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Abstract

Newly developed resampling algorithms for particle filters suitable for real-time
implementation are described and their analysis is presented. The new algorithms
reduce the complexity of both hardware and DSP realization through addressing
common issues such as decreasing the number of operations and memory access.
Moreover, the algorithms allow for use of higher sampling frequencies by overlapping
in time the resampling step with the other particle filtering steps. Since resampling
is not dependent on any particular application, the analysis is appropriate for all
types of particle filters that use resampling. The performance of the algorithms is
evaluated on particle filters applied to bearings-only tracking and joint detection and
estimation in wireless communications. We have demonstrated that the proposed
algorithms reduce the complexity without performance degradation.

Key words: particle filters, resampling, computational complexity, sequential
implementation

1 Introduction

Particle filters (PFs) are very suitable for non-linear and/or non-Gaussian
applications. In their operation, the main principle is recursive generation of
random measures, which approximate the distributions of the unknowns. The
random measures are composed of particles (samples) drawn from relevant
distributions and of importance weights of the particles. These random
measures allow for computation of all sorts of estimates of the unknowns,

1 This work has been supported under the NSF Awards CCR-0082607 and CCR-
0220011.
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including minimum mean square error (MMSE) and maximum a posteriori
(MAP) estimates. As new observations become available, the particles and
the weights are propagated by exploiting Bayes theorem and the concept of
sequential importance sampling [3,13].

The main goals of this paper are development of resampling methods that
allow for increased speeds of PFs, that require less memory, that achieve
fixed timings regardless of the statistics of the particles, and that are
computationally less complex. Development of such algorithms is extremely
critical for practical implementations. The performance of the algorithms is
analyzed when they are executed on a Digital Signal Processor (DSP) and
specially designed hardware. Note that resampling is the only PF step that
does not depend on the application or the state-space model. Therefore, the
analysis and the algorithms for resampling are general.

From an algorithmic standpoint, the main challenges include development of
algorithms for resampling that are suitable for applications requiring temporal
concurrency. 2 A possibility of overlapping PF operations is considered because
it directly affects hardware performance, that is, it increases speed and reduces
memory access. We investigate sequential resampling algorithms and analyze
their computational complexity metrics including the number of operations as
well as the class and type of operation by performing behavioral profiling [12].
We do not consider fixed point precision issues where a hardware solution
of resampling suitable for fixed precision implementation has already been
presented [15].

The analysis in this paper is related to the sample importance resampling
(SIR) type of PFs. However, the analysis can be easily extended to any
PF that performs resampling, for instance the auxiliary sample importance
resampling (ASIR) filter. First, in Section 2 we provide a brief review of the
resampling operation. We then consider random and deterministic resampling
algorithms as well as their combinations. The main feature of the random
resampling algorithm, referred to as residual-systematic resampling (RSR) and
described in Section 3, is to perform resampling in fixed time that does not
depend on the number of particles at the output of the resampling procedure.
The deterministic algorithms, discussed in Section 4, are threshold based
algorithms, where particles with moderate weights are not resampled. Thereby
significant savings can be achieved in computations and in the number of times
the memories are accessed. We show two characteristic types of deterministic
algorithms: a low complexity algorithm and an algorithm that allows for
overlapping of the resampling operation with the particle generation and
weght computation. The performance and complexity analysis are presented

2 Temporal concurrency quantifies the expected number of operations that are
simultaneously executed, i.e., are overlapped in time.
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in Sections 5 and the summary of our contributions is outlined in Section 6.

2 Overview of Resampling in PFs

PFs are used for tracking states of dynamic state-space models described by
the set of equations

xn = f(xn−1) + un

yn = g(xn) + vn

where xn is an evolving state vector of interest, yn is a vector of observations,
un and vn are independent noise vectors with known distributions, and f(·)
and g(·) are known functions. The most common objective is to estimate xn

as it evolves in time.

PFs accomplish tracking of xn by updating a random measure
{x(m)

1:n , w(m)
n }M

m=1,
3 which is composed of M particles x(m)

n and their weights
w(m)

n defined at time instant n, recursively in time [1,11,14]. The random
measure approximates the a posteriori density of the unknown trajectory x1:n,
p(x1:n|y1:n), where y1:n is the set of observations.

In the implementation of PFs, there are three important operations: particle
generation, weight computation, and resampling. Resampling is a critical
operation in particle filtering because with time, a small number of weights
dominate the remaining weights, thereby leading to poor approximation of the
posterior density and consequently to inferior estimates. With resampling, the
particles with large weights are replicated and the ones with negligible weights
are removed. After resampling, the future particles are more concentrated in
domains of higher posterior probability, which entails improved estimates.

The PF operations are performed according to

(1) Generation of particles (samples) x(m)
n ∼ π

(
xn|x(imn−1)

n−1 ,y1:n

)
, where

π(xn|x(imn−1)

n−1 ,y1:n) is an importance density and i(m)
n is an array of indexes,

which shows that the particle m should be reallocated to the position i(m)
n ,

(2) Computation of weights by

w∗(m)
n =

w
(im

n−1
)

n−1

a
(im

n−1
)

n−1

p(yn|x(m)
n )p(x

(m)
n |x(im

n−1
)

n−1 )

π(x
(m)
n |x

(im
n−1

)

n−1 ,y1:n)
followed by normalization

w(m)
n = w

∗(m)
n∑M

j=1
w

∗(j)
n

, and

3 The notation x1:n signifies x1:n = {x1 x2 · · · ,xn}
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(3) Resampling i(m)
n ∼ a(m)

n , where a(m)
n is a suitable resampling function

whose support is defined by the particle x(m)
n [19].

The above representation of the PF algorithm provides a certain level
of generality. For example, the SIR filter with a stratified resampling is
implemented by choosing a(m)

n = w(m)
n for m = 1, ..., M . When a(m)

n = 1/M ,
there is no resampling and i(m)

n = m. The ASIR filter can be implemented

by setting a(m)
n = w(m)

n p(yn+1|µ(m)
n+1) and π(xn) = p(xn|x(m)

n−1), where µ(m)
n is

the mean, the mode or some other likely value associated with the density
p(xn|x(m)

n−1).

3 Residual-Systematic Resampling Algorithm

In this section, we consider stratified random resampling algorithms, where
a(m)

n = w(m)
n [4,16,17]. Standard algorithms used for random resampling are

different variants of stratified sampling such as residual resampling (RR) [2],
branching corrections [9] and systematic resampling (SR) [11]. Systematic
resampling is the most commonly used since it is the fastest resampling
algorithm for computer simulations.

We propose a new resampling algorithm which is based on stratified
resampling, and we refer to it as residual systematic resampling (RSR) [5].
Similar to RR, RSR calculates the number of times each particle is replicated
except that it avoids the second iteration of RR when residual particles need
to be resampled. Recall that in RR the number of replications of a specific
particle is determined in the first loop by truncating the product of the number
of particles and the particle weight. In RSR instead, the updated uniform
random number is formed in a different fashion, which allows for only one
iteration loop and processing time that is independent of the distribution of
the weights at the input. The RSR algorithm for N input and M output
(resampled) particles is summarized by the following pseudocode:

Purpose: Generation of an array of indexes {i}N
1 at time instant n, n > 0.

Input: An array of weights {wn}N
1 , input and output number of particles,

N and M , respectively

Method:
(i) = RSR(N,M,w)
Generate a random number ∆U (0) ∼ U [0, 1

M ]
for m = 1 to N

i(m) = �(w(m)
n − ∆U (m−1)) · M� + 1

∆U (m) = ∆U (m−1) + i(m)

M − w
(m)
n
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end

Pseudocode 1: Residual systematic resampling (RSR) algorithm.

Fig. 1 graphically illustrates the SR and RSR methods for the case of
N = M = 5 particles with weights given in the table. SR calculates the
cumulative sum of the weights C(m) = Σm

i=1w
(i)
n , and compares C(m) with the

updated uniform number U (m) for m = 1, ...N . The uniform number U (0)

is generated by drawing from the uniform distribution U [0, 1
M

] and updated
by U (m) = U (m−1) + 1/M . The number of replications for particle m is
determined as the number of times the updated uniform number is in the range
[C(m−1), C(m)). For particle one, U (0) and U (1) belong to the range [0, C(1)),
so that this particle is replicated twice, which is shown with two arrows that
correspond to the first particle. Particles two and three are replicated once.
Particle four is discarded (i(4) = 0) because no U (m) for m = 1, ..., N appears
in the range [C(3), C(4)).

The RSR algorithm draws the uniform random number U (0) = ∆U (0) in the
same way but updates it by ∆U (m) = ∆U (m−1) + i(m)

M
− w(m)

n . In the figure,

we display both U (m) = ∆U (m−1) + i(m)

M
and ∆U (m) = U (m) − w(m)

n . Here,
the uniform number is updated with reference to the origin of the currently
considered weight, while in SR it is propagated with reference to the origin
of the coordinate system. The difference ∆U (m) between the updated uniform
number and the current weight is propagated. Fig. 1 shows that i(1) = 2 and
that ∆U (1) is calculated and then used as the initial uniform random number
for particle two. Particle four is discarded because ∆U (3) = U (4) > w(4), so that
�(w(4)

n −∆U (3)) ·M� = −1 and i(4) = 0. If we compare ∆U (1) with the relative
position of the U (2) and C(1) in SR, ∆U (2) in RSR with the relative position
of U (3) and C(2) in SR and so on, we see that they are equal. Therefore, SR
and RSR produce identical resampling result.

3.1 Particle Allocation and Memory Usage

We call particle allocation the way in which particles are placed to their new
memory locations as a result of resampling. With proper allocation, we want
to reduce the number of memory accesses and the size of state memory. The
allocation is performed through index addressing, and its execution can be
overlapped in time with the particle generation step. In Fig. 2, three different
outputs of resampling for the input weights from Fig. 1 are considered. In Fig.
2(a), the indexes represent positions of the replicated particles. For example,
i(2) = 1 means that particle 1 replaces particle 2. Particle allocation is easily
overlapped with particle generation using x̃(m) = x(i(m)) for m = 1, ...M ,
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m w(m) i(m)

1 7/20 2

2 6/20 1

3 2/20 1

4 2/20 0

5 3/20 1

1 2 3 4 5

C(1)

1

C(2)
C(3)

C(4)

U(0)

U(1)

U(2)

U(3)

U(4)

1 2 3 4 5

U(0)

U(1)

U(3) U(4)

U(2)

w (1)

w (3)

w (4)

w (2)

w (5)

Particle Particle

U(1)

U(2)

U(3)
U(4)

C(5)=1

U(5)

Fig. 1. Systematic and residual-systematic resampling for an example with M = 5
particles.

where {x̃(m)}M
m=1, is the set of resampled particles. The randomness of the

resampling output makes it difficult to realize in place storage so that
additional temporary memory for storing resampled particles x̃(m) is necessary.
In Fig. 2(a), particle 1 is replicated twice and occupies the locations of particles
1 and 2. Particle 2 is replicated once and must be stored in the memory of
x̃(m) or it would be rewritten. We refer to this method as particle allocation
with index addressing.

In Fig. 2(b), the indexes represent the number of times each particle is
replicated. For example, i(1) = 2 means that the first particle is replicated
twice. We refer to this method as particle allocation with replication factors.
This method still requires additional memory for particles and memory for
storing indexes.

The additional memory for storing the particles x̃(m) is not necessary if
the particles are replicated to the positions of the discarded particles. We
call this method particle allocation with arranged indexes of positions and
replication factors (Fig. 2(c)). Here, the addresses of both replicated particles
and discarded particles as well as the number of times they are replicated
(replication factor) are stored. The indexes are arranged in a way that the
replicated particles are placed in the upper and the discarded particles in the
lower part of the index memory. In Fig. 2(c), the replicated particles take
the addresses 1 − 4 and the discarded particle is on the address 5. When one
knows in advance the addresses of the discarded particles, there is no need
for additional memory for storing the resampled particles x̃(m), because the
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new particles are placed on the addresses occupied by the particles that are
discarded. It is useful for PFs applied to multi-dimensional models since it
avoids need for excessive memory for storing temporary particles.
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1
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1

1

2

3

4

5

1

2

3

5

4

2

1

1

1

(a) (b) (c)

Fig. 2. Types of memory usages: (a) indexes are positions of the replicated particles,
(b) indexes are replication factors, (c) indexes are arranged positions and replication
factors.

For the RSR method, it is natural to use particle allocation with replication
factor and arranged indexes because the RSR produces replication factors.
In the particle generation step, the for loop with the number of iterations
that corresponds to the replication factors is used for each replicated particle.
The difference between the SR and the RSR methods is in the way the inner
loop in the resampling step for SR and particle generation step for RSR are
performed. Since the number of replicated particles is random, the while loop
in SR has an unspecified number of operations. To allow for an unspecified
number of iterations, complicated control structures in hardware are needed
[8]. The main advantage of our approach is that the while loop of SR is replaced
with a for loop with known number of iterations.

4 Deterministic Resampling

4.1 Overview

In the literature, threshold based resampling algorithms are based on the
combination of residual resampling and rejection control and they result in
non-deterministic timing and increased complexity [18,19]. Here, we develop
threshold based algorithms whose purpose is to reduce complexity and
processing time. We refer to these methods as partial resampling (PR) because
only a part of the particles are resampled.

In partial resampling, the particles are grouped in two separate classes: one
composed of particles with moderate weights and another, with dominating
and negligible weights. The particles with moderate weights are not resampled,
whereas the negligible and dominating particles are resampled. It is clear that
on average, resampling would be performed much faster because the particles
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with moderate weights are not resampled. We propose several PR algorithms
which differ in the resampling function.

4.2 Partial Resampling: Sub-Optimal Algorithms

Partial resampling could be seen as a way of a partial correction of the variance
of the weights at each time instant. PR methods consist of two steps: one
in which the particles are classified as moderate, negligible or dominating
and the other in which one determines the number of times each particle is
replicated. In the first step of PR, the weight of each particle is compared
with a high and a low thresholds, Th and Tl, respectively where Th > 1/M
and 0 < Tl < Th . Let the number of particles with weights greater than Th

and less than Tl be denoted by Nh and Nl, respectively. A sum of the weights
of resampled particles is computed as a sum of dominating Wh =

∑Nh
m=1 wn

(m)

for w(m)
n > Th and negligible weights Wl =

∑Nl
m=1 wn

(m) for w(m)
n < Tl. We

define three different types of resampling with distinct resampling functions
a(m)

n .

The resampling function of the first partial resampling algorithm (PR1) is
shown in Fig. 3(a) and it corresponds to the stratified resampling case. The
number of particles at the input and at the output of the resampling procedure
is the same and equal to Nh + Nl. The resampling function is given by:

an
(m) =

{
wn

(m), for w
(m)
n > Th or w

(m)
n < Tl,

(1 − Wh − Wl)/(M − Nh − Nl), otherwise

The second step can be performed using any resampling algorithm. For
example, the RSR algorithm can be called using: (i) = RSR(Nh + Nl, Nh +
Nl, w

(m)
n /(Wh + Wl)), where the RSR is performed on the Nh + Nl particles

with negligible and dominating weights. The weights have to be normalized
before they are processed by the RSR method.

The second partial resampling algorithm (PR2) is shown in Fig. 3(b). The
assumption that is made here is that most of the negligible particles will be
discarded after resampling, and consequently, particles with negligible weights
are not used in the resampling procedure. Particles with dominating weights
replace those with negligible weights with certainty. The resampling function
is given as:

an
(m) =


wn

(m) + Wl/Nh, for w
(m)
n > Th

(1 − Wh − Wl)/(M − Nh − Nl), for Tl < w
(m)
n < Th

0, otherwise
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The number of times each particle is replicated can be found using (i) =
RSR(Nh, Nh + Nl, (w

(m)
n + Wl/Nh)/(Wh + Wl)) where the weights satisfy the

condition w(m)
n > Th. There are only Nh input particles and Nh + Nl particles

are produced at the output.

The third partial resampling algorithm (PR3) is shown in Fig. 3(c). The
weights of all the particles above the threshold Th are scaled with the same
number. So, PR3 is a deterministic algorithm whose resampling function is
given as

an
(m) =


(Nh + Nl)/(M), for w

(m)
n > Th

1/M, for Tl < w
(m)
n < Th

0, otherwise

The number of replications of each dominating particle may be less by
one particle than necessary because of the rounding operation. One way of
resolving this problem is to assign that the first Nt = Nl−� Nl

Nh
�Nh dominating

particles are replicated r = � Nl

Nh
�+2 times, while the rest of Nh−Nt dominating

particles are replicated r = � Nl

Nh
� + 1 times. The weights are calculated as

w∗(m) = w(m) where m represents positions of particles with moderate weights,
and as w∗(l) = w(m)/r + Wl/(Nh + Nl) where m are positions of particles with
dominating weights and l of particles with both dominating and negligible
weights.

Th1/ M 1

1

w(i)

a(i)

Tl0
lN-hN-M
lW-hW-1

Th1/ M 1

1

w(i)

a(i)

Tl0

lN-hN-M
lW-hW-1

Th1/ M 1

1

w(i)

a(i)

0

1/ M

Tl

(N h+Nl)/ M

(a) (b) (c)

Fig. 3. Resampling functions for the partial resampling algorithms (a) PR1, (b) PR2
and (c) PR3.

Another way of performing partial resampling is to use a set of thresholds.
The idea is to perform initial classification of the particles while the weights
are computed and then to carry out the actual resampling together with the
particle generation step. So, the resampling consists of two steps as in the PR2
algorithm where classification of the particles is overlapped with the weight
computation. We refer to this method as Overlapped Partial Resampling
(OPR).

A problem with the classification of the particles is the necessity of knowing
the overall sum of non-normalized weights in advance. The problem can be
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resolved as follows. The particles are partitioned according to their weights.
The thresholds for group i are defined as Ti−1, Ti for i = 1, ..., K where K is
the number of groups, Ti−1 < Ti and T0 = 0. The selection of thresholds is
problem dependent. The thresholds that define the moderate group of particles
satisfy Tk−1 < W/M < Tk. The particles that have weights greater than Tk

are dominant particles, and the ones with weights less than Tk−1, negligible
particles.

In Figure 4 we provide a simple example of how this works. There are four
thresholds (T0 to T3) and non-normalized particles are compared with the
thresholds and properly grouped. After obtaining the sum of weights W , the
second group for which T1 < W/M < T2, is the of group of particles with
moderate weights. The first group contains particles with negligible weights,
and the third group is composed of particles with dominating weights. An
additional loop is necessary to determine the number of times each of the
dominating particles is replicated. However, the complexity of this loop is of
order O(K), which is several orders of magnitude lower than the complexity
of the second step in the PR1 algorithm (O(M)). Because the weights are
classified, it is possible to apply similar logic for the second resampling step
as in the PR2 and PR3 algorithms. In the figure, the particles P1 and P2
are replicated twice and their weights are calculated using the formulae for
weights for the PR3 method.

��
��m w(m)

1 7/10

2 6/10

3 2/10

4 2/10

5 3/10

Sum 2

T3=1

T2=1/2

T1=1/4

T0=0

P1 ,P2

P5

P3 ,P4

Classification PR3  algorithm

1/4< W /M=2/5<1/2

m i(m) w*(m)

1 2 4.5/20,4.5/20

2 2 4/20, 4/20

3 0 /

4 0 /

5 1 3/20

Sum 5 1

Initial weights

Fig. 4. OPR method combined with the PR3 method used for final computation of
weights and replication factors.

4.3 Discussion

In the PR1, PR2 and PR3 algorithms, the first step requires a loop of
M iterations for the worst case (of number of computations) with two
comparisons per each iteration (classification in three groups). Resampling in
the PR1 algorithm is performed on Nl + Nh particles. The worst case for the
PR1 algorithm occurs when Nl + Nh = M , which means that all the particles
must be resampled, thereby implying that there cannot be improvements from
an implementation standpoint. The main purpose of the PR2 algorithm is to
improve the worst case timing of the PR1 algorithm. Here, only Nh dominating
particles are resampled. So, the input number of particles in the resampling
procedure is Nh, while the output number of particles is Nh + Nl. If the RSR
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algorithm is used for resampling, then the complexity of the second step is
O(Nh).

PR1 and PR2 contain two loops and their timings depend on the weight
statistics. As such, they do not have advantages for real-time implementation
in comparison with RSR, which has only one loop of M iterations and
whose processing time does not depend on the weight statistics. In the
PR3 algorithm, there is no stratified resampling. The number of times each
dominating particle is replicated is calculated after the first step and it depends
on the current distribution of particle weights and of the thresholds. This
number is calculated in O(1) time, which means that there is no need for
another loop in the second step. Thus, PR3 has simpler operations than the
RSR algorithm.

The PR algorithms have the following advantages from the perspective of
hardware implementation: (1) the resampling is performed faster on average
because it is done on a much smaller number of particles, (2) there is
a possibility of overlapping the resampling with the particle generation
and weight computation, and (3) if the resampling is used in a parallel
implementation [6], the number of exchanged particles among the processing
elements is smaller because there are less particles to be replicated and
replaced. There are also problems with the three algorithms. When Nl = 0
and Nh = 0, resampling is not necessary. However, when Nl = 0 or Nh = 0
but not at same time, the PR algorithms would not perform resampling even
though it could be useful.

Application of the OPR algorithm requires a method for fast classification.
For hardware and DSP implementation, it is suitable to define thresholds that
are a power of two. So, we take that Ti = 1/2K−i for i = 1, ..., K and T0 = 0.
The group is determined by the position of the most significant “one” in the
fixed point representation of weights. Memory allocation for the groups could
be static or dynamic. Static allocation requires K memory banks where the
size of each bank is equal to the number of particles because all the particles
could be located in one of the groups. Dynamic allocation is more efficient
and it could be implemented using ways similar to the linked lists where
the element in a group contains two fields: the field with the address of the
particle and the field that points out to the next element on the list. Thus,
dynamic allocation requires memory with capacity of 2M words. As expected,
overlapping increases the resources.
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5 Particle Filtering Performance and Complexity

5.1 Performance Analysis

The proposed resampling algorithms are applied and their performance is
evaluated for the joint detection and estimation problem in communication
[7,10] and for the bearings-only tracking problem [14].

5.1.1 Joint Detection and Estimation

The experiment considered a Rayleigh fading channel with additive Gaussian
noise with a differentially encoded BPSK modulation scheme. The detector
was implemented for a channel with normalized Doppler spreads given by
Bd = 0.01, which corresponds to fast fading. An AR(3) process was used
to model the channel. The AR coefficients were obtained from the method
suggested in [20]. The proposed detectors were compared with the clairvoyant
detector, which performs matched filtering and detection assuming that the
channel is known exactly by the receiver. The number of particles was
N = 1000.

In Fig. 5, the bit error rate (BER) versus signal-to-noise ratio (SNR) is
depicted for the PR3 algorithm with different sets of thresholds, i.e., Th =
{2M, 5M, 10M} and Tl = {1/(2M), 1/(5M), 1/(10M)}. In the figure, the PR3
algorithm with the thresholds 2M and 1/2M is denoted as PR3(2), the one
with thresholds 5M and 1/5M as PR3(5) and so on. The BER for the matched
filter (MF) and for the case when the systematic resampling is performed
are shown as well. It is observed that the BER is similar for all types of
resampling. However, the best results are obtained when the thresholds 2M
and 1/2M were used. Here, the effective number of particles that is used is
the largest in comparison with the PR3 algorithm with greater Th and smaller
Tl. This is a logical result, because according to PR3, all the particles are
concentrated in the narrower area between the two thresholds producing in this
way a larger effective sample size. PR3 with thresholds 2M and 1/2M slightly
outperforms the systematic resampling algorithm which is a bit surprising.
The reason for this could be that the particles with moderate weights are not
unnecessarily resampled in the PR3 algorithm. The same result is obtained
even with different values of Doppler spread.

In Fig. 6, BER versus SNR is shown for different resampling algorithms: PR2,
PR3, OPR, and SR. The thresholds that are used for the PR2 and PR3 are
2M and 1/2M . The OPR uses K = 24 groups and thresholds which are power
of two. Again, all the results are comparable. The OPR and PR2 algorithms
slightly outperform the other algorithms.
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Fig. 5. Performance of the PR3 algorithm for different threshold values applied to
joint detection and estimation.
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Fig. 6. Comparison of the PR2, PR3 and OPR algorithms with systematic
resampling applied to the joint detection and estimation problem.

5.1.2 Bearings-Only Tracking

We tested the performance of PFs by applying the resampling algorithms to
bearings-only tracking [14] with different initial conditions. In the experiment,
PR2 and PR3 are used with two sets of threshold values, i.e., Th = {2M, 10M}
and Tl = {1/(2M), 1/(10M)}. In Fig. 7, we show the number of times when
the track is lost versus number of particles, for two different pairs of thresholds.
We consider that the track is lost if all the particles have zero weights. In the
figure, the PR3 algorithm with thresholds 2M and 1/2M is denoted as PR3(2)
and the one with thresholds with thresholds 10M and 1/10M as PR3(10). The
used algorithms are SR, SR performed after every 5-th observation, PR2 and
PR3. The resampling algorithms show again similar performances. The best
results for PR2 and PR3 are obtained when the thresholds 10M and 1/10M
are used.
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Fig. 7. Number of times when track is lost for the PR2, PR3 and SR applied to the
bearings-only tracking problem.

5.2 Complexity Analysis

The complexity of the proposed resampling algorithms is evaluated. We
consider both computation complexity as well as memory requirements. We
also present benefits of the proposed algorithms when concurrency in hardware
is exploited.

5.2.1 Computational Complexity

In Table 1, we provide a comparison of the different resampling algorithms.
The results for RR are obtained for the worst case scenario. The complexity
of the RR, RSR, and PR algorithms is of O(N), and the complexity of the
SR algorithm is of O(max(N, M)) where N and M are the input and output
numbers of particles of the resampling procedure.

SR RR RSR PR3

Multiplications 0 N N 0

Additions 2M + N 6N 3N 2N

Comparisons N + M 3N 0 2N
Table 1
Comparison of the number of operations for different resampling algorithms.

When the number of particles at the input of the resampling algorithm is equal
to the number of particles at the output, the RR algorithm is by far the most
complex. While the number of additions for the SR and RSR algorithms are
the same, the RSR algorithm performs M multiplications. Since multiplication
is more complex than addition, we can view that the SR is a less complex
algorithm. However, when N is a power of two such that the multiplications
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by N is avoided, the RSR algorithm is the least complex.

The resampling algorithms SR, RSR and PR3 were implemented on the Texas
Instruments (TI) floating-point digital signal processor (DSP) TMS320C67xx.
Several steps of profiling brought about five-fold speed-up when the number of
resampled particles was 1000. The particle allocation step was not considered.
The number of clock cycles per particle was around 18 for RSR and 4.1 for
PR3. The SR algorithm does not have fixed timing. The mean duration was
24.125 cycles per particle with standard deviation of 5.17. On the processor
TMS320C6711C whose cycle time is 5 ns, the processing of RSR with 1000
particles took 90µs.

5.2.2 Memory Requirements

In our analysis, we considered the memory requirement not only for resampling
but for the complete PF. The memory size of the weights and the memory
access during weight computation do not depend on the resampling algorithm.
We consider particle allocation without indexes and with index addressing
for the SR algorithm and with arranged indexing for RSR, PR2, PR3 and
OPR. For both particle allocation methods, the SR algorithm has to use two
memories for storing particles. In Table 2 we can see the memory capacity for
the RSR, PR2, PR3 algorithms. The difference among these methods is only
in the size of the index memory. For the RSR algorithm which uses particle
allocation with arranged indexes, the index memory has a size of 2M , where
M words are used for storing the addresses of the particles that are replicated
or discarded. The other M words represent the replication factors.

The number of resampled particles for the worst case of the PR2 algorithm
corresponds to the number of particles in the RSR algorithm. Therefore, their
index memories are of the same size. From an implementation standpoint, the
most promising algorithm is the PR3 algorithm. It is the simplest one and it
requires the smallest size of memory. The replication factor of the dominating
particles is the same and of the moderate particles is one. So, the size of the
index memory of PR3 is M , and it requires only one additional bit to represent
whether a particle is dominant or moderate.

The OPR algorithm needs the largest index memory. When all the PF steps
are overlapped, it requires different access pattern than the other deterministic
algorithms. Due to possible overwriting of indexes that are formed during
the weight computation step with the ones that are read during particle
generation, it is necessary to use two index memory banks. Furthermore,
particle generation and weight computation should access these memories
alternately. Writing to the first memory is performed in the resampling step
in one time instance whereas in the next one, the same memory is used by
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particle generation for reading. The second memory bank is used alternately.
If we compare the memory requirements of the OPR algorithm with that of
the PR3 algorithm, it is clear that OPR requires four times more memory for
storing indexes for resampling.

SR without indexes SR with indexes RSR PR2 PR3 OPR

States 2NsM 2NsM NsM NsM NsM NsM

Weights M M M M M M

Indexes 0 M 2M 2M M 4M

Table 2
Memory capacity for different resampling algorithms.

5.2.3 PF Speed Improvements

The PF sampling frequency can be increased in hardware by exploiting
temporal concurrency. Since there are no data dependencies among the
particles in the particle generation and weight computation, the operations
of these two steps can be overlapped. Furthermore, the number of memory
accesses is reduced because during weight computation, the values of the states
do not need to be read from the memory since they are already in the registers.

The normalization step requires the use of an additional loop of M
iterations as well as M divisions per observation. It has been noted that
the normalization represents an unnecessary step which can be merged
with the resampling and/or the computation of the importance weights.
Avoidance of normalization requires additional changes which depend on
whether resampling is carried out at each time instant and on the type of
resampling. For PFs which perform SR or RSR at each time instant, the
uniform random number in the resampling algorithm should be drawn from
[0, WM/M) and updated with WM/M , where WM is the sum of the weights.
Normalization in the PR methods could be avoided by including information
about the sum WM in the thresholds by using Thn = ThWM and Tln = TlWM .
With this approach, dynamic range problems for fixed precision arithmetics
that appear usually with division are reduced. The computational burden is
decreased as well because the number of divisions is reduced from M to 1.

The timing operations for a hardware implementation where all the blocks
are fine-grain pipelined are shown in Fig. 8(a). Here, the particle generation
and weight calculation operations are overlapped in time and normalization
is avoided. The symbol L is the constant hardware latency defined by the
depth of pipelining in the particle generation and weight computation, Tclk

is the clock period, M is the number of particles, and T is the minimum
processing time of the any of the basic PF operations. The SR is not suitable
for hardware implementations where fixed and minimal timings are required,
because its processing time depends on the weight distribution and it is longer
than MTclk. So, in order to have resampling operation performed in M clock
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cycles, RSR or PR3 algorithms with particle allocation with arranged indexes
must be used. The minimum PF sampling period that can be achieved is
(2MTclk + L).

OPR in combination with the PR3 algorithm allows for higher sampling
frequencies. In the OPR, the classification of the particles is overlapped with
the weight calculation as shown in Fig. 8(b). The symbol Lr is the constant
latency of the part of the OPR algorithm that determines which group contains
moderate, and which negligible and dominating particles. The latency Lr is
proportional to the number of ORP groups. The speed of the PF can almost be
increased twice if we consider pipelined hardware implementation. In Figure
8(b), it is obvious that the PF processing time is reduced to to (MTclk+L+Lr).

Generation of particles

Weight computation

Resampling

Generation of particles

Weight computation

Resampling

L T T T L RL

(a) (b)

Fig. 8. The timing of the PF with the (a) RSR or PR methods and (b) with the
OPR method.

5.3 Final Remarks

We summarize the impact of the proposed resampling algorithms on the PF
speed and memory requirements.

(1) The RSR is an improved residual resampling algorithm with higher speed
and fixed processing time. As such, besides for hardware implementations,
it is a better algorithm for resampling that is executed on standard
computers.

(2) Memory requirements are reduced. The number of memory access and
the size of the memory are reduced when RSR or any of PR algorithms
are used for multidimensional state space models. These methods can be
appropriate for both hardware and DSP applications where the available
memory is limited. When the state-space model is one-dimensional then
there is no purpose of adding an index memory and introducing a more
complex control. In this case, the SR algorithm is recommended.

(3) In hardware implementation and with the use of temporal concurrency,
the PF sampling frequency can be considerably improved. The best
results are achieved for the OPR algorithm at the expense of hardware
resources.
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(4) The average amount of operations is reduced. This is true for PR1, PR2
and PR3 since they perform resampling on a smaller number of particles.
This is desirable in PC simulations and some DSP applications.

6 Conclusion

Resampling is a critical step in the hardware implementation of PFs. We
have identified design issues of resampling algorithms related to execution
time and storage requirement. We have proposed new resampling algorithms
whose processing time is not random and that are more suitable for hardware
implementation. The new resampling algorithms reduce the number of
operations and memory access or allow for overlapping the resampling step
with weight computation and particle generation. While these algorithms
minimize performance degradation, their complexity is reduced remarkably.
We have also provided performance analysis of PFs that use our resampling
algorithms when applied to joint detection and estimation in wireless
communications and bearings-only tracking. Even though the algorithms are
developed with the aim of improving the hardware implementation, these
algorithms should also be considered as resampling methods in simulations
on standard computers.
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