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Abstract

Selective sampling, a part of the active learn-
ing method, reduces the cost of labeling sup-
plementary training data by asking for the la-
bels only of the most informative, unlabeled
examples. This additional information added
to an initial, randomly chosen training set is
expected to improve the generalization per-
formance of a learning machine. We inves-
tigate some methods for a selection of the
most informative examples in the context of
one-class classification problems (OCC) i.e.
problems where only (or nearly only) the ex-
amples of the so-called target class are avail-
able. We applied selective sampling algo-
rithms to a variety of domains, including real-
world problems: mine detection and texture
segmentation. The goal of this paper is to
show why the best or most often used selec-
tive sampling methods for two- or multi-class
problems are not necessarily the best ones
for the one-class classification problem. By
modifying the sampling methods, we present
a way of selecting a small subset from the un-
labeled data to be presented to an expert for
labeling such that the performance of the re-
trained one-class classifier is significantly im-
proved.

1. Introduction

In many classification problems, a large number of un-
labeled examples may be available in addition to a
small training set. To benefit from such examples, one
usually exploits either implicitly or explicitly the link
between the marginal density P (x) over the examples
of a class x and the conditional density P (y|x) rep-
resenting the decision boundary for the label y. For

example, high density regions or clusters in the data
can be expected to fall solely in one or another class.
One technique to exploit the marginal density P (x)
between classes is selective sampling, which is a part
of the active learning method (Cohn 1996). In this
technique the performance of classifiers is improved by
adding supplementary information to a training set.
In general, there is a small set of labeled data and a
large set of unlabeled data. In addition, there exists
a possibility of asking an expert (oracle) for labeling
additional data. However, this may not be used exces-
sively e.g. for economic reasons. The question is: how
to select an additional subset of unlabeled data such
that after labeling and including it in the training set
the performance of a particular classifier improves the
most. These examples are called the most informative
patterns. Many methods of selective sampling have al-
ready been considered in two- or multi-class problems.
They select objects:

• which are close to the decision boundary (Cohn
1992) e.g. close to a margin or inside a margin for
the support vector classifier (Cambell),

• or which have the most evenly split labels over a
variation of classifiers:

– trained on multiple permutations of the la-
beled data (Warmuth),

– differing by the settings,
– trained on independent sets of features

(Muslea).

• or that reduce the size of the version space
(Mitchell, Tong and Koller)

These sampling methods are looking for the most in-
formative patterns in the vicinity of a current classifier.
It means they select patterns, to be labeled by an ora-
cle, which have a high probability of incorrect classifi-
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cation if they are not included in the training set. The
classification performance is improved in small steps.
In this paper, we will test a number of selective sam-
pling methods for several one-class classification prob-
lems (De Ridder 1998, Japkowicz 1999, Tax 2001).

In the problem of one-class classification, the goal is to
accurately describe one class of objects, called the tar-
get class, as opposed to a wide range of other objects
which are not of interest, called outliers in this pa-
per. Many standard pattern recognition methods are
not well equipped to handle this type of problem; they
require complete descriptions for both classes. Espe-
cially when one class is very diverse and ill-sampled,
normal (two-class) classifiers obtain very bad general-
ization for this class.

The problem of one-class classification is harder than
the standard two-class classification problem. In two-
class classification, when examples of outliers and tar-
gets are both available, a decision boundary is sup-
ported from both sides by examples of each of the
classes. Because in case of one-class classification only
the target class is available, just one side of the bound-
ary is supported. Based on the examples of one class
only, it is hard to decide how tight the boundary should
fit around the target class.

The absence of outlier examples makes it also very
hard to estimate the classification error. The error of
the first kind EI , referring to the target objects that
are classified as outlier objects, can be estimated on
the available data. However, the error of the second
kind EII referring to the outlier objects that are clas-
sified as target objects, cannot be estimated without
assumptions on the distribution of the outliers. If no
information on the outlier class is given we assume a
uniform distribution of the outliers.

Figure 1 illustrates for a multi-class problem the dif-
ference between discrimination by multi-class classifi-
cation and description by a one-class approach. The
first solution to the problem divides the entire data
space and assigns each of its parts to the particular
class. The second one assigns a new data point only
to the particular class if it is in one of the described
regions:

• in the discriminant approach a new object xi has
to be assigned to one of the classes being present
in the training set.

• in the description approach if a new object xi is
not inside a region described by the target class
it is be assigned to a not-recognized class, called
the outlier class.

In this paper, we will show that the standard selective
sampling methods for multi-class problems, which look
in the vicinity of the classifier, do not perform well in
a one-class classification problem. To justify this, a
distance measure to the description boundary defined
by the classification confidence (called also uncertainty
sampling (Lewis and Gale)), will be used.

The layout of this paper is as follows: in the section 2,
the selective sampling techniques will be introduced.
In the next section we will show some results of un-
certainty sampling for several one-class classifiers on
an artificially created problem. We will then go on to
show some results on a real-world mine detection prob-
lem and discuss the relative merits and disadvantages
of the uncertainty sampling methods.

2. A formal framework

In selective sampling algorithms the challenge is to de-
termine which unlabeled examples will be the most in-
formative (e.g. improve the classification performance
the most) if they were labeled and added into an ex-
isting training set. These are the examples which are
presented as a query to an oracle - an expert who can
label any new data without error. We begin with a
preliminary, weak classifier that has to be first deter-
mined by a small set of labeled samples. In particular,
in selective sampling algorithms, mentioned in section
1, the distributions of query patterns will be dense
near the final decision boundaries (where examples are
informative) rather than at the region of the highest
prior probabilities (where patterns are typically less
informative). At the beginning, the training set con-
sists of a few randomly selected samples. To reach the
desired classification error, we would like to add as few
as possible new examples (labeled by the expert) from
the unlabeled data using a selective sampling method
1. If the sampling method selects patterns close to
the boundary given by the current classifier, then the
probability of an incorrect classification is higher for
such examples than for examples being far from the de-
scription boundary. This approach was proved to work
for several multi-class problems (Blum 1998, Cambell,
Cohn 1992, Freund 1997).

Because it is usually not possible to compute the dis-
tance between a pattern and a nonlinear classifier, we
propose to base this distance measure on the raw out-
put of a classifier y(x), where y(x) ∈ (−∞,+∞) and:

y(x) < 0 for objects classified as outliers

y(x) ≥ 0 for objects classified as targets



Figure 1. The multi-class problem solved by discriminant, multi-class support vector classifier (left) and by description,
one-class support vector classifier (right)

Table 1. Active learning with selective sampling - The al-
gorithm

1. assume that a small number of the target
objects with true labels is given
constituting an initial training set

2. train a specified classifier on the
training set

3. select a number of objects classified
as targets and outliers according to the
chosen selective sampling method

4. ask an oracle for labels of these
objects and include them in the training
set

5. repeat the steps 2-4 or STOP if e.g. the
training set is larger than a specified
size

y(x) is converted to a relative confidence Γc
y indicat-

ing that object x belongs to class c assigned by the
classifier to one of the classes (target or outlier):

The confidence Γc
y is computed as follows:

Γc
y =

fc(y)∑
x∈c fc(y)

Where c indicates either a target (t) or an outlier (o)
class assigned by the classifier, f t(y) = 1

1+e(−y) for ob-
jects classified as targets and fo(y) = 1

1+ey for objects
classified as outliers.

∑
x∈c(Γ

c
y) = 1;1 0 ≤ Γc

y ≤ 1

For objects classified as targets only the confidences
Γt

y are computed, for objects classified as outliers only
the confidences Γo

y are computed.

There are two interesting types of regions considering
the classification confidences:

1. high confidence regions, defined by the objects far
from the decision boundary for which Γc

y has a
high value

2. low confidence regions, defined by the objects
close to the decision boundary for which Γc

y has a
low value

Based on the confidence regions of a classifier, we can
describe four selective sampling methods that choose

1If fc(y) > 0, then x is assigned to the class c. So, the
confidences of all objects, within a class (as classified by
the actual classifier) sum to one. We realize that this is a
nonstandard way of using the ’confidence’ concept.



an additional set of examples (e.g. 5 from each tar-
get/outlier class) for an oracle to be labeled:

ll - a low confidence for both the target and the out-
lier classes. This method is an approximation of
the standard selective sampling methods used in
multi-class problems because it samples from the
vicinity of the current classifier.

lh - a low confidence for the target and a high confi-
dence for the outlier class.

hl - a high confidence for the target and a low confi-
dence for the outlier class.

hh - a high confidence for both the target and the
outlier class.

We compare these sampling techniques with the two
methods that are not dependent on the classification
confidence:

hr - a half-random method, which first classifies the
unlabeled set of examples and then selects ran-
domly an equal number of examples from each
of the two classification sets rand(x ∈ t) and
rand(x ∈ o). This method selects objects based
just on the classification labels; the classification
confidences Γc

x are not considered during the se-
lection process.

ra - a random selective sampling method, rand(x ∈
t ∨ o). In this method the classification labels as
well as the confidences are not considered during
the selection process.

To avoid the selection of patterns being ’really far’
from the current description boundary we will assume
that the class examples: targets and outliers, in the
one-class classification problem are bounded by a box.
In our experiments with the artificial data, the lengths
of the bounding box edges are set up to 10 times the
feature ranges of the initial training set.

The artificial data used in experiments: the target
class contains merged, normally distributed clouds; see
figure 2:

N([1 1 1], [4 0 0; 0 0.5 0; 0 0 0.5])
N([2 0 1], [0.01 0 0; 0 8 0; 0 0 0.01])
N([10 2 1], [0 0.5 0; 4 0 0; 0 0 0.5])
N([10 1 1], [0 8 0; 0.01 0 0; 0 0 0.01])
N([20 10 5], [0 0 0.5; 4 0 0; 0 0.5 0])
N([20 10 5], [0 0 0.01; 0.01 0 0; 08 0])
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Figure 2. The artificial created target set used in experi-
ments

As the outlier class, we considered objects uniformly
distributed in the bounding box with 5% overlap with
the target class.

To see how well a classifier fits the data both errors
EI and EII should be considered. Because the initial
training set contains a small set of the target objects at
the beginning EI is high and EII is relatively low. The
correct selective sampling methods chosen for the par-
ticular classifier should reduce the error EI and should
not increase EII at the same time. In section 4 with
the results on real-world data, for clarity we present
just the result for target class. The error for outlier
class was just slightly increasing like in examples with
an artificial data.

3. Experiments with the artificial data

Now we will present the results of experiments per-
formed on the 3D artificially created classes, using
the uncertainty selective sampling methods described
in section 2. A number of different one-class classi-
fiers is taken into account (Tax 2001): Support Vector
Data Description(SVDD), Autoencoder Neural Net-
work(ANN) and the Parzen classifier. The dataset
contains 3000 target objects and 7000 outlier objects
chosen in the bounding box. At the beginning, we ran-
domly select 6 patterns from the target class and train
a classifier. First, in every sampling step, 5 objects
currently classified as targets and 5 objects currently
classified as outliers are chosen according to the selec-
tive sampling method. Next, the true object labels are
retrieved and the classifier is retrained. The error of
the first kind EI for all the classifiers is set to 0.1 on
the training set. The size of the bounding box equals
10. In Table 3 the averaged results over 10 runs are
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Table 2. The classification error EI and EII for SVDD, autoencoder (ANN) and Parzen classifier, on the artificial dataset
for different selective sampling methods. The results are averaged over 10 runs.



presented.

3.1. Support vector data description (SVDD)

In this experiment, the SVDD with kernel whitening
(Tax and Juszczak) is used. From Table 3, it can be
seen that:

• the ll and hl methods are the slowest ones; they
require to label more samples than the other
methods to reach the same classification error.
The low performance of the ll method in the
combination with SVC is surprising because SVC
considers just objects close to a decision bound-
ary during computation, in multi-class approach
methods that samples close to the decision bound-
ary perform the best. The difference between
one- and multi-class approach is that in occ it is
more important to expand the target class regions
rather then refine the boundary.

• the lh method is the fastest one; it requires to
label less samples than the other methods. This
method allows to evolve the classifier fast by ask-
ing for the true labels of highly confident patterns,
classified as outliers and supports the description
boundary by patterns of a low confidence classi-
fied as targets.

• the hh method also allows to evolve the classifier
fast by asking for the true labels of highly con-
fident patterns classified as outliers, but the de-
scription boundary is not supported by patterns
classified as targets close to the boundary. In con-
sequence, the boundary is collapsing around the
training size of 50; see Table 3.

3.2. Autoencoder neural network (ANN)

We train two autoencoder neural networks with 5 hid-
den units: one for the target class and one for the
outlier class. For this classifier, both the lh and hh
methods perform almost equally well, since they allow
for fast classification improvement by finding the true
labels of the patterns classified as outliers with high
confidences. Also here the ll and hl methods are the
worst ones and hh cause a rise of the classification
error.

3.3. Density based classifiers

For density estimation classifiers based on: Parzen,
gaussian distributions, mixture of gaussians or on
other density types, all selective sampling methods
based on distances to a description boundary do not
perform well, especially the hh method; see Table 3.

They spoil the density estimation. For this type of
classifiers the best sampling algorithm is the random
method ra, because it uniformly samples the classes
over entire distributions.

3.4. Different size of the bounding box

The size of the bounding box has an influence on the
performance of the selective sampling methods intro-
duced in section 2. This influence is stronger for meth-
ods that do not use the information about classifica-
tion during selection or the distance to the currently
trained classifier. In figure 3, the classification error for
different sizes of the bounding box is presented(8 (top)
and 20 (bottom) of the maximum distance, within the
target class, in the respective feature direction). For
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Figure 3. The classification error EI for the SVDD trained
on merged Higleyman classes for different size of the
bounding box 8 (top) and 20 (bottom). The results are
averaged over 10 runs.

selective sampling methods not based on the distance
to the classifier - (hr) and classification knowledge -
(ra), the probability that the most informative pat-
terns will be selected and presented to an expert is
lower when the size of the bounding box is larger; see
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Figure 4. The classification error EI for the target class (left) for the SVDD with kernel whitening, trained on the mine
data with the sand type of soil, (right) for the Parzen classifier trained on texture data, for different selective sampling
methods. The results are averaged over 10 runs.

figure 3. For the (hh) and (lh) methods only the se-
lection of objects classified as outliers depends on the
size of the bounding box, so they are less dependent on
it. These methods select patterns, closer to edges of
the bounding box than to the classifier. For the very
large size of the bounding box the best performance
has the (ll) method, it samples from the regions that
are in the vicinity of the description boundary.

4. Experiments with the real-world
data

4.1. Texture data

This image data contains five different type of textures,
where one of them was chosen as the target class and
all others became the outlier class. The 7-dimensional
data set contains the following features: the outputs of
Gabor and Gauss filters and the second derivative es-
timates. It contains 13231 target examples and 52305
outlier examples.

4.2. Mine data

Land mines are hidden in a test bench of different soils:
sand, clay, peat and ferruginous. Features are infra-
red images taken at different day time (12-dimensional
feature space). Only the approximated positions of
the mines are known (consequently some mine pixel
labels are incorrect). Because of this and because the
collection of soil samples is easier and safer than the
collection of mine samples and some of the mine pixel
labels are incorrect, soil was taken as the target class
and mines as the outlier class. The data contains 3456
examples of the target class and 23424 examples of

outlier class. We built a classifier for each type of soil
separately. We did not consider mixtures of soils.

In this experiment the Parzen and the SVDD with ker-
nel whitening was used. For each dataset, the initial
training sets contain 40 randomly chosen target ob-
jects. In each iteration step, 5 objects currently clas-
sified as targets and 5 objects currently classified as
outliers are added to the training set with their true
labels. The classification errors for the target class for
the selective sampling methods, described in section 2,
are shown in figure 4.

Similar as for artificial data, the results for the hl and
ll methods are very bad, because the initial training
set might have been too small. The hl and ll selective
sampling methods select mainly those target objects
that are close to the actual description boundary. As
a result, the classifier can only grow slowly.

5. Conclusions

We have described several methods in which unlabeled
data can be used to augment labeled data based on
the confidence of classifiers. Many selective sampling
methods try to improve the performance of a classifier
by adding supplementary patterns from the vicinity
of the classifier. These patterns have a high proba-
bility to be wrongly classified. Because they are close
to the current classifier including them in the training
set, with their true labels, will improve the classifica-
tion performance slightly. One-class classification dif-
fers from the standard, half-spaces, two-class problem
because of the assumption that the domain of one of
the classes, the target class, is limited to a certain area.



If in this problem only a small, labeled, target set is
available, with the size e.g. twice the data dimension-
ality and we would like to improve the performance of
a classifier by asking an expert for labels of the supple-
mentary data, then the selection of patterns close to
the description boundary (ll, lh methods) will build a
more dense distribution of the target class.

The choice of a selective sampling method depends on
the classifier considered. For some classifiers, like the
SVDD or the ANN, selective sampling methods based
on the distance to the decision boundary will perform
well. Patterns close to the decision boundary influence
them the most. For classifiers based on density esti-
mation, like the Parzen classifier, selective sampling
methods based on the distance to the decision bound-
ary could spoil the estimation of the density. It could
happen that adding more samples to the training set
will, in fact, increase the classification error.

In problems where only a small target set is available
and the task is to select a small unlabeled set to be
labeled by an expert, to reach the desired classifica-
tion error, it is worth to base the selection procedure
on the confidence of the classifier. Our experiments
showed that by selecting objects far from the descrip-
tion boundary it is possible to lower the number of
necessary objects to be labeled by the expert. If the
classes are not overlapping it is possible to improve fur-
ther the classifier by changing the selective sampling
method to one that chooses the most informative pat-
terns close to the decision boundary (ll, lh).

The performance of the methods, based on the confi-
dence of the classifier, presented in this paper depends
on the size of the bounding box. The size of the box
has the strongest influence on the random method ra.
For very large size of the bounding box the best per-
formance will be given by the ll selective method.
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