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Abstract

In this paper, we propose novel resampling algorithms with architectures for efficient distributed im-

plementation of particle filters. The proposed algorithms improve the scalability of the filter architectures

affected by the resampling process. Problems in the particle filter implementation due to resampling are

described and appropriate modifications of the resampling algorithms are proposed so that distributed im-

plementations are developed and studied. Distributed resampling algorithms with proportional allocation

(RPA) and non-proportional allocation (RNA) of particles are considered. The components of the filter

architectures are the processing elements (PEs), a central unit (CU) and an interconnection network. One of

the main advantages of the new resampling algorithms is that communication through the interconnection

network is reduced and made deterministic, which results in simpler network structure and increased sam-

pling frequency. Particle filter performances are estimated for the bearings-only tracking applications. In

the architectural part of the analysis, the area and speed of the particle filter implementation are estimated

for different number of particles and different level of parallelism with FPGA implementation. In this paper

only sampling importance resampling (SIR) particle filters are considered, but the analysis can be extended

to any particle filters with resampling.

I. Introduction

Particle filters (PF) are very suitable for non-linear and/or non-Gaussian applications. They

show great promise in addressing a wide variety of complex problems [6], [18]. However, their

application in real-time systems is limited due to their inherent computational complexity. The

main goal of this paper is to develop distributed PF algorithms and to propose corresponding

parallel architectures which allow for shorter particle-filter execution time. We show that the

parallel architectures can be implemented on state-of-the-art FPGA chips. By showing that fast

implementation of PFs is feasible, we hope that the gap that exists between PF theory and their

hardware implementation will be reduced.
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The SIR algorithm [7] is composed of three steps:

1. sampling step – generation of new particles, in which M particles x(m) for m = 1, ...,M are drawn

from an importance function π(x),

2. importance step – computation of particle weights w(m) for m = 1, ...,M , and

3. resampling step – drawing of M particles x̃(m) from the set x(m) for m = 1, ...,M according

to the resampling function a(m) whose support is defined by the particles x(m) [17]. Commonly

a(m) = w(m) for m = 1, ...,M .

The resampling step is critical in every implementation of particle filtering because without it, the

variance of the particle weights quickly increases, i.e., very few normalized weights are substantial.

Then, the inference is degraded because it is made by using only a very small number of particles.

The idea of resampling is to remove the particle trajectories with small weights and replicate the

trajectories with large weights. Resampling was proposed for use in particle filtering in various

works including [2], [3], [13], [14], [15], [16]. The following problems are recognized and addressed

for distributed implementation of resampling: (a) there is no natural concurrency among iterations

because the new iterations depend on the previous ones, (b) communication among the PEs after

resampling is extensive, and (c) connections among the PEs are not known before the run-time and

are changed after each sampling period. Modifications of the resampling algorithms that intend to

overcome these barriers and move towards a fully distributed implementation are developed and

studied.

The main design goal here is to minimize the execution time of the PF. This is done through

exploiting data parallelism and pipelining of operations. In Section II, a parallel architecture for

PFs is introduced and the minimum execution time is defined. In order to decrease PF execution

time, an algorithm that allows for distributed resampling and reduced communication in the net-
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work is proposed. This algorithm is presented in Section III and is named distributed Resampling

with Proportional Allocation (RPA). It yields the same resampling result as the sequential resam-

pling method (for example systematic resampling). Further improvement of the execution time is

achieved through making the communication through the network deterministic and local. These

algorithms use non-proportional sampling (Resampling with Non-proportional Allocation - RNA),

and they are presented in Section IV. Different architectures suitable for distributed RPA and

RNA algorithms are discussed in Section V. The objective in these architectures is to pipeline the

communication through interconnection network (particle routing) with the subsequent sampling

step. There, we also evaluate architecture parameters on an FPGA platform.

II. Distributed PFs

A. Distributed architecture

The distributed architecture for the PFs is shown in Figure 1. It consists of processing elements

(PEs) and a central unit (CU). Since there are no data dependencies during particle generation

and calculation of the weights, these steps can be easily parallelized and pipelined. This segment of

particle filtering is a data parallel single instruction multiple data (SIMD) algorithm [4]. As such,

particle generation and weight calculation for the M particles can be partitioned in K PEs, where

1 ≤ K ≤ M . Each PE performs the same operations in time on different particles and each PE is

responsible for processing N = M/K particles where both K and N are integers. The CU carries

out partial or full resampling and particle routing as well as overall control. Full resampling means

that the overall resampling procedure is performed by one logic unit. In the following sections, we

will show that resampling can be distributed to PEs and that the CU is then responsible only for

a small portion of resampling.
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Fig. 1. Architecture of the distributed PF with a CU and four PEs.

We distinguish three operations that carry out the resampling task:

1. Computation – involves the bare resampling procedure whose result is an array of indexes which

show the replicated particles and their addresses.

2. Communication – represents exchanging of particles among the PEs based on the resampling

results. We refer to it as particle routing. Particle routing defines the protocol and the network

architecture for exchanging particles and it is the main focus of the paper.

3. Scheduling – includes (a) determination of which particles in the PEs are routed and which are

stored locally, (b) placing of particles in the destination PEs, and (c) addressing used for indexes.

In this paper we define the execution time of PFs as the time necessary to process one observation

by the PF, and it corresponds to the sampling period.

In order to achieve minimum execution time, one-to-one mapping between the PF operations

and hardware resources is done which allows for utilizing operational concurrency. Hence, several

operations can be executed at the same time and their blocks are pipelined in hardware implemen-

tation. The execution time of the generation and weight computation of every particle is LTclk,

where Tclk is the clock period and L in the latency due to pipelining. Thus, the first particle is
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available at the output of the importance step block after LTclk, and every next particle, due to

pipelining, after Tclk. Resampling cannot start until the sum of all the weights is calculated so that

resampling cannot be overlapped in time with the sampling and importance steps. The internal

operations of resampling are also pipelined so that they take M clock cycles as well. Hence, the

minimum execution time of non-distributed PF is (2M + L)Tclk [1].

Further reduction of execution time is achieved by replicating hardware resources (parallelism).

When K PEs are used, the minimum execution time is (2M/K + L)Tclk. The main goal of this

paper is to develop algorithms and architectures that can reach the minimum execution time. Our

strategy towards achieving the minimum execution time is to allow for deterministic communication

during particle routing. Then, we can overlap the particle routing and the next sampling step to

allow for pipelining in hardware of their operations, so that the particle routing will not increase

the execution time of the PF.

Next, we show why the communication pattern is non-deterministic and the connections among

the PEs are changed after each sampling period. Let the number of particles that PEk produces

after resampling be N (k) for k = 1, ...,K, 0 ≤ N (k) ≤ M and ΣK
k=1N

(k) = M . It is important

to note that N (k) is a random number which depends on the overall distribution of the weights.

The PEs with N (k) > N have surplus of particles and they need to exchange particles with the

PEs with shortage of particles for which N (k) < N . The number N (k) changes after each sampling

period so that it is necessary to connect different PEs in order to perform particle routing. The

number of particles that have to be exchanged among the PEs is NM = ΣK
k:N(k)>N

(N (k) − N) =

ΣK
k:N(k)<N

(N − N (k)).
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B. Centralized resampling

In centralized resampling, particle generation and weight calculation are performed in parallel in

PEs and resampling is sequential and it is carried out by the CU. The sequence of operations and

directions of communication are shown in Figure 2(a). The CU collects the N weights from each

PE (M weights overall) in order to perform resampling and returns N replication factors to each

PE (M replication factors overall).

The number of particles transferred between PEk and the CU is |N (k) − N | for k = 1, ...,K.

The direction of communication is from the PE to the CU for the PE with particle surplus after

resampling (N (k)−N > 0) and from the CU to the PE for the PE with particle shortage (N (k)−N <

0). While the communication of weights and indexes is deterministic, the particles are routed in

a non-deterministic fashion. The overall amount of particles that has to be transferred through

the network is M/2 for the worst case. Even in the fully connected network, the scalability of

the implementation is significantly affected by the sequential resampling and particle routing. One

version of centralized resampling which is implemented on a network of personal computers is

described in [21].

III. Distributed RPA

In this section, a method based on stratified sampling with proportional allocation is described.

The sample space is divided into K disjoint areas or strata, where each stratum corresponds to

a PE. The density of particle weights can then be written as a mixture of K densities restricted

to the corresponding strata. Proportional allocation among strata is used, which means that

more samples are drawn from the strata with larger weights. After the weights of the strata are

known, the number of particles that each stratum replicates is calculated using residual systematic
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Fig. 2. Sequence of operations performed by the k-th PE and the CU for (a) centralized resampling and (b)

RPA. The direction of communication as well as data that are sent are presented. The abbreviations

are: S-sampling, I-importance computation, R-resampling, PR-particle routing.

resampling (RSR) described in [1], and this process is denoted as inter-resampling since it treats

the PEs as single particles. Finally, resampling is performed inside the strata which is referred to

as intra-resampling. So, the resampling algorithm is accelerated by using loop transformation or

specifically loop distribution [22], which allows for having an inner loop that can run in parallel

on the PEs (intra-resampling) with small sequential centralized pre-processing (inter-resampling).

The weight of the PE is calculated as a sum of the weights of the particles inside the PE, i.e.

W (k) =
∑N

i=1 w(i,k) for k = 1, ...,K. A diagram and the sequence of operations performed by the

PE and the CU are shown in Figure 2(b).

The algorithm for RPA is shown by Pseudocode 1. The inputs of the algorithm are the PE weights

and the output is the number of particles N (k) that each PE will produce after resampling, where

E(N (k)) = MW (k) for k = 1, ...,K. The RSR algorithm is applied to get N (k), for k = 1, 2, ...,K
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by propagating the uniform random number in a similar fashion as in the systematic resampling

algorithm. In the algorithm, N (k) is obtained by truncating (W (k)−Uk) ·M . The minimum value of

the truncated product is −1 so that the minimum value of N (k) is zero. Resampling is performed in

each PE in parallel during the intra-resampling step. The input of the intra-resampling algorithm

is the number of particles that should be generated in the resampling procedure. We have to stress

that there is no difference in results between RPA and sequential resampling.

Distributed RPA algorithm

Purpose: Calculation of the number of particles N (k) for the intra-resampling algorithm.

Input: Array of PE weights W (k) for k = 1, ..., K.

Method:

Generate random number U1 ∼ U [0, 1/M ]

for k = 1 to K

N (k) = �(W (k) − Uk) · M�+1

Send N (k) to PEk

Uk+1 = Uk + N(k)

M − W (k)

end

do in parallel

Intra-resampling for all PEs

end

Pseudocode 1. A distributed RPA algorithm that utilizes the RSR approach.

The RSR algorithm is very attractive for hardware implementation since it has only one loop

(there are two loops in systematic resampling), it can be easily pipelined so that it can calculate a

replication factor per clock cycle, and it easily deals with different number of particles at the input
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and at the output. In systematic resampling while loop has unknown number of iterations which

makes it difficult to apply pipelining. Of course, the same resampling result would be obtained if

residual or systematic resampling are applied as the inter-resampling algorithms.

An example of particle exchange for the RPA algorithm is shown in Figure 3. The PF architecture

with four PEs is considered, where each PE processes N = 100 particles. The distribution of

the normalized PE weights before resampling is presented in the table. After inter-resampling,

the number of particles that each PE will produce is determined and it is 200, 50, 105 and 45

respectively. So, PEs 1 and 3 have surpluses of particles. In this example, PE1 sends 50 particles

to both PE2 and PE4, and PE3 sends 5 particles to PE4.

PE weights before
resampling

W(1) 0.5

W(2) 0.125

W(3) 0.2625

W(4) 0.1125

Sum 1

Weights of the PEs  before resampling
1 2

3 4

N(1) =200

N(3) =105

N(2) =50

N(4) =45

50

50

5

N(k)=W (k)M

Fig. 3. An example of particle exchange for the RPA algorithm.

The main advantage of distributed RPA over centralized resampling lies in reducing the amount

of deterministic communication and in the distributed resampling where the resampling is executed

concurently in the PEs instead in the CU (Figure 2). The time for the resampling procedure in

distributed RPA is reduced M/(M/K +K) times, where M/K corresponds to the intra-resampling

time and K is a time for inter-resampling. It can readily be shown that maximum reduction is

achieved when K =
√

M . It is important to note that inter-resampling requires global communi-

cation among the PEs, while intra-resampling is completely local within the PEs. The 2M words

representing weights and indexes that are exchanged in the centralized resampling are reduced to
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2K words (W (k) and N (k)) in RPA. However, scalability of the implementation is still affected by

the particle routing step, which is unchanged. If we assume equal clock period for resampling and

the other PFs steps, then Tex = (2M/K + L + K + Mr)Tclk, where K represents the delay due to

inter-resampling and Mr is the delay due to particle routing. When the PEs and the CU are con-

nected with a single bus, then the delay Mr becomes dominant. Scalability of the design is affected

so much by the bus structure, that there is almost no gain in pursuing parallel implementation.

An efficient architecture that uses K buses and supports pipelining of the particle routing with the

sampling step is proposed in Section V-A.

IV. Distributed RNA

Even though distributed RPA allows for distributed and parallel implementation of resampling,

it requires a complicated scheme for particle routing which implies a complex CU design and area

increase. Besides, there is a need for an additional global pre-processing step (inter-resampling)

which introduces an extra delay. These problems can be solved by using an RNA algorithm. The

main advantage of RNA is that routing of particles can be deterministic and planned in advance

by a designer.

A. RNA algorithm

Here, we introduce the term group where a group is formed from one or more PEs. In RPA,

the number of particles drawn is proportional to the weight of the stratum. On the other hand, in

RNA the number of particles within a group after resampling is fixed and equal to the number of

particles per group, Nk = N . So, full independent resampling is performed by each group.

The general PF algorithm with RNA is outlined by Pseudocode 2.
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1. Exchange particles among groups deterministically.

2. Generate particles in each group in parallel by sampling x(k,i)
t ∼ π(xt) for k = 1, . . . , K and i = 1, . . . , N .

3. Perform the importance step in each group in parallel. The weights are calculated by

w
∗(k,i)
t = w

(k,i)
t−1

p(yt|x(k,i)
t )p(x

(k,i)
t |x(k,i)

t−1 )

π(x
(k,i)
t )

for k = 1, . . . , K and i = 1, . . . , N .

4. Normalize the weights of the particles with the sum of the weights in the group:

w
(k,i)
t = w

∗(k,i)
t

W (k) where W ∗(k) =
∑N

j=1 w
∗(k,j)
t and W (k) = W ∗(k)/(

∑K
j=1 W ∗(k)) for k = 1, . . . , K.

5. Perform resampling inside the groups and obtain new random measures {x̃(k,i)
1:t , w̃t

(k,i) = W (k)} for

k = 1, . . . , K and i = 1, . . . , N .

6. Go to step 1.

Pseudocode 2. PF steps for distributed RNA.

There are several differences in comparison with the original SIR filter and the RPA algorithm.

Here, normalization is performed with the local sum W (k). Resampling is performed locally per

each group and the weights are equal inside the group. A characteristics of RNA is that the

weights after resampling are not equal to 1/M , but they are equal inside the groups w̃t
(k,i) = W (k),

for k = 1, 2, . . . ,K and i = 1, 2, . . . , N . In addition, routing of particles among the groups after

resampling is necessary due to the possibility of having very unequally distributed weights among

groups.

We distinguish between three methods of particle exchange after resampling: regrouping, adap-

tive regrouping and local exchange. These methods are presented in Figure 4 which is based on the

same example described in Figure 3. The description of these methods is provided in the sequel.

A.1 Distributed RNA with regrouping

In RNA with regrouping, resampling and particle routing are performed inside the groups using

the RPA method. For example, in Figure 4(a) PE1 and PE2 form one and PE3 and PE4 another
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1 2

3 4

N(1) =160

N(3) =140

N(2) =40

N(4) =60

60

40

1 2

3 4

N(1) =163

N(3) =135

N(2) =65

N(4) =37

63

35

1 2

3 4

N(1) =100

N(3) =100

N(2) =100

N(4) =100

25

25

2525

N (k)=W (k)M /(2S) N(k)=W (k)M /(2S)

(a) (b) (c)

N(k)=M /4

Fig. 4. An example of particle exchange for RNA algorithms with (a) regrouping, (b) adaptive regrouping

and (c) with local exchange. Here, S is the sum of weights in the group.

group. The RPA algorithm is applied for both groups. As a result, PE1 and PE2 produce 160 and

40 particles after resampling, so that 60 particles from PE1 are transferred to PE2. At the next

sampling instant, the PEs are rearranged so that they form different groups. For example, the new

groups can be composed of PE1 and PE3, and PE2 and PE4. After each time instant, regrouping

is performed so that particles are exchanged among PEs and the variance is reduced.

An example with K = 9 PEs and R = 3 PEs per group is shown in Figure 5. Only the group

that consists of PE1, PE4 and PE7 has particles with non-negligible weights after the importance

computation and resampling and these PEs are drawn darker in the figure. At the next time

instant, new groups are formed so that the particles with significant weights are propagated to all

PEs. One period of regrouping is denoted as distribution factor D. When all the particles with

non-zero weights are in one PE and the mesh architecture is used, D determines the number of

cycles needed that these particles propagate to all the other PEs. In Figure 5, D = 2.

Since the simplicity of the controllers is one of the design goals, we restrict the number of PEs

per groups to be 2. If the number of PEs in the group is larger, a very complicated controller

is necessary in order to perform fast particle routing as described in Section V-A. When R = 2,

DRAFT



14
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1 2 3

4 5 6

7 8 9

Fig. 5. Routing in RNA with regrouping for the mesh architecture with K = 9, R = 3 and D = 2.

the local controllers are simple because there is only one PE with surplus and one with shortage

of particles. Choosing so small value for R could cause high distribution factor and large number

of periods until full propagation of particles is achieved. If R = 2 and K = 16, the minimal

distribution factor is D = 6.

A.2 RNA with adaptive regrouping

RNA with regrouping uses the predefined fixed rules to form the groups and does not take

advantage of knowing the distribution of the group weights. By utilizing this knowledge, it is

possible to reduce the variance after resampling. RNA with adaptive regrouping forms groups from

the PEs with the largest and the smallest PE weights. For example, in Figure 4(b) PE1 and PE3

have the largest and the smallest PE weights so that they form one group. The other group is

formed from the remaining PEs. Inside the groups, the RPA algorithm is applied. Weights after

resampling are calculated based on step 5 of Pseudocode 2. This method utilizes the Randez-Vouz

load balancing algorithm [8], which is a simple greedy algorithm that associates the heavily and the

lightly loaded groups. The main disadvantages of RNA with adaptive regrouping are that groups

contain only two PEs (R = 2) and the connections among the PEs are not local in general.
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A.3 Distributed RNA with local exchange

In RNA with regrouping, the RPA algorithm is still performed inside groups so that the particle

routing process is still random, even though it is done on a smaller set of particles. Randomness

during particle routing makes it difficult for pipelining between the particle routing and sampling

steps.

The example of the RNA algorithm with local exchange is shown in Figure 4(c). Resampling

is done inside the PE and then particles are exchanged in a deterministic way only among the

neighboring PEs. Routing is done through local communication. The amount of particles sent

between PEs is fixed and defined in advance. In the example, it is N/4 = 25. This is a very

important difference in comparison with the RNA with regrouping where particles are routed

among the PEs in the group non-deterministically (except when R = 2). Since groups are formed

from one PE, the weights after resampling are set to W (k)/N . Local communication can give rise to

a large number of periods until full resampling is achieved, which restricts the level of parallelism.

B. Effects of resampling on obtained estimates

In PFs, the output estimate before resampling can be calculated as: g =
∑M

m=1 w(m)g(x(m)),

where x(m) are the states of the particles, g(·) is an arbitrary function, and w(m) represents a

normalized importance weight [9], [10]. For parallel implementation, the estimate can be written

in the form: g =
∑K

k=1 W (k)
∑N

i=1 w(k,i)g(x(k,i))/W (k) =
∑K

k=1 W (k)g(k), where g(k) represents the

expected value of g(x) from a distribution w(k,i) in the k−th PE. The estimate after applying

distributed RPA is of the form: g̃ = 1/M
∑K

k=1

∑N
i=1 N (k,i)g(x(k,i)) where N (k,i) represents the

number of times the particle k, i is replicated after resampling and E(N (k,i)) = w(k,i)M . The

estimate after applying distributed RNA is of the form: ĝ = 1/N
∑K

k=1 W (k)
∑N

i=1 N (k,i)g(x(k,i)),
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where the number of replications of each particle is calculated as E(N (k,i)) = w(k,i)N/W (k). It

is easy to show that E(g̃) = E(ĝ) =
∑K

k=1 W (k)g(k), which is equal to g. This means that both

estimates of g are unbiased. The result is expected for both types of sampling due to Theorem 5.1

from Cochran [5], which claims that if in every stratum the sample estimate is unbiased, then the

overall estimate too, is an unbiased estimate of the population mean.

PFs with full and without resampling can be considered as special cases of the RNA algorithm.

In the first case, K = 1 and the whole resampling is performed inside one PE. In the second case,

K = M so that resampling is performed on a single particle. Since the input and output of the

resampling is only one particle, there is actually no resampling.

It is not easy to compare V ar(g̃) and V ar(ĝ) in general. It was observed by simulations that

there was almost no difference in the variances if the weights are equally distributed among the

PEs. However, the variance of the RNA algorithm was much greater in the case when there was

only one PE with non-zero weights. This problem can be resolved by exchanging the particles

between PEs after resampling deterministically (step 1 of the RNA algorithm).

C. Performance analysis

In this section, the performances of the sequential PF and the PF with distributed RNA with

local exchange with different number of PEs are compared. The architectural model that was

chosen for the PF with distributed RNA was the 2-cube torus type network [19]. We considered

2-ary, 4-ary and 8-ary torus networks. In the model it was assumed that each PE had a single

input and output port. The deterministic particle routing was implemented in a way that each PE

exchanged particles with the PE above and on the PE left. In this way, particles were routed with

a statically scheduled communication pattern. The number of particles that was exchanged is the
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Fig. 6. MSE versus the number of particles for different levels of parallelism. In the case of 4, 16 and 64

PEs, RNA with local exchange is applied.

half of the number of particles in PEs N/2. Particles were exchanged in full duplex mode which

means that N/2 resampled particles from one PE were sent to another and at the same time N/2

of resampled particles from the second PE were sent to the first one.

PFs were applied to the bearings only tracking problem with the model from [11]. As performance

metrics we chose the mean square error (MSE). The simulation results are shown in Figure 6. We

can see that all the MSEs are comparable.
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V. PF architectures with distributed resampling

A. Distributed RPA architectures

One possible architecture for distributed RPA with four PEs that allows for pipelining the particle

routing step with the next sampling step is shown in Figure 7. The main idea is to store the particles

that will be routed among the PEs into dedicated memories in the CU and to have very fast interface

capable of reading particles from the CU and routing them to the PEs in one clock cycle.

PE 1 PE 2 PE 3 PE 4

Mem 12

Mem 13

Mem 14

IF 1
Mem 21

Mem 23

Mem 24

IF 2
Mem 31

Mem 32

Mem 34

IF 3
Mem 41

Mem 42

Mem 43

IF 4

CU

B1
B2
B3
B4

Mem 11 Mem 22 Mem 33 Mem 44

Global interconnection
 network

Local interconnection network

Fig. 7. Architecture of the PF with distributed RPA with four PEs. The CU is implemented to support

pipelining between the particle routing and sampling steps.

The particles that are replicated as a result of the resampling for PEk are stored into local

memories Memkk for N (k) < N . When there is a surplus of particles, these particles are stored in

CU memories Memki for i = 1, ...K and k �= i. For example, the memory Mem12 is used to store

the surplus of particles from PE1 that should be routed to PE2. If there is a shortage of particles in

PEk, then PEk reads particles from the interface IFk which is connected to the memories Memik.

Routing is performed through three steps. First, particles from the PEs with the particle surplus
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are sent to the CU through the global interconnection network. Then, routing is performed through

the IF block inside the CU using the buses Bi for i = 1, ..., 4. Each IF is connected to the

corresponding memories with a bus and it acts as a master on the bus. Finally, particles are

transferred to the destination PEs through the global interconnection network. The size of the

memories is determined for the worst case (when one PE acquires all the N particles from another

PE) and it is N words, where each word consists of the particles and their replication factors. So,

the overall memory requirements are 16N = 4M words which is 4 times more than in the sequential

case.

The timing diagram for the PE with particle shortage together with its communication with CU

is presented in Figure 8. Resampling is performed using the following steps:

1. CU performs inter-resampling and sends the output number of particles N (k) to PEk for k =

1, ...,K. The CU also calculates the amount of data that should be transferred among the PEs.

2. The PEs perform intra-resampling so that the first N (k) ≤ N particles are stored into the local

memory Memkk and when N (k) > N , the surplus is sent to the CU.

3. The particles are allocated to the corresponding memories Memki. The PEs have no information

how the particles are further routed in the CU.

4. During the sampling step, the PE reads the particles first from the local memories. The PEs with

the shortage of particles, acquire the rest of particles from the IF as shown in Figure 8.

This architecture has an execution time very close to the minimum execution time at the expense

of increased resources. There are four parallel buses from the PEs to the CU and four parallel buses

inside the CU. The area is also increased because particles are additionally stored inside the CU.

The clock speed is limited by the memory access and by the complexity of the CU. The design

methodology and implementation results for the distributed RPA in ASIC are given in [12].
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Interconnection
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N k cyclesM /K cycles M /K cycles

M /K cycles
K cycles

Resampled
particles

Start of instant i

Fig. 8. Timing diagrams for the PF with distributed RPA. Communication through the interconnection

network is shown for the PEk with shortage of particles.

B. Distributed RNA architectures

In Figure 9(a), a PF architecture that can be used for all RNA algorithms with four PEs is

presented. Since the connections are not local, it is especially suitable for RNA with adaptive

regrouping. Two lines in the figure represent buses used for particle routing. The algorithm

running on the CU configures switches so that only two PEs access one bus at any given time. In

the case of RNA with fixed regrouping, the switches are configured in fixed order. For example,

if D = 2, the switches can be configured so that the following sequence is repeated: 12 and 34,

13 and 24. In RNA with adaptive regrouping, the switches are configured so that they connect

the PEs with largest and smallest weights. The RNA with local exchange can also be run on the

same architecture. We must stress here that the buses consist of a significant number of lines. For

example, for the aforementioned bearings-only tracking problem, there are at least four 24-bit lines

for transferring particles.

A simpler architecture is shown in Figure 9 (b). The network topology that is chosen is a 2 × 2

mesh. The network is static and based only on local interconnections. The CU is simple and its
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functions are collecting partial sums of weights and outputs, returning the final sum of weights to

the PEs and the overall control. The CU is connected to the PEs through a single bus. However, the

RNA with adaptive regrouping cannot be applied because not all the PEs are physically connected.

PE4

PE1

PE3

PE2CU

(a)

PE  1

PE  4

PE  2

PE  3

CU

(b)

Fig. 9. Architectures for PFs with K = 4 PEs that support (a) all RNA algorithms and (b) does not

support RNA with adaptive regrouping. The number of lines for each bus is four 24-bit lines for the

four-dimensional bearings-only tracking problem.

The architectures become more complex for a higher level of parallelism. A scalable architecture

that can support both methods of RNA with regrouping (adaptive and fixed) for K ≤ 4 and their

ASIC implementation is presented in [12].

C. Area and speed of distributed PF with RNA with local exchange

The area and speed of the distributed PF with RNA with local exchange are estimated for the

bearings-only tracking problem. The same parameters and model are used as in [11]. The range

of interest is restricted to the region [−32, 32] × [−32, 32]. As a benchmark, the chosen hardware

platform is Xilinx Virtex-II Pro [23]. The resources are analyzed as a combination of the number

of logic slices, multiplier blocks and memory bits.
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The finite precision approximation of variables is performed in the SystemC language [20]. The

particles are represented using 24 bits with one sign bit, five bits to the left and 18 bits to the

right of the decimal point, while the weights are represented with 16 bits with one bit in decimal

and 15 bits in the fractional part. The final memory requirements are: four 24 × M memories

for storing hidden states, one 16 × M memory for storing weights, and two 16 × M memory for

storing replication factors and indexes for resampling. So, the overall storage space is 144×M bits.

The complex mathematical functions are implemented using CORDIC, and the Gaussian random

number generator is implemented using the Box-Muller method. The implementation is parallel in

order to achieve maximum speed.

In Figure 10 we present the execution times as functions of K. The latency and the clock period

that are used are L = 100 and Tclk = 10ns. The area of the graph bounded by the bold line

represents the design space area for the Virtex II Pro family. For smaller M , the design space is

determined by the logic blocks which increases with the level of parallelism, and for large M by

the memory size.

It is interesting to compare the number of memory slices, number of multiplers and the number

of bits with the corresponding values from the Virtex II Pro family, which are shown in Table

I. In the table, the number of particles is M = 10000. The number of slices for components in

the dataflow is calculated and is multiplied by the factor of 1.5 in order to take into account the

controllers and unused slices. The approximate number of block RAM modules is calculated as

�BM/(KS)�KS, where B is the number of bits and S is the size of block RAM memory which is

18Kbit. The symbol ‘*’ represents the parameter of the memory, number of slices or multipliers

blocks that determines the choice of the Xilinx chip. In the same table, the corresponding Xilinx

chip is shown as well. For a lower level of parallelism (K ≤ 4), the design is memory dominated,

DRAFT



23

1

2

4

8

16

32

1

10

100

1000

1 10 100

Number of PEs

S
am

p
le

 p
er

io
d

 (
u

s) 500

1000

5000

10000

50000

Virtex  II Pro design space

K=14

Number of
particles M

Fig. 10. (a) Execution time as a function of the number of PEs for RNA with local exchange for M =500,

1000, 5000, 10000 and 50000 particles.

while for a higher level of parallelism (K > 4), it is logic dominated. The design with K > 14 PEs

cannot fit into commercial Virtex II Pro FPGAs.

VI. Conclusions

In this paper, two methods for distributing the resampling step suitable for distributed real-time

FPGA implementation are proposed. The practical guidelines for choosing the resampling method

depend primarily on the desired performance, communication pattern and complexity of the CU.

PF performance of centralized resampling and the RPA algorithm are the same as the sequentially

implemented PF. However, there are no advantages in using centralized resampling since the RPA

algorithm is faster and has a simpler CU. On the other hand, the RNA algorithm trades PF

performance for speed improvement. So, RPA algorithm is a good choice when it is necessary to

preserve performance, but with significant increase in complexity.

Communication pattern in the RPA algorithm is non-deterministic. As such, it requires point-

to-point network to achieve the minimum execution time. The RNA algorithm can also achieve
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Area/level of parallelism 1 2 4 8 16 32

Memory bits for M=10000 (Mbits) 1.53* 1.62* 1.94 2.3 2.59 5.1

Multiplier blocks 10 20 40 80 160 320

Number of slices (Kslices) 4 8 16* 32* 64* 128*

Xilinx chip that fits the design XC2VP20 XC2VP30 XC2VP40 XC2VP70 - -

TABLE I

The number of memory bits, slices and block multipliers for the distributed PF

implementation with RNA with local exchange. The Virtex II Pro chips that can be

fitted by the PF parameters are listed. The star shows which parameter determined in

choosing the chip.

minimum execution time, but its architecture consists only of local connections. The communication

pattern of the RNA algorithm with regrouping is somewhere in between the RNA algorithm with

local exchange and the RPA algorithm. If the size of the group is larger than two, the RNA

algorithm with regrouping also suffers from a non-deterministic communication pattern. However,

the amount of particles that have to be exchanged inside groups is smaller than for the RPA

algorithm.

The complexity of the CU of the RPA algorithm is very high since it has to implement a com-

plex routing protocol through point-to-point network. The CU of the RNA algorithm with local

exchange is simple and is not responsible for particle routing after resampling. The RNA algorithm

with regrouping has to have control units in every group when groups contain more than two PEs.

So, when speed is important and when it is required that design time is low (low complexity of the

CU and of the scheduling and protocol in interconnection networks) the RNA algorithm with local

exchange is the preferred solution.

DRAFT



25

References
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