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Abstract
In this paper, we propose the class-boundary-
alignment algorithm to augment SVMs to deal
with imbalanced training-data problems posed
by many emerging applications (e.g., image re-
trieval, video surveillance, and gene profiling).
Through a simple example, we first show that
SVMs can be ineffective in determining the class
boundary when the training instances of the tar-
get class are heavily outnumbered by the non-
target training instances. To remedy this prob-
lem, we propose to adjust the class boundary ei-
ther by transforming the kernel function when
the training data can be represented in a vector
space, or by modifying the kernel matrix when
the data do not have a vector-space representation
(e.g., sequence data). Through theoretical analy-
sis and empirical study, we show that the class-
boundary-alignment algorithm works effectively
with images (data that have a vector-space repre-
sentation) and video sequences (data that do not
have a vector-space representation).

1. Introduction

Support Vector Machines (SVMs) are a core machine
learning technology. They have strong theoretical foun-
dations and excellent empirical successes in many pat-
tern recognition applications such as handwriting recogni-
tion (Vapnik, 1995), image retrieval (Tong & Chang, 2001),
and text classification (Joachims, 1998). However, for
many emerging applications, such as image understanding,
security surveillance, and gene profiling, where the training
instances of the target class are significantly outnumbered
by the other training instances, the class-boundary learned
by SVMs can be severely skewed towards the target class.
As a result, the false-negative rate can be excessively high
in identifying important target objects (e.g., a suspicious
event or a gene disease), and hence can render the classifier
ineffective. (We will present and discuss the details of this
problem in Section 3.)

Several attempts have been made to improve class-
prediction accuracy of SVMs (Amari & Wu, 1999;

Veropoulos et al., 1999; Lin et al., 2002; Crammer et al.,
2003; Ong et al., 2003). Given the class prediction func-
tion of SVMs,

sgn

(

f(x) =

n
∑

i=1

yiαiK(x,xi) + b

)

, (1)

three parameters can affect the decision outcome: b, αi,
and K. Our empirical study shows that the only effective
method for improving SVMs, however, is through adap-
tively modifying K based on the training data distribu-
tion. As indicated by (Amari & Wu, 1999), by confor-
mally spreading the area around the class-boundary out-
ward on the Riemannian manifold S where all mapped data
are located in feature space F , we can adapt K locally to
data distribution to improve class-prediction accuracy. In
this paper, we propose the class-boundary-alignment algo-
rithm, which improves upon Amari and Wu’s method for
tackling the imbalanced training-data problem in three re-
spects.

1. We conduct the transformation based on the spatial
distribution of the support vectors in feature space F , in-
stead of in input space I (Wu & Amari, 2002). Using
feature-space distance to conduct conformation transfor-
mation takes advantage of the new information learned
by SVMs in every iteration, whereas input-space distance
remains unchanged.

2. We adaptively control the transformation based on the
skew of the class-boundary. This transformation gives the
neighborhood of minority support vectors a higher spatial
resolution, and hence achieves better separation between
the classes.

3. We show that in cases where the input space may not
physically exist (e.g., sequence data may not have a vec-
tor space representation), the class-boundary-alignment
algorithm can be applied directly to adjust the pair-wise
object-distance in the kernel matrix1

K.

Our experimental results on both UCI and real-world im-
age/video datasets show the class-boundary-alignment al-
gorithm to be effective in correcting the skewed boundary.

1Given a kernel function K and a set of instances Xtrain =
{xi, yi}ni=1, the kernel matrix (Gram matrix) is the matrix of
all possible inner-products of pairs from Xtrain, K = (kij) =
K(xi,xj).
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The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 explains the problem of im-
balanced training data using a 2-D checkerboard example.
In Section 4, we describe the class-boundary-alignment
algorithm and its competing methods for addressing the
imbalanced training-data problem. Section 5 presents the
setup and the results of our empirical studies. We offer our
concluding remarks in Section 6.

2. Related Work

Approaches for addressing the imbalanced training-data
problem can be categorized into two main divisions: the
data processing approach and the algorithmic approach.
The data processing approach can be further divided into
two methods: under-sample the majority class, and over-
sample the minority class. The one-sided selection pro-
posed by Kubat (Kubat & Matwin, 1997) is a representa-
tive under-sampling approach which removes noisy, bor-
derline, and redundant majority training instances. How-
ever, these steps typically can remove only a small fraction
of the majority instances, so they might not be very help-
ful in a scenario with a majority-to-minority ratio of more
than 100 : 1 (which is becoming common in many emerg-
ing applications). Multi-classifier training (Chan & Stolfo,
1998) and Bagging (Breiman, 1996) are two other under-
sampling methods. These methods do not deal with noisy
and borderline data directly, but use a large ensemble of
sub-classifiers to reduce prediction variance.

Over-sampling (Chawla et al., 2000; Weiss & Provost,
2001) is the opposite of the under-sampling approach. It
duplicates or interpolates minority instances in the hope of
reducing the imbalance. The over-sampling approach can
be considered as a “phantom-transduction” method. It as-
sumes the neighborhood of a positive instance to be still
positive, and the instances between two positive instances
positive. Assumptions like these, however, can be data-
dependent.

The algorithmic approach, which is orthogonal to the data-
processing approach, is the focus of this paper. Nu-
groho (Nugroho et al., 2002) suggests combining a compet-
itive learning network and a multilayer perceptron as a so-
lution for the class imbalance problem. Kubat et al. (Kubat
& Matwin, 1997; Drummond & Holte, 2000; Elkan, 2001;
Ling & Li., 1998) modify the decision-tree generator to
improve its learning performance on imbalanced datasets.
For SVMs, few attempts (Karakoulas & Taylor, 1999; Lin
et al., 2002; Veropoulos et al., 1999) have dealt with the
imbalanced training-data problem. Veropoulos et al. (Lin
et al., 2002; Veropoulos et al., 1999) use different penalty
constants for different classes of data. We will explain in
Section 4.2 why this method can be ineffective. Amari and
Wu (Amari & Wu, 1999) propose using conformal trans-

formation to change the spatial resolution around the class
boundary. Their method does not deal with imbalanced
datasets. It works only for data that have a vector-space
representation since it has to calculate the input-space Eu-
clidean distance. Our proposed class-boundary-alignment
algorithm can work with both vector and non-vector data.

Recently, kernel target alignment (Cristianini et al., 2002)
was proposed to adjust the kernel matrix to fit the train-
ing data. Subsequently, several novel methods based on
the kernel-alignment idea have been proposed for cluster-
ing, kernel selection, and kernel-matrix modification (e.g.,
(Crammer et al., 2003; Ong et al., 2003)). Kandola et
al. (Kandola & Shawe-Taylor, 2003) propose an extension
of kernel target alignment with a simple transformation of
the “ideal” target kernel, to adapt the kernel in the imbal-
anced training-data problem. Compared to (Kandola &
Shawe-Taylor, 2003), our method deals with just the class-
boundary data, not the entire training dataset. Furthermore,
the solution we introduce here learns a discriminant kernel
function by modifying a prior kernel function/matrix in the
supervised learning setting, instead of learning a kernel ma-
trix in the semi-supervised setting as in (Kandola & Shawe-
Taylor, 2003). An interesting future work is to compare the
difference and effectiveness of these two approaches.

3. Boundary Bias and SVMs

In this section, we use a checkerboard example to illustrate
the class imbalance problem that SVMs face. We also use
the example to explain the causes of the problem.

3.1. Checkerboard Example

A subtle but severe problem that an SVM classifier faces is
the skewed class boundary caused by imbalanced training
data. To illustrate this skew problem graphically, Figure 1
shows a 2D checkerboard example. The checkerboard di-
vides a 200 × 200 square into four quadrants. The top-left
and bottom-right quadrants are occupied by negative (ma-
jority) instances, but the top-right and bottom-left quad-
rants contain only positive (minority) instances. The lines
between the classes are the “ideal” boundary that separates
the two classes. In the rest of the paper, we will use positive
when referring to minority instances, and negative when re-
ferring to majority instances.

Figure 2 exhibits the boundary distortion between the two
left quadrants in the checkerboard under two different neg-
ative/positive training-data ratios, where a black dot with
a circle represents a support vector, and its radius repre-
sents the weight value αi of the support vector. The big-
ger the circle, the larger the αi. The class boundaries are
constructed by searching an x around the “ideal” bound-
ary with f(x) = 0 in Eq. 1. Figure 2(a) shows the SVM
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Figure 1. Checkerboard Experiment.

class boundary when the ratio of the number of negative
instances (in the quadrant above) to the number of positive
instances (in the quadrant below) is 10 : 1. Figure 2(b)
shows the boundary when the ratio increases to 10, 000 : 1.
The boundary in Figure 2(b) is much more skewed towards
the positive quadrant than the boundary in Figure 2(a), and
hence causes a higher incidence of false negatives.
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Figure 2. Boundaries of Different Ratios.

3.2. Causes of Skewed Boundary
To examine the causes, we present soft-margin SVMs
(Vapnik, 1995) in the binary classification setting to set up
a discussion context. Given a kernel function K and a set
of labeled instances Xtrain = {xi, yi}n

i=1, SVMs find the
optimal αi for xi to make the class prediction for x (a test
instance) by using the following equation:

sgn(f(x) =

n
∑

i=1

yiαiK(x,xi) + b). (2)

To solve αi’s, the soft-margin SVMs maximize the primal
Lagrangian

Lp =
‖w‖2
2

+ C

n
∑

i

ξ
k
i

−
n
∑

i=1

αi[yi(w · xi + b)− 1 + ξi]−
n
∑

i=1

µiξi,

where k = 1 or 2, αi ≥ 0, and µi ≥ 0. The penalty
constant C represents the trade-off between the empirical
error and the margin. According to the KKT conditions
(Vapnik, 1995), the value of αi satisfies

0 ≤ αi ≤ C and

n
∑

i=1

αiyi = 0, (3)

To understand the causes of the boundary-skew phe-
nomenon, Figure 3 plots the negative to positive support-
vector ratios. The x-axis of the figure depicts the ratios
of negative to positive training instances, and the y-axis
the ratios of negative to positive support vectors. The y-
axis shows that the negative to positive support-vector ratio
grows as the imbalance between the classes grows. Using
the SVM properties and Figure 3, we observe two potential
causes for the boundary skew.
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Figure 3. Support Vectors Ratios

1. The imbalanced training-data ratio. At the minority
side of the boundary, the positive training data may not
always reside as close to the “ideal boundary” as the neg-
ative training data do. This can be explained by a simple
example. Suppose we randomly draw n numbers based
on a uniform distribution between 1 and 100. The larger
the value of n, the higher the chance that we draw a num-
ber close to 100, though the expected mean of the draws
is invariant of the values of n. Thus, the low presence
of the positive training instances makes them appear far-
ther from the “ideal boundary” than the negative training
instances.

2. The imbalanced support-vector ratio. When inspect-
ing the boundary data in Figure 2, we find the αi’s values
of the minority class (the positive class) tend to be much
larger than those of the majority class, while the num-
ber of positive support vectors is substantially smaller.
This phenomenon agrees with the constraint presented in
Equation 3. As a consequence, the nearest neighborhood
of a test point, especially when it is near the boundary, is
likely to be dominated by negative support vectors, and
hence the decision function (Eq. 2) is more likely to clas-
sify a boundary point negative.

4. Strategies for the Imbalanced Classification

In this section, we present three algorithmic approaches for
adjusting the skewed boundary. We first present two com-
peting approaches, then our class-boundary-alignment al-
gorithm.



4.1. Boundary Movement (BM)

A naive method is to change b in the SVM decision func-
tion (Equation 2). One can set b so that the class-decision
boundary can be adjusted as follows:

f(x) = sgn(

n
∑

i=1

yiαiK(x,xi) + b+4b), (4)

where 4b represents how much the boundary is moved.
The boundary-movement method is a post-processing
method. Intuitively, we can see that changing b trades a
higher false positive count for a lower false negative one.
We use boundary movement as the yardstick to measure
how the other methods perform.

4.2. Biased Penalties (BP)

Veropoulos (Veropoulos et al., 1999) suggests using differ-
ent penalty factors C+ and C− for positive and negative
classes, reflecting their importance during training. There-
fore, the Lp formulation has two loss functions for two
types of errors.

Lp =
‖w‖2
2

+ C
+

n+
∑

{i|yi=+1}

ξ
k
i + C

−

n−
∑

{j|yj=−1}

ξ
k
j

−
n
∑

i=1

αi[yi(w · xi + b)− 1 + ξi]−
p
∑

i=1

µiξi.

If the SVM algorithm uses an L1 norm (k=1) for the losses,
its dual formulation gives the same Lagrangian as in the
original soft-margin SVMs, but with different constraints
on αi as follows:

0 ≤ αi ≤ C
+
, if yi = +1, and (5)

0 ≤ αi ≤ C
−
, if yi = −1. (6)

It turns out that this biased-penalty method does not help
SVMs as much as expected. From the KKT conditions
(Eq. 3), we can see that C imposes only an upper bound on
αi, not a lower bound. Increasing C does not necessarily
affect αi. Moreover, the constraint in Equation 3 imposes
equal total influence from the positive and negative support
vectors. The increases in some αi at the positive side will
inadvertently increase some αi at the negative side to sat-
isfy the constraint. These constraints can make the increase
of C+ on minority instances ineffective.

4.3. Class-Boundary Alignment

Here, we present our Class-Boundary-Alignment algorithm
in two parts. In the first part, the algorithm transforms
the kernel function K when the training data can be rep-
resented in a vector space. We use ACT to denote such an
adaptive conformal transformation algorithm. In the sec-
ond part, the algorithm modifies the kernel matrix K when

the data do not have a vector-space representation. We use
KBA to denote this kernel matrix modification method.

4.3.1. CONFORMALLY TRANSFORMING K (ACT)

Kernel-based methods, such as SVMs, introduce a map-
ping function Φ which embeds the the input space I into a
high-dimensional feature space F as a curved Remannian
manifold S where the mapped data reside (Amari & Wu,
1999; Burges, 1999). A Riemannian metric gij(x) is then
defined for S, which is associated with the kernel function
K(x,x′) by

gij(x) =

(

∂2K(x,x′)

∂xi∂x′j

)

x′=x

. (7)

The metric gij shows how a local area around x in I is
magnified in F under the mapping of Φ. The idea of con-
formal transformation in SVMs is to enlarge the margin
by increasing the magnification factor gij(x) around the
boundary (represented by support vectors) and to decrease
it around the other points. This could be implemented by
a conformal transformation of the related kernel K(x,x′)
according to Eq. 7, so that the spatial relationship between
the data would not be affected too much (Amari & Wu,
1999). Such a conformal transformation can be depicted as

K̃(x,x′) = D(x)D(x′)K (x,x′). (8)

In the above equation, D(x) is a properly defined positive
conformal function. D(x) should be chosen in a way such
that the new Remannian metric g̃ij(x), associated with the
new kernel function K̃(x,x′), has larger values near the
decision boundary. Furthermore, to deal with the skew of
the class boundary caused by imbalanced classes, we mag-
nify g̃ij(x)more in the boundary area close to the minority
class. In (Wu & Chang, 2003), we demonstrate that an RBF
distance function such as

D(x) =
∑

k∈SV

exp

(

−|x− xk|
τ2k

)

(9)

is a good choice for D(x).

In Eq. 9, we can see that if τ 2
k ’s are fixed for all support vec-

tors xk’s, D(x) would be very dependent on the density of
support vectors in the neighborhood of Φ(x). To alleviate
this problem, we adaptively tune τ 2

k according to the spatial
distribution of support vectors in F (Wu & Chang, 2003).
This goal can be achieved by the following equations:

τ
2
k = AVGi∈{‖Φ(xi)−Φ(xk)‖

2<M , yi 6=yk}

(

‖Φ(xi)− Φ(xk)‖2
)

.
(10)

In this equation, the average on the right-hand side com-
prises all support vectors in Φ(xk)’s neighborhood within
the radius of M but having a different class label. Here, M
is the average distance of the nearest and the farthest sup-
port vectors from Φ(xk). Setting τ2

k in this way takes into
consideration the spatial distribution of the support vectors
in F . Although the mapping Φ is unknown, we can play
the kernel trick to calculate the distance in F :



‖Φ(xi)−Φ(xk)‖2 = K (xi,xi)+K (xk,xk)− 2 ∗K (xi,xk).
(11)

Substituting Eq. 11 into Eq. 10, we can then calculate the
τ2
k for each support vector, which can adaptively reflect the

spatial distribution of the support vector in F , not in I .

When the training dataset is very imbalanced, the class
boundary would be skewed towards the minority class in
the input space I . We hope that the new metric g̃ij(x)
would further magnify the area far away from a minority
support vector xi so that the boundary imbalance could be
alleviated. Our algorithm thus assigns a multiplier for the
τ2
k in Eq. 10 to reflect the boundary skew in D(x). We

tune τ̃2
k as ηpτ

2
k if xk is a minority support vector; other-

wise, we tune it as ηnτ
2
k . Examining Eq. 9, we can see that

D(x) is a monotonously increasing function of τ 2
k . To in-

crease the metric g̃ij(x) in an area which is not very close
to the support vector xk, it would be better to choose a
larger ηp for the τ2

k of a minority support vector. For a ma-
jority support vector, we can choose a smaller ηn, so as to
minimize influence on the class-boundary. We empirically
demonstrate that ηp and ηn are proportional to the skew of

support vectors, or ηp as O( |SV
−|

|SV+|
), and ηn as O( |SV

+|
|SV−|

),

where |SV
+| and |SV

−| denote the number of minority
and majority support vectors, respectively. (Please see (Wu
& Chang, 2003) for the details of ACT.)

4.3.2. MODIFYING K (KBA)

For data that do not have a vector-space representation
(e.g., sequence data), it may not be applicable to confor-
mally transform K. In this situation, KBA modifies kernel
matrix K based on training-data distribution. Kernel matrix
K contains the pairwise similarity information between all
pairs of instances in a training dataset. Hence, in kernel-
based methods, all we need is a kernel matrix to learn the
classifier, even the data do not reside in a vector space.
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Figure 4. D(x) with Different τ 2k .

Now, since a training instance x might not be a vector, in
this paper, we introduce a term, support instance, to de-

note x if its embedded point via K is a support vector2.
In this situation, we cannot choose D(x) as in Eq. 9. (It
is impossible to calculate the Euclidean distance |x − xi|
for non-vector data.) In Section 4.3.1, we show that D(x)
should be chosen in such a way that the spatial resolution
of the manifold S would be magnified around the support
instances. In other words, if x is close to a support instance
xk in F (or in its neighborhood), we hope that D(x) would
be larger so as to achieve a greater magnification. In KBA,
we use the pairwise-similarity kxxk

to measure the distance
of x from xk in F . Therefore, we choose D(x) as

D(x) =
∑

k∈SI

exp

(

−
1

kxxk

− 1
τ2k

)

, (12)

where SI denotes the support-instance set, and τ 2
k controls

the magnitude of D(x).

Figure 4 illustrates a D(x) for a given support instance xk,
where we can see that D(x) (y-axis) becomes larger when
an instance x is more similar to xk (a larger kxxk

in the
x-axis), so that there would be more magnification on the
spatial resolution around the support vector embedded by
xk in F . Notice in the figure that D(x) can be shaped very
differently with different τ 2

k . We thus need to adaptively
choose τ2

k as

τ
2
k = AVGi∈{Dist2(xi,xk)<M , yi 6=yk}

(

Dist
2(xi,xk)

)

, (13)

where the distance Dist2(xi,xk) between two support in-
stances xi and xk is calculated via the kernel trick as

Dist
2(xi,xk) = kxixi + kxkxk − 2 ∗ kxixk . (14)

The neighborhood range M in Eq. 13 is chosen as the av-
erage of the minimal distance Dist2min and the maximal
distance Dist2max from xk. In addition, τ2

k is scaled in the
same way as we did in Section 4.3.1 for dealing with the
imbalanced training-data problem.

Figure 5 summarizes the KBA algorithm. We apply KBA

on the training dataset Xtrain until the testing accuracy on
Xtest cannot be further improved. In each iteration, KBA

adaptively calculates τ 2
k for each support instance (step 10),

based on the distribution of support instances in feature
space F . KBA scales the τ 2

k according to the negative-
to-positive support-instance ratio (steps 11 to 14). Finally,
KBA updates the kernel matrix and performs retraining on
Xtrain (steps 15 to 18).

5. Experimental Results

Our empirical study examined the effect of the class-
boundary-alignment algorithm (i.e., ACT and KBA) in two
aspects.

1. Vector-space evaluation. We compared ACT with
other algorithms for imbalanced-data learning. We used

2In KBA algorithm, if x is a support instance, we call both x

and its embedded support vector via K in F support instance.



Input:
Xtrain, Xtest, K;
θ; /* stopping threshold */
T ; /* maximum running iterations */
Output:
C; /* output classifier */
Variables:
SI; /* support-instance set */
M ; /* neighborhood range */
s; /* a support instance */
s.τ ; /* parameter of s */
s.y; /* class label of s */
Function Calls:
SVMTrain(Xtrain, K); /* train classifier C */
SVMClassify(Xtest, C); /* classify Xtest by C */
ExtractSI(C); /* obtain SI from C */
ComputeM(s,SI); /* compute M */
Begin
1) C ← SVMTrain(Xtrain,K);
2) εold ←∞;
3) εnew ← SVMClassify(Xtest, C);
4) t← 0;
5) while ((εold − εnew > θ)&&(t < T )) {
6) SI←ExtractSI(C);
7) ηp ← O( |SI

−|

|SI+|
), ηn ← O( |SI

+|

|SI−|
);

8) for each s ∈ SI{
9) M ←ComputeM(s,SI);
10) s.τ ←
√

AVGi∈{Dist2(si,s)<M , si.y 6=s.y}

(

Dist
2(si, s)

)

;

11) if s ∈ SI
+ then /* a minority */

12) s.τ ← √ηp × s.τ ;
13) else /* a majority */
14) s.τ ← √ηn × s.τ ;}
15) D(x) =

∑

s∈SI
exp
(

−
1

kxs
−1

s.τ2

)

16) for each kij in K{
17) kij ← D(xi) ×D(xj) × kij ;}
18) C ← SVMTrain(Xtrain,K);
19) εold ← εnew;
20) εnew ← SVMClassify(Xtest, C);
21) t← t+ 1;}
22) return C;
End

Figure 5. The KBA Algorithm.

six UCI datasets and an image dataset to conduct this
evaluation. (We present the datasets shortly.)

2. Non-vector-space evaluation. We evaluated the effect
of KBA on a set of video surveillance data, which are
represented as spatio-temporal sequences and do not have
a vector-space representation.

In our experiments, we employed Laplacian kernels of
the form exp(−γ|x − x

′|) as K(x,x′). Then we used
the following procedure. The dataset was randomly split

Dataset # Attrib # Pos # Neg SVMs SMOTE ACT

seg1 19 30 180 98.1 98.1 98.1

g7 10 29 185 89.9 91.8 93.7

euth1 24 238 1762 92.8 92.4 94.5

car3 6 69 1659 99.0 99.0 99.9

yeast5 8 51 1433 59.1 69.9 78.5

ab19 8 32 4145 0.0 0.0 51.9

Table 1. UCI-Dataset Prediction Accuracy.

into training and test subsets generated in an optimal ra-
tio, which was empirically chosen for each dataset. Hyper-
parameters (C and γ) of K(x,x′) were obtained for each
run using 7-fold cross-validation. All training, validation,
and test subsets were sampled in a stratified manner that
ensured each of them had the same negative/positive ra-
tio (Kubat & Matwin, 1997). We repeated this procedure
ten times, computed average class-predication accuracy,
and compared the results. For ACT and KBA, we chose
the stopping threshold θ as 0.001 and maximum running
iteration T as 10.

5.1. Vector-space Evaluation

For this evaluation, we used six UCI datasets and a 116-
category image dataset. The six UCI datasets we exper-
imented with are abalone (abalone19), car (car3), seg-
mentation (seg1), yeast (yeast5), glass (g7), and euthyroid
(euthy1). The number in the parentheses indicates the tar-
get class we chose. Table 1 shows the characteristics of
these six datasets organized according to their negative-
to-positive training-instance ratios. The top three datasets
(seg1, g7, and euth1) are not-too-imbalanced. The middle
two (car3 and yeast5) are mildly imbalanced. The bottom
dataset (ab19) is the most imbalanced (the ratio is about
130 : 1).

The image dataset contains 20K images in 116 categories
collected from the Corel Image CDs3. Each image is repre-
sented by a vector of 144 dimensions including color, tex-
ture, and shape features (Tong & Chang, 2001). To perform
class prediction, we employed the one-per-class (OPC) en-
semble (Dietterich & Bakiri, 1995), which trains 116 clas-
sifiers, each of which predicts the class membership for one
class. The class prediction on a testing instance is decided
by voting among the 116 classifiers.

5.1.1. RESULTS ON UCI BENCHMARK DATASETS

We first report the experimental results with the six UCI
datasets in Table 1. In addition to conducting experiments
with SVMs and ACT, we also implemented and tested one
popular minority over-sampling strategy SMOTE (Chawla
et al., 2000). We used the L2-norm RBF function for D(x).

3We exclude from our testbed categories that are not possi-
ble to classify automatically, such as “industry”, “Rome”, and
“Boston”. (E.g., the Boston category contains various subjects,
e.g., architectures, landscapes, and people, of Boston.)



Category Ratio SVMs BM BP ACT

Mountain 34 : 1 24.8 21.2 24.8 33.3

Snow 37 : 1 46.4 47.5 47.8 54.6

Desert 39 : 1 33.7 31.8 34.3 39.1

Dog 44 : 1 32.9 28.5 35.2 41.5

Woman 54 : 1 27.9 25.3 26.2 35.3

Church 66 : 1 21.8 19.4 21.8 20.0

Leaf 80 : 1 26.1 27.2 24.8 32.6

Lizard 101 : 1 13.9 11.8 15.1 22.2

Parrot 263 : 1 7.1 3.5 7.1 14.3

Horse 264 : 1 14.3 10.4 14.3 28.6

Leopard 283 : 1 7.7 5.6 7.7 23.1

Shark 1232 : 1 0.0 0.0 0.0 16.6

Table 2. Image-dataset Prediction Accuracy.
In each run, the training and test subsets were generated in
the ratio 6 : 1, which was empirically proven to be opti-
mal. For SMOTE4, the minority class was over-sampled
at 200%, 400% and 1000% for each of three groups of UCI
datasets in Table 1, respectively.

We report in Table 1 using the Kubat’s g-means metric de-
fined as

√
a+ · a−, where a+ and a− are positive (the target

class) and negative testing accuracy, respectively (Kubat &
Matwin, 1997). The table shows that ACT achieves the
highest accuracy in five of the six datasets (marked by bold
font). When the data is very imbalanced (the last row of
Table 1), ACT achieves 51.9% class-prediction accuracy,
where SVMs and SMOTE fail completely.

5.1.2. RESULTS ON 20K IMAGE DATASET

The image dataset is more imbalanced than the UCI
datasets. We first set aside 4K images to be used as the
test subset; the remaining 16K images were used for train-
ing and validation. We compared four schemes: SVMs,
BM (boundary movement), BP (biased penalty), and ACT.
Notice that in this experiment, we use the L1-norm RBF
function for D(x), since the L1-norm RBF works the best
for the image dataset (Tong & Chang, 2001).

Table 2 presents the prediction accuracy for twelve repre-
sentative categories out of 116 ones, sorted by their imbal-
ance ratios. ACT improves the accuracy over SVMs by
7.6%, 4.9%, and 13.4% on the three subgroup datasets, re-
spectively. ACT achieves the best prediction accuracy for
eleven out of twelve categories among all schemes (marked
by bold font). BM is inferior to SVMs for almost all cat-
egories. Finally, BP outperforms SVMs, but only slightly.
(We have predicted BP’s ineffectiveness, due to the KKT
conditions, in Section 4.2.)

5.2. Non-vector-space Evaluation

For our multi-camera video-surveillance project (Wu et al.,
2003), We recorded video at parking lot-20 on the UCSB

4For the datasets in Table 1 from top to bottom, for
SMOTE, the optimal γ was 0.002, 0.003, 0.085, 0.3, 0.5, and
0.084 respectively. For SVMs and ACT, the optimal γ was
0.004, 0.003, 0.08, 0.3, 0.5, and 0.086 respectively. All optimal
C’s were 1, 000.

(a) Sensitivity

(b) Specificity

Figure 6. Boundaries of Different Ratios.

campus. We collected trajectories depicting five motion
patterns: circling (30 instances), zigzag-pattern or EM-
pattern (22 instances), back-and-forth (40 instances), go-
straight (200 instances), and parking (3, 161 instances in-
cluding additional synthetic data to simulate the skew ef-
fect). We divided these events into the benign and suspi-
cious categories and aimed to detect suspicious events with
high accuracy. The benign-event category consists of pat-
terns go-straight and parking, and the suspicious-event cat-
egory consists of the other three patterns.

For each experiment, we chose 60% of the data as the train-
ing set, and the remaining 40% as our testing data. We
employed a sequence-alignment kernel to compare simi-
larity between two trajectories (see (Wu et al., 2003) for
details). Figure 6(a) reports the sensitivities of using SVMs
and three other improvement methods. All three meth-
ods, BM, BP, and KBA, improve sensitivity. Among the
three, KBA achieves the largest magnitude of improvement
over SVMs, around 30 percentile points. Figure 6(b) shows
that all methods maintain high specificity. Notice that BM

method performs well for detecting M-pattern and back-
forth; however, it does not do well consistently over all
patterns. The performance of the BM method can be highly
dependent on the data distribution. BP does not work ef-
fectively, which bears out our prediction in Section 4.2.

6. Conclusion

We have proposed the class-boundary-alignment algo-
rithm for tackling the imbalanced training-data challenge.
Through theoretical justifications and empirical studies, we
show this method to be effective. We believe that class-
boundary alignment is attractive, not only because of its
accuracy, but also because it can be applied for both vector-



data and sequence-data (e.g., DNA sequences and spatio-
temporal patterns) learning through modifying the kernel
matrix directly.
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