking of
cancerous cases can be decisive for the practitioner.
The cost of further tests can be decreased by threshold-
ing the patients at a particular rank. Secondly, proba-
bilistic estimates can allow one to threshold ranking for
class membership at values < 0.5. Hence, the classes
assigned at the leaves of the decision trees have to
be appropriately converted to probabilistic estimates
(Provost & Domingos, 2003; Zadrozny & Elkan, 2001).
This brings us to another question: What is the right
probabilistic estimate for imbalanced data sets?

We attempt to answer the questions raised in the pre-
ceding discussion using C4.5 release 8 decision tree as
our classifier. We used AUC as the performance metric
(Swets, 1988; Bradley, 1997; Hand, 1997). We wanted
to compare various methods based on the quality of
their probabilistic estimates. This can allow us to rank
cases based on their class memberships, and can give
a general idea of the ranking of the ’positive” class
cases. AUC can give a general idea of the quality of the
probabilistic estimates produced by the model, with-
out requiring one to threshold at a probability of 0.5
or less for classification accuracy (Hand, 1997). AUC
can tell us whether a randomly chosen majority class
example has a higher majority class membership than
a randomly chosen minority class example.

The paper is structured as follows. In Section 2 we de-
scribe the probabilistic version of C4.5 trees, as used in
this paper. Section 3 discusses the pruning levels used
for the experiments. In Section 4 we describe the sam-
pling strategies. Section 5 includes our experiments,
and Section 6 presents the summary and future work.

2. Probabilistic C4.5

Typically, C4.5 assigns the frequency of the correct
counts at the leaf as the probabilistic estimate. For
notational purposes, TP is the number of true posi-
tives at the leaf, FP is the number of false positives,
and C is the number of classes in the data set. Thus,
the frequency based probabilistic estimate can be writ-
ten as:

Pleaf = TP/(TP + FP ) (1)

However, simply using the frequency of the correct
counts (of classes) at a leaf might not give sound
probabilistic estimates (Provost & Domingos, 2003;
Zadrozny & Elkan, 2001). A (small) leaf can poten-
tially give optimistic estimates for classification pur-
poses. For instance, the frequency based estimate
will give the same weights to leaves with the follow-
ing (TP, FP ) distributions: (5, 0) and (50, 0). The
relative coverage of the leaves and the original class
distribution is not taken into consideration. Given the
evidence, a probabilistic estimate of 1 for the (5, 0)
leaf is not very sound. Smoothing the frequency-based
estimates can mitigate the aforementioned problem
(Provost & Domingos, 2003). One way of smooth-
ing those probabilities is using the Laplace estimate,
which can be written as follows:

PLaplace = (TP + 1)/(TP + FP + C) (2)

Again considering the two pathological cases of TP =
5 and TP = 50, the Laplace estimates are 0.86 and
0.98, respectively, which are more reliable given the
evidence.

However, Laplace estimates might not be very appro-
priate for highly imbalanced data sets (Zadrozny &
Elkan, 2001). In that scenario, it could be useful
to incorporate the prior of positive class to smooth
the probabilities so that the estimates are shifted to-
wards the minority class base rate (b). The m-estimate
(Cussents, 1993) can be used as follows (Zadrozny &
Elkan, 2001):

Pm = (TP + bm)/(TP + FP + m) (3)

where b is the base rate or the prior of positive class,
and m is the parameter for controlling the shift to-
wards b. Zadrozny and Elkan (2001) suggest using m,
given b, such that bm = 10.

3. Tree structure

Pruning is useful for decision trees as it improves
generalization and accuracy of unseen test instances.
However, pruning methods are generally based on a
error function, and might not be conducive towards
learning from imbalanced data sets. We wanted to em-
pirically investigate the pruning methods over a range
of imbalanced data sets, and consider their effect on
the probabilistic estimates and the sampling methods.
C4.5 uses error-based pruning. We considered three
different levels of pruning of the C4.5 decision tree: un-
pruned, default pruned, and pruned at certainty factor
of 1 (Quinlan, 1992). For unpruned trees, we modified



C4.5 code so that the tree growing process does not
prune and does not “collapse”, as proposed by Provost
and Domingos (2003). To evaluate the effect of prun-
ing on the imbalanced data sets, we pruned the trees
at the certainty factor of 25% (default pruning), and
at the certainty factor of 1%.

Unpruned and uncollapsed trees can potentially lead
to a problem of small disjuncts (Weiss, 1995) as the
trees are grown to their full complete size on the imbal-
anced training sets. Overfitting can occur, and prun-
ing can be used to improve generalization of the deci-
sion trees.

4. Sampling strategies

A popular way to deal with imbalanced data sets is to
either over-sample the minority class or under-sample
the majority class. We present two versions of over-
sampling, one by replicating each minority class exam-
ple and the other by creating new synthetic examples
(SMOTE) (Chawla et al., 2002), and underampling.

4.1. Over-sampling

Over-sampling with replication does not always im-
prove minority class prediction. We interpret the
underlying effect in terms of decision regions in fea-
ture space. Essentially, as the minority class is over-
sampled by increasing amounts, the effect is to identify
similar but more specific regions in the feature space
as the decision region for the minority class.

If we replicate the minority class, the decision region
for the minority class becomes very specific and will
cause new splits in the decision tree. This will lead to
overfitting. Replication of the minority class does not
cause its decision boundary to spread into the majority
class region.

4.2. SMOTE: Synthetic Minority

over-sampling TEchnique

We generate synthetic examples by operating in the
“feature space” rather than the “data space” (Chawla
et al., 2002). The synthetic examples cause the classi-
fier to create larger and less specific decision regions,
rather than smaller and more specific regions. The
minority class is over-sampled by taking each minor-
ity class sample and introducing synthetic examples
along the line segments joining any/all of the k mi-
nority class nearest neighbors. Depending upon the
amount of over-sampling required, neighbors from the
k nearest neighbors are randomly chosen. Synthetic
samples are generated in the following way: Take the
difference between the feature vector (sample) under

consideration and its nearest neighbor. Multiply this
difference by a random number between 0 and 1, and
add it to the feature vector under consideration. This
causes the selection of a random point along the line
segment between two specific features. This approach
effectively forces the decision region of the minority
class to become more general.

The nominal values are treated differently. We use
Cost and Salzberg (1993) modification of Value Dis-
tance Metric (Stanfill & Waltz, 1986) to compute
the nearest neighbors for the nominal valued features.
VDM looks at the overlap of feature values over all fea-
ture vectors. A matrix defining the distance between
corresponding feature values for all feature vectors is
created. The distance δ between two corresponding
feature values is defined as follows.

δ(V1, V2) =

n∑

i=1

|
C1i

C1

−
C2i

C2

|
k

(4)

In the above equation, V1 and V2 are the two corre-
sponding feature values. C1 is the total number of
occurrences of feature value V1, and C1i is the number
of occurrences of feature value V1 for class i. A similar
convention is also applied to C2i and C2. k is a con-
stant, usually set to 1. The distance ∆ between two
feature vectors is given by:

∆(X, Y ) = wxwy

N∑

i=1

δ(xi, yi)
r (5)

r = 1 yields the Manhattan distance, and r = 2 yields
the Euclidean distance (Cost & Salzberg, 1993). wx

and wy are the exemplar weights in the modified VDM.
Since SMOTE is not used for classification purposes,
we set the weights to 1 equation 5. We create new
set of feature values (for the synthetic minority class
example) by taking the majority vote of the feature
vector in consideration and its k nearest neighbors. In
the absence of a majority, we select the feature value
at random.

4.3. Under-sampling

We under-sample the majority class by randomly re-
moving samples from the majority class population
until the minority class becomes some specified per-
centage of the majority class (Chawla et al., 2002).
This forces the learner to experience varying degrees
of under-sampling and at higher degrees of under-
sampling the minority class has a larger presence in
the training set.



Table 1. Data set details.

Data set Size Features Distribution

Pima 768 8 0.65; 0.35

Phoneme 5484 5 0.71; 0.29

Satimage 6435 36 0.9; 0.1

Mammography 11183 6 0.98; 0.02

Krkopt 28056 6 0.99; 0.01

5. Data sets

We used five data sets with very different class dis-
tributions. Four of our data sets come from the UCI
repository (Blake & Merz, 1998). For the krkopt data
set we sampled two classes to make it a 2-class and
highly skewed data set. Similarly, we converted satim-
age into a 2-class data set by converting all but one
small class into a single class (Chawla et al., 2002).
Table 1 summarizes our data sets. The mammography
data set is available from the Intelligent Systems Lab,
University of South Florida. We divided the data sets
into 2/3rd training and 1/3rd testing stratified sets for
our experiments.

6. Results

We used the different variants of C4.5 in conjunction
with the three different probabilistic estimates and
sampling methods. The goal was to empirically in-
vestigate the effect of the structure, probabilistic es-
timate, and sampling method on AUC. Not knowing
the “right” class distribution, we simply over-sampled
(both SMOTE and replication) or under-sampled such
that the class ratio is one, in addition to using the orig-
inal class distribution. We believe there might be other
appropriate class distributions that could give us bett-
ter results in terms of AUC, and that is a part of our
future work. One can potentially find out the right dis-
tribution by exploring the possible ratios between the
minority class and majority class. One can also ap-
proximate the different distributions by thresholding
at different probabilities coming from leaf mixtures.
By doing so one can increase or decrease the effect of
mixture distribution at a leaf. For all our experiments,
the distribution of examples in the testing set was the
same as originally occuring in the data set.

We compare various approaches using box-plots to
show AUC improvements (or deterioration) provided
by one method over another as shown in the Fig-
ures 1 to 9. Each method (or box) in the box-plots
represents all the data sets. The whiskers at the end
of the box plots show the minimum and maximum
values (outliers), while the bar shows the median. If

the median bar is above 0, than the approach, rep-
resented by the box plot, is doing better on average
than the approach compared to. And if the com-
plete box, including the whiskers, is above 0 then
that approach is consistently better than the other ap-
proach. The convention in the figures is as follows:
original implies that the decision tree is learned from
the original distribution; smote implies that the de-
cision tree is learned from the balanced distribution
constructed by SMOTE; over implies that the deci-
sion tree is learned from the balanced distribution con-
structed from over-sampling with replication; and un-
der implies that the decision tree from the balanced
distribution constructed from under-sampling. Each
of original, smote, over, and under is suffixed with
following: laplace or m to signify the probabilistic es-
timate used; U, P, or PC (U is unpruned, P is default
pruning, and PC is pruning at certainty factor of 1) to
show the pruning method used.

Figures 1 to 3 summarize the effect of the probabilis-
tic estimate on learning C4.5 decision trees from imbal-
anced data sets. The box-plots represent improvement
in AUC obtained by Plaplace over Pleaf and Pm over
Pleaf . The X-axis represents each of the methods cor-
responding to the box plots. Figure 1 is for unpruned
decision trees, Figure 2 is for pruned decision trees,
and Figure 3 is for decision trees pruned with certainty
factor of 1. Figures show that both Pm and Plaplace

estimates provide a consistent advantage over Pleaf for
the original distribution. This is what one would have
expected as the fully grown tree can have small leaves,
giving optimistic Pleaf estimate, as shown in the ex-
ample considered earlier. The gain provided by Pm

and Plaplace is diminished at higher levels of pruning,
as pruning effectively eliminates the smaller minority
class leaves, reducing the coverage. Thus, pruning can
have a detrimental effect on learning from imbalanced
data sets. Sampling generally helped in learning, and
was not very sensitive to the amount of pruning, as the
trees were learned from balanced training sets. Also,
Pm and Plaplace give better AUC’s than Pleaf for the
sampling methods. Thus, even if the model is learned
from a balanced training set (and tested on the skewed
testing set), smoothing produces more sound estimates
than just the frequency based method.

Figures 4 to 6, for Pleaf , Plaplace and Pm respectively,
compare the effect of pruning on learning from the
original and sampled data sets. As we noted from
the previous set of Figures, pruning is detrimental to
learning from imbalanced data sets. We note pruned
trees usually give worse AUC’s than unpruned trees.
Among the sampling strategies, over-sampling is par-
ticularly helped by pruning. This is not surprising
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Figure 1. Improvement or deterioration in AUC by Plaplace

and Pm over Pleaf using unpruned trees for original and

sampled data sets.

as over-sampling usually leads to small, very specific
decision regions (Chawla et al., 2002), and pruning
improves their generalization. Thus, pruning is help-
ful with imbalanced data sets, if one is deploying
some sampling routine to balance the class distribu-
tion. Otherwise, pruning can reduce the minority class
coverage in the decision trees.

Figures 7 to 9 compare the different sampling strate-
gies. Each Figure shows the improvement achieved by
over-sampling and SMOTE over under-sampling for
Pleaf , Plaplace and Pm, respectively. We observe that
SMOTE on an average is better than under-sampling.
We also observe that over-sampling on an average is
worse than under-sampling. Based on that evidence,
we can also infer that SMOTE on an average is better
than over-sampling.

7. Summary and Future Work

In this paper, we presented an empirical analyses of
various components of learning C4.5 decision trees
from imbalanced data sets. We juxtaposed three issues
of learning decision trees from imbalanced data sets,
usually considered separately, as part of one study.

Our main conclusions can be summarized as follows:

1. Pleaf gives worse probabilistic estimates than
Plaplace and Pm. The gain provided by Pm and
Plaplace is diminished at higher levels of pruning.
Plaplace and Pm are comparable to each other.
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Figure 2. Improvement or deterioration in AUC by Plaplace

and Pm over Pleaf using default pruned trees for original

and sampled data sets.

2. Pruning is usually detrimental to learning from
imbalanced data sets. However, if a sampling rou-
tine is used, pruning can help as it improves the
generalization of the decision tree classifier. Given
that the testing set can come from a different dis-
tribution, not having specific trees can help.

3. SMOTE on an average improves the AUC’s over
the other sampling schemes. We believe this is
due to SMOTE working in the “feature space”
and constructing new examples. SMOTE helps
in broadening the decision region for a learner,
thus improving generalization. We also observe
that under-sampling is usually better than over-
sampling with replication.

As a part of future work we propose another sampling
strategy for comparing with SMOTE: under-sampling
using neighborhood information. That is, instead of
under-sampling at random, only under-sample if the
minority class is in the k nearest neighbors. This ap-
proach can potentially have scalability issues due to a
much higher prevalence of majority class, but this will
help us in establishing another benchmark for sam-
pling in “feature space”. We would also like to investi-
gate ways to construct appropriate class distributions
for a particular domain, and evaluate the different set-
tings considered in this paper by varying testing set
distribution.
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Figure 3. Improvement or deterioration in AUC by Plaplace

and Pm over Pleaf using trees pruned at cf = 1 for original

and sampled data sets.
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Figure 4. Improvement or deterioration in AUC by pruning

using Pleaf for decision trees learned from the original and

sampled data sets.
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Figure 5. Improvement or deterioration in AUC by pruning

using Plaplace for decision trees learned from the original

and sampled data sets.
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Figure 6. Improvement or deterioration in AUC by pruning

using Pm for decision trees learned from the original and

sampled data sets.
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Figure 7. Improvement or deterioration in AUC by over-

sampling and SMOTE over under-sampling using Pleaf at

different levels of pruning.
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Figure 8. Improvement or deterioration in AUC by over-

sampling and SMOTE over under-sampling using Plaplace

at different levels of pruning.
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Figure 9. Improvement or deterioration in AUC by over-

sampling and SMOTE over under-sampling using Pm at

different levels of pruning.
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