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Distributed applications consist of discrete software components which are spread
across multiple systems. The interaction between these components constitutes distrib-
uted processing. If the discrete components are capable of exhibiting “openness”, then
the interaction between them can be characterized as open distributed processing.

In an ideal open distributed system, it should be possible for distributed applications
developed in different environments to interact. This can be achieved if distributed envi-
ronments conform to a common conceptual model or architecture.

This chapter describes a common conceptual framework for the design of distributed
systems, which is gaining a wide degree of acceptance within the distributed systems
research community. This is the basis for the standardization of Reference Model for
Open Distributed Processing (RM-ODP).

The chapter is divided into five parts. Part-1 is an introduction to the architecture for
open distributed systems. A set of five abstraction levels- enterprise viewpoint, information
viewpoint, computational viewpoint, engineering viewpoint, and technology viewpoint, are
identified in RM-ODP for the specification of distributed software systems. While all the
viewpoints are relevant to the design of distributed systems, the computation and engi-
neering models are the ones that bear most directly on the design and implementation of
distributed systems. From a distributed software engineering point of view, the compu-
tational and engineering viewpoints are the most important; they reflect the software

structure of the distributed application most closely. In this chapter, we concentrate on



the computational and engineering viewpoints in Part-2 and Part-3 respectively. Part-4 is
an illustration of the application of ODP architectural concepts in a simple client-server

scenario. Conclusions are drawn in Part-5.

PART-1
1.1 Motivation for Open Distributed Systems Architecture

Today’s distributed systems are complex structures, composed of many types of
hardware and software components. In some systems, components are developed sepa-
rately by different implementors, and then combined together resulting in a heteroge-
neous system. Well known examples of such systems, which fall within the scope of the
distributed systems architecture addressed in this chapter, include telecommunication
systems (advanced intelligent networks), computer communication networks (internet),
automated manufacturing systems, office automation systems, client-server systems
(banking and airline reservation systems), etc.

In order to reason about such systems, it is necessary to develop appropriate con-
cepts. These concepts may vary according to the point of view from which the system is
being considered. For example, from the end user’s point of view, the system will be
described in terms of user objectives and requirements. From the application designer’s
point of view, it will be described in terms of components communicating together in
some way, each component performing some function. The system designer instead is
concerned with the communication protocols, etc. required to accomplish the communi-
cation between application components. Finally, the technical personnel in charge of put-
ting together the system will see the software and hardware products connected in some
way.

Different conceptual frameworks have been devised over the years by implementors
and researchers. However such frameworks are usually adapted to specific vendor’s

architectures, and fail for heterogeneous systems. This situation has been very damaging



in practice, because such frameworks are essential in order to design and maintain heter-
ogeneous systems.

Therefore, it should not be surprising that much of the existing work on these unify-
ing concepts has been done within international standardization bodies, mainly the
International Organization for Standardization (ISO) and the International Telecommu-
nication Union (ITU, formerly CCITT).

At the time of this writing, a set of documents being put together by the committees
of the ISO and ITU, called the Reference Model for Open Distributed Processing (RM-
ODP) [1-4] constitutes what many researchers consider to be the most complete and
authoritative statement of the state of research in this area. It is the result of the work of
many researchers active around the world, who have put it together in many meetings
over a number of years.

RM-ODP is based largely on preexisting research work in the field of distributed sys-
tems, especially the work done in UK on the Advanced Networked Systems Architecture
project (ANSA) [5].

RM-ODP builds on other previously established ISO and ITU standards dealing with
heterogeneous systems such as the standards for Open Systems Interconnection (OSI) [6]
and Distributed Applications Framework (DAF) [7], Integrated Services Digital Net-
work, and Common channel signalling system.

The well-known OSI Reference Model, structured in seven layers, is the basis of a
whole family of protocols which are widely used for heterogeneous system interconnec-
tion. Layer7 of the OSI stack deals with the application-specific protocols. Standardiza-
tion of this layer has resulted in several application-specific standards, but unfortunately
in very few concepts of general use. The RM-ODP work has resulted in part from the
attempt of developing such general concepts, although it is reaching far beyond this
goal.

In contrast to OSI, the work on ODP is not restricted to communication between het-



erogeneous systems. It deals also with the provision of various distribution transparen-
cies within systems, and with application portability across systems. RM-ODP deals
with the application interaction problems rather than the pure interconnection problems
addressed in the OSI model. In this sense, ODP encompasses, and extends OSI. OSI
becomes a (communication) enabling technology for ODP applications, i.e., OSI and
other related standards (ISDN, CSS#7) provide the communication protocols which are

required to support the communication between distributed applications.

1.2 Introduction to ODP

RM-ODP is an architectural framework for the integrated support of distribution,
inter-working, inter-operability and portability of distributed applications. It provides
an object-oriented reference model for building open distributed systems. It defines an
architecture for distributed systems which enables multi-vendor, multi-domain, hetero-
geneous, networked computing.

RM-ODP prescribes a methodology for the design of distributed systems by describ-
ing different abstraction levels called viewpoints. The ODP framework of viewpoints is
quite generic. A set of concepts, structures, and rules is given for each viewpoint, provid-
ing a language for specifying ODP systems in that viewpoint.

As mentioned above, the scope of ODP can be summarized as providing a frame-
work for building open distributed systems out of networked systems that are heteroge-
neous in nature. Heterogeneity can include: equipment heterogeneity, operating system
heterogeneity, computational (programming or database) language heterogeneity, application het-
erogeneity, and authority heterogeneity (e.g. where interaction between autonomous owner-
ship domains is required).

To this end, the Reference Model of ODP identifies several types of interfaces at
which standardization may be required, and places constraints only at and between

these interfaces. Thus, the issue of heterogeneity is tackled by opening interfaces.



1.3 Objectives of ODP

As mentioned, the objective of ODP is to enable distributed system components to
inter-work seamlessly, despite heterogeneity. One of the mandates of ODP architecture is
to identify and define the functionality of mechanisms which mask underlying heteroge-
neity from users and applications. These mechanisms will address a set of fundamental
distribution transparency properties.

Additionally, RM-ODP intends to provide a framework for the identification of inter-
faces (or reference points) where standardization is required for the purpose of making
conformance statements at those interfaces and hence ensure openness of interfaces.
Thus, one of the tasks of RM-ODP is the broad categorization of interfaces based on their
architectural placement: such as man-machine reference point (e.g. graphics standards),
networking reference point (e.g. communication interface), interchange reference point
(interface to external physical storage medium), and programmatic reference point (e.g.,

application programming interface) [8].

1.4 ODP Framework of Viewpoints

For any given information processing system, there are a number of user categories -
or more accurately, a number of ‘roles” - that have an interest in the system. Examples
include the members of the enterprise who use the system, the architects that design it,
the programmers that implement it, and the technicians that install it. Each role is inter-
ested in the same system, but their relative views of the system are different, they see dif-
ferent issues, they have different requirements, and they use different vocabularies (or
languages) when describing the system [9].

Rather than attempt to deal with the full complexity of distributed systems, RM-ODP
attempts to recognize these different interests by considering the system from different

viewpoints or projections, each of which is chosen to reflect one set of design concerns. As



shown in Figure 1., each viewpoint represents a different abstraction of the original dis-

tributed system, without the need to create one large model describing the whole of it

SYSTEM

Figure 1. Viewpoints: Different Projections on the System

The ODP framework of viewpoints partitions the concerns to be addressed in the
design of distributed systems. A viewpoint leads to a representation of the system with
emphasis on a specific set of concerns, and the resulting representation is an abstraction
of the system, that is, a description which recognizes some distinctions (those relevant to
the concern) and ignores others (those not relevant to the concern). Different viewpoints
address different concerns of the software engineering process, but there is a common
ground between them. The framework of viewpoints must treat this common ground
consistently, in order to relate viewpoint models and to make it possible to assert corre-
spondences between the representations of the same system in different viewpoints. This
framework allows the verification of both the completeness of the various descriptions

and of the consistency between them.

RM-ODP defines the following five viewpoints. Together they provide the complete



description of the system: Enterprise Viewpoint, Information Viewpoint, Computational
Viewpoint, Engineering Viewpoint, and Technology Viewpoint.

Specifying a distributed system in each of the viewpoints allows an otherwise large
and complex specification of distributed system to be separated into manageable pieces,

each focussed on the issues relevant to different members of the development team.

The following sections take a detailed look at the ODP viewpoints. Each viewpoint is
characterized by indicating the relevant issues, problems, and components visible from

that viewpoint.

1.4.1 Enterprise Viewpoint: The Enterprise viewpoint is directed to describing the needs
of the users of an information system. It provides the members of an enterprise in which
information systems are to operate with a view of how and where a system is placed and
used within the enterprise [10].

An enterprise view covers the enterprise objectives of an information system. It
focuses on the requirements that an organization places on a distributed system and the
role of the distributed system within the organization.

The Enterprise viewpoint is the most abstract of the ODP framework of viewpoints,
stating high-level enterprise requirements, system management policies, and organiza-
tion structures.

In terms of software engineering, this viewpoint is related to requirements capture
and transformation and to the early design of distributed system [17]. The design deci-
sions made using the enterprise viewpoint concern what a system is to do and who it is
doing it for. This allows the designer to develop a closed (i.e., bounded) model which
represents all the real world requirements which the designer must incorporate, later in
the design trajectory, into the structure of the system.

As a consequence of the large number of enterprises (Telecommunication, Computer



Integrated Manufacturing, Management Information Systems, etc.) to which ODP
applies, the RM-ODP cannot sensibly prescribe an all-encompassing enterprise model.

However, RM-ODP provides descriptive tools for use in constructing such models.

1.4.2 Information Viewpoint: The information viewpoint focuses on the information
content of the enterprise. It defines the information semantics of the distributed system,
i.e., the meaning that a human would ascribe to the data stored or exchanged between
components of a distributed system. From this viewpoint, the information processing
facilities are seen as black boxes. The parts of the information processing facilities that
are to be automated are not differentiated from those to be performed manually [10]. In
this model, the distribution of processing is not visible, although the natural distribution
of the enterprise itself may, of course, need to be modelled. The model deals with the
information, information processing, and information exchange aspects of a distributed

system.

The information model is expressed in terms of abstract objects which represent the
information elements manipulated by the enterprise. The information modelling activity
consists of identifying: information structures (or elements) of the system, constraints and
manipulations that may be performed on these information structures, and information
flows (both the information sources and sinks within the system). These definitions are
entirely implementation independent; no restrictions are placed on how the information
is represented in a real system, or the means by which it is manipulated.

The information specification of an ODP application could be expressed using a vari-
ety of methods, e.g., entity-relationship models, conceptual schemas, Z language, etc.

RM-ODP gives descriptive terminology and tools for information modelling.

1.4.3 Computational Viewpoint: The computational viewpoint represents the distrib-



uted system as seen by application designers and programmers. It deals with the logical
partitioning of a distributed application, breaking it up on the basis of flows of invoca-
tion and provision of service. It is here that the idea of particular sets of application com-
ponents being related by their roles as client or server in an interaction becomes
important.

The computational viewpoint regards distributed processing in terms of application
components and their interactions, independent of any specific distributed environment
(operating system, communication system) on which they run. It hides from the applica-
tion designer the details of the realization of the underlying abstract machine (engineer-
ing model) that supports it. A computational model may thus be characterized as
focussing on applications rather than on the mechanisms used to distribute or, more gen-
erally, support them in the system [11].

The computational model describes the coarse grained structure of a distributed
application, i.e., application components and their interaction (in terms of operation
invocations) at an abstract, system independent level. From a computational viewpoint,
the structuring of applications is independent of the computer systems and networks on
which they run.

Each coarse-grained entity of a distributed application is represented by an object,
called computational object, with a set of well defined interfaces, called computational inter-
faces. Computational objects may run concurrently and exhibit internal parallelism. The
computational modelling of a distributed application consists of the structuring of the
application into computational objects, identification and specification of computational
interfaces, identification of application-level communication between computational
interfaces - called computational interactions, and the identification of environment con-
straints associated with these interactions (some of which are deduced from the enter-
prise viewpoint). Computational objects are, by default, distributed, and hence remote

computational interactions are expressed at a high level in a distribution-transparent



abstraction in terms of application-level operations - computational operations, rather than
in terms of physical messages.

The computational viewpoint provides a service-oriented view of the distributed
application. Computational specifications are expressed declaratively, i.e., state what
(kind of environment) is required (to support distributed application components and
their interactions) and not how it is to be provided [9]. Hence, the computational view of
a distributed application is expressed in terms of computational objects, computational
interfaces, distribution-transparent interactions between these interfaces, and statement
of environment constraints (requirements) for their realization (in the engineering
model).

Computational viewpoint can be specified using an array of programming lan-
guages, interface definition languages, formal description techniques such as Lotos [12],

SDL [13], Estelle [14].

1.4.4 Engineering Viewpoint: The engineering viewpoint addresses the issue of system
support for distributed applications. It deals with aspects resulting from physical distri-
bution of applications. It provides an infrastructure or a distributed platform for the sup-
port of the computational model. It provides generic services and mechanisms capable
of supporting distributed applications and their interactions, specified in the computa-
tional model.

The engineering viewpoint is centered around the ways the application may be engi-
neered into the (distributed) system. It is concerned with concrete application configura-
tions, component placement and distribution, remote object communication and usage
of underlying transport protocols, provision of distribution transparency mechanisms,
and application-specific support services.

The engineering viewpoint is not concerned with the semantics of the distributed

application, except to determine its requirements for distribution. The environment con-
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straints, such as distribution transparency requirements, quality of service attributes,
etc., visible in the computational viewpoint, are used to select the available engineering
mechanisms, in the engineering model, to achieve the required form of distributed pro-
cessing.

The ODP engineering model is not a detailed description of how to implement a par-
ticular environment. Rather, it identifies the functionality of basic system components
that must be present, in some form or other, in order to support the computational envi-
ronment described in the computational view. It identifies specific interfaces to identified
components allowing implementation freedom. There may be several engineering mod-
els for a particular computational environment, reflecting the use of different system
components (mechanisms) and their configurations to realize the same computational

environment.

The mechanisms visible in the engineering model are processing and storage
resources, distribution transparency mechanisms (access transparency, location transpar-
ency, concurrency transparency, migration transparency, replication transparency,
resource transparency, failure transparency, federation transparency, etc.), communica-
tion support mechanisms (communication protocols), and other application-specific
support mechanisms. As the notions of processor, memory, operating system play a
more indirect role (in providing system-level support), the term ‘engineering model” is
used here in a more specific sense to describe a framework oriented towards the organi-
zation of the underlying infrastructure consisting of structures and mechanisms which

enable and regulate distribution.
1.4.5 Technology Viewpoint: The technology viewpoint concentrates on the realized

technical components, or the real-world artifacts, from which the distributed processing

system is built. The technology model identifies the possible technical solution to the
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engineering mechanisms. The technical artifacts (realized components) from which the
network of information system is built include the hardware and software comprising
the local operating system, communication system components, etc. The technology
model shows how these technical artifacts are mapped to the (technology independent)
designs identified in the engineering viewpoint.

An example of technology specification is the prescription that the communication
support will be provided by OSI stack, that inter-node communication will employ X.25,
or the protocol used to convey file data will be FTAM. A more detailed technology view
of a specific environment would also specify: specific support environment technologies,

e.g., Sun running Unix, Vax machines running VMS, etc.

1.5 Summary of Viewpoints

The purpose of the RM-ODP framework of viewpoints is to position services rela-
tive to one another, to guide the selection of appropriate models of services, and to help
in the placement of boundaries upon ODP. The framework of viewpoints is used to par-
tition the concerns to be addressed when describing all facets of an ODP system, so that
the task is made simpler.

A summary of ODP viewpoints is given in Table 1. below.

Table 1: Summary of ODP Viewpoints

View-point Enterprise | Information Computation Engineering Technology
Areas of Enterprise Information | Logical partition- Distributed platform infra- | Technological
concern. needs of IS; | models, ing of application, | structure;distribution transt artifacts

Objectives Information | application compo- | parencycommunication required for
and roles of | structures, nents, component | support, and other distribu- realizing engi-

IS in the Information | interfaces, compo- | tion enabling, regulating, | neering mech-
organization. | flows, nent interactions; and hiding generic mechat anisms.
Information | service-oriented nisms; system-oriented
manipulation| view of distributed | view of distributed applica
application. tion.
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View-point Enterprise | Information Computation Engineering Technology
Main agents, arti- | schemas, computational Basic engineering objects| Technological
concepts facts, com- | relations, object, computa- transparency objects, stubs,solutions cor-

munities, integrity tional interface, binders, protocol object, | responding to
roles, etc. roles, etc. environment con- | nucleus, etc. engineering
straints, computa- mechanisms
tional interactions, and structures
etc.
Whom does | System pro- | Information | Application design-| Operating System design-| System inte-
it concern curers, Cor- | Analysts, ers and program- | ers, Communication Sys- | grators, Sys-
porate System Ana-| mers. tem designers, System tem vendors.
managers. lysts, Infor- designers.
mation
Engineers.
Language/ | requirement | entity-rela- | application pro- Distributed platforms, Technology
Notation description | tionship gramming environ- | engineering support envi- | mappings,
languages. | models, con-| ments, tools, ronments, etc. identification
ceptual scheq{ programming lan- of technical
mas, etc. guages, etc. artifacts, etc.
Role in Requirement| Conceptual | Software designand System design and devel-| Technology
software capture and | design and | development. opment. identification,
engineering | early design | information procurement,
of distrib- modelling. installation.

uted system.

2.1 What is a computational model

PART-2 COMPUTATIONAL MODEL

The ODP computational model is a framework for describing the structure, specifica-

tion and execution of the (components of the) distributed application on the distributed

computing platform. It is the abstract model to express the concepts of the computa-

tional viewpoint.

The computational model provides a set of basic (albeit, abstract) concepts and ele-

ments for the construction of a distributed programming (specification) language for

which the model does not provide any syntax. Using the computational model, one can

specify (program) a distributed application without worrying about the details of the

underlying distributed execution platform (the engineering model). The design principle

of the computational model is to minimize the amount of engineering detail that the

application programmer is required to know, yet at the same time allowing the program-

13




mer to exploit the benefits of distributed computing. For example, the computational
model allows the programmer to code interaction between application components
without having to deal with the distribution of program components. Similarly, the
model allows the programmer to express the interaction requirements (such as distribu-
tion transparency requirements) without explicitly dealing with the details (mecha-
nisms) of interaction support.

The computational model focuses on the organization of applications into distribut-
able components, identification of interactions between application components, and the
identification of the distribution requirements (from the underlying distributed execu-
tion environment) for the support of interactions between application components.

The computational specification of a distributed application consists of the composition
of computational objects (which represent application components) interacting, by opera-
tion invocations, at their interfaces. It identifies the activities that occur within the com-

putational objects, and the interactions that occur at their interfaces.

2.2 Computational model: An Object-Oriented view of distributed application

The computational model is based on a distributed-object model. It prescribes an object-
oriented view [33] of the distributed application. Applications are collections of interact-
ing objects. In this model, objects are the units of distribution, encapsulation, and failure.

As shown in Figure 2., the computational model is an ‘object world” populated with
concurrent (computational) objects interacting with each other, in a distribution-transpar-
ent abstraction, by invoking operations at their interfaces [9]. An object can have multi-
ple interfaces and these interfaces define the interactions that are possible with the
object.

Activity is a unit of concurrency within an object. A collection of (computational)
objects may have any number of activities threading through them. The state encapsu-

lated by the object can be accessed and modified by the activities executing the opera-
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tions at the interfaces of that object [15].

A distributed computation progresses by operation invocations at object interfaces.
The activity in an object (invoking object) can pass into another object (invoked object) by
invoking operations in the interface of the invoked object. Activities carry the state of their
computations with them, i.e., when an activity passes into an operation it carries the
parameters for that invocation, and returns carrying results. In the computational model,
concurrency within an object and communication between objects are separate concerns.
While concurrency is modelled by the concept of activity, communication between
objects is modelled as (remote) invocation of an operation [15].

The computational model provides a view of the underlying ODP platform as a dis-
tributed, multi-tasking abstract machine supporting (concurrent) objects and interac-

tions between objects.

2.3 Distribution Issues in the Computational Model

The computational model places few constraints on the extent to which application
programs can be distributed. Most of the constraints on distribution of application com-
ponents stem from discussion in other projections, such as enterprise viewpoint or infor-
mation viewpoint.

Computational specifications are intended to be distribution-transparent, i.e., written
without regard to the specifics of a physically distributed, heterogeneous environment.
However, the expression of environment constraints in the computational interface tem-
plate provides a hint of the application requirements from the distributed platform, e.g.,
distribution transparencies, security mechanisms, specific resource requirements, etc.

At the computational level, user applications are unaware of how the underlying dis-
tributed platform is structured or how the distribution enabling and regulating mecha-

nisms are realised.
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2.4 Elements of the Computational Model

The design philosophy of the computational model has been to find the smallest
number of concepts (elements) needed to describe distributed computations and to pro-
pose a declarative approach to the formulation of each concept [16].

The basic elements of the computational model are: computational object, computational
interface, operation invocation at computational interface, activities that occur within a
computational object, environment constraints on operation invocation, etc.

This section is a brief introduction of these basic computational elements out of
which the computational specification of the distributed application is constructed. The
definitions are introduced in terms of the templates (specification) of the corresponding
elements.

2.4.1 Activity: Activity is agency by which computations make progress [15]. It is the
unit of concurrency of the computational object. A computational object may have multi-
ple activities threading through it, of which one or more may actually be executing on a
processor at any one instant, depending upon the number of processors available. An
activity may pass from one object to another by the first invoking an operation on the
interface of the second. Activities may split into parallel sub-activities and later recom-
bine. New activities can be initiated to proceed in parallel, independent of their initiating
activity.

2.4.2 Computational Operation: Computational objects may support multiple interfaces
as service provision points. A service is an association between object state (some data)
and the programs that operate upon them [15]. The ways that a user can interact with a
service are completely defined by the set of operations that the service supports. Opera-
tions affect the state of the object. An operation is a service primitive. Each operation has
two parts: the operation signature which defines how the operation is invoked by a use of
the service (client), and the operation body, which is the piece of program code executed by

the provider of the service (server) when that operation is invoked.
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An operation signature template has three parts [15]:

1. The operation name is an intrinsic part of the operation. When a client wishes to
invoke an operation in a particular server interface it identifies it by its name
within that interface. To ensure that there is no ambiguity, no two operations in the

same service may have the same name.

Computational Model

o

ODP DSTRIBUTED PLATFORM

Figure 2. ODP COMPUTATIONAL MODEL: An object world

2. The parameter part of an operation specifies the number and types of the parameters
and the order in which they are passed to the operation when it is invoked.
3. The result part of an operation specifies the number and types of result for each pos-
sible outcome from the operation.
Operations have distinct outcomes, each of which can convey different numbers and
types of results. An operation’s possible outcomes are called terminations, and are distin-

guished by their names. For convenience one outcome from each operation can be left
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unnamed; this is called the anonymous termination, and is conventionally used to repre-
sent the normal or expected outcome, while named terminations are often used to repre-
sent unusual or unexpected results.

In the computational model, the (engineering) infrastructure failures in invoking an
operation on a (remote) interface are reported (to the clients) by the infrastructure objects
through the use of termination mechanisms. This permits the detection of invocation
failures in the infrastructure.

2.4.3 Computational Interface: While computational objects are the units of structure
and encapsulation of (application-specific) services, interfaces are the units of provision
of services; they are the places at which objects can interact and obtain services.

The distributed application components (modelled as computational objects) may be
written in different programming languages and may run on heterogeneous environ-
ments. In order for a component to be constructed independently of another component
with which it is to interact, a precise specification of the interactions between them is
necessary. The specification of interaction between application components and of their
requirements of distribution are captured in computational interface templates (see Figure
3).

Computational interfaces model different interaction concerns of computational
objects. An application component acting as a client may request a number of other com-
ponents to perform operations and thus needs a different interface with each of these.
Similarly, the application component acting as a server may perform actions requested
by a number of client components. There is no reason to restrict a server to provide inter-
faces with identical specifications to each of its clients. Allowing a server to provide mul-
tiple interfaces with distinct specifications enables a computational specification to
directly reflect the different roles identified in the enterprise specification, especially with
regard to access control. Multiple interfaces also enable the knowledge of the services

provided by the object to be more tightly scoped [16]. For example, a client which is
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allowed access to an interface of server object (and may not have access to other inter-
faces of server object) can observe only a subset of the service provided by the object.

A computational object may support multiple computational interfaces which need
not be of the same type. Interfaces of the same type may be provided by objects which
are not of the same type. Each object may provide interfaces which are unlike those pro-
vided by the other object.

In the ODP computational model, interactions are specified in terms of either opera-
tional or non-operational interfaces.
2.4.3.1 Operational Interface: The specification of an operational interface template con-
sists of: Operation Specification, Property Specification, Behavior Specification, and Role
Indication.

Operation Specification: The definition of operations that are supported by the inter-

face. Operation specification includes:

1. Operation name: Each operation has a local name within an interface template. No
two operations, within the interface, may have the same name.

Data Specification:

2. The number, sequence, and type of arguments that may be passed in each operation.

3. The number, sequence, and type of results that may be returned in each termination.

The operation name together with the type of argument and result parameters consti-
tutes the operation signature. Both the operation names and the arguments can be repre-

sented as abstract data types.

Most interface specifications, to date, have concentrated on the syntactic require-
ments of the interface such as the operation signature. Aspects other than pure syntax
are also important in facilitating the interaction between a pair of objects. This additional
semantic information falls into two categories [5]:

* information affecting how the infrastructure supports the interactions; this informa-
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tion constrains the type of distribution transparencies, choice of communication
protocols, etc. that must be placed in the interaction path between the interacting
objects.

* the behavior (or the semantics) of the service offered at the interface; an interface is
viewed as a projection of an object’s behavior, seen only in terms of a specified set
of observable actions.

As a result, signature compatibility is less discriminating than interface compatibility.
Interface compatibility includes not only the signature compatibility of the operations
(supported by the interface) but also the behavior observable at the interface and the
check on the property specification (see below).

Property Specification: The property specification in the computational interface tem-

plate defines the following attributes:

1. distribution transparency requirement on operation invocation (e.g., migration trans-
parency, transaction transparency, etc.).

2. quality of service (including communication quality of service) attributes associated
with the operations.

3. temporal constraints on operations (e.g., deadlines).

4. dependability constraints (e.g., availability, reliability, fault tolerance, security, etc.)

5. location constraints on interfaces and hence their supporting objects (e.g., an object be
located on a fault-tolerant computer system).

6. other environment constraints on operations (e.g., those arising from enterprise and
information viewpoint).

These attributes may be associated with individual operations or the entire interface.
Property specification is an important component of the computational interface tem-
plate and has a direct relationship to the realized engineering structures and mecha-
nisms.

Behavior Specification: It defines the behavior exhibited at the interface. All possible
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ordering of operation invocations at or from this interface can be specified. This includes
ordering and concurrency constraints between operations as well as sequential and par-
allel operation invocations. The behavior constitutes the protocol part of the interface.
Role Indication: In general, an interface specification may be bi-directional and specify
the operations each member of a pair of application components could request the other
to perform. However, the ODP computational model also contains uni-directional inter-
face specifications which directly support client-server interaction.

Often an object assumes the role of either client or server. All interactions of an object,
both as a client and as a server, between it and its environment occur at object interfaces.
It is convenient to partition client-role interaction concerns from server-role interaction

concerns in different interfaces.

2.4.3.2 Non-operational Interface: The computational objects may both perform the
information processing task, as well as act as containers of information. There is a need
to model not only the interfaces which provide ‘service’, but also those interfaces which
model ‘continuous’ information flow. Such interfaces are modelled, in the computational
model, as non-operational interfaces (also known as stream interfaces).

The non-operational interface is a set of information flows whose behavior is
described by a single action which continues throughout the life time of the interface.
Information media such as voice and video inherently consist of a continuous sequence
of symbols. Such media are described as continuous and the term stream is used to refer to
the sequence of symbols comprising such a medium [18].

Examples include the flow of audio or video information in a multimedia applica-
tion, or the continuous flow of periodic sensor readings in a process control application.
The computational description does not need to be concerned with detailed mecha-
nisms; the fact that the flow is established and continues during the relevant period is

enough.
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The template for a non-operational or stream interface consists of:

Stream Signature: A specification of the type of each information flow contained in a
stream interface and, for each flow, the direction in which the flow takes place.
Environment Constraints: Continuous media have strict timing and synchronization
requirements. The environment constraints that are relevant to stream interfaces include
synchronization and clocking properties, time constraints, priority constraints, through-
put, jitter, delay, media-specific communication quality requirements, etc., in addition to
the properties applicable to operational interfaces.

Role: A role for each information flow, e.g., a producer object or a consumer object.

2.4.4 Computational Object: The components of a distributed application are repre-
sented as computational objects in the computational model. The computational objects
are the units of (application) structure and distribution. A computational object is an
encapsulation of (application-specific) state and mechanisms which are not directly

accessible to any other object. The computational objects model both the application
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components that perform information processing and those components that store the

information. Objects can create interfaces or stop them during their lifetime.

As shown in Figure 3., a computational object template consists of:
1. a set of computational interface templates (both operational and stream) which the
object can instantiate.
2. an action template for initializing the state of new instances of the object.

3. a specification of environment constraints applicable to the object as a whole.

A computational object can perform the following activities [3]:

1. instantiation of interface templates (creating an interface),
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instantiation of object templates (creating an object),
binding to an interface,

invoking an operation at an operational interface,

2.
3.
4.
5. reading and writing the state of the object,
6. spawning, forking, and joining actions,

7. stopping of interfaces,

8. stopping of object.

These basic actions can be composed in sequence or in parallel.

2.5 Multiple views on the Computational Model
There are several ways in which the general computational model can be described.
This section identifies its major aspects. The computational model can be viewed as:
1. interaction model - an environment for interaction between computational objects.
2. construction model - construction of the configuration of computational objects.

3. programming model - an application programming environment.

Together, these aspects address the issues related to the functional decomposition of

the distributed application, inter-working, and portability of application components.

2.5.1 Interaction Model: One view of the computational model is as an environment that
supports the existence of and the interaction between computational objects. Computa-
tional objects interact by invoking operations at their interfaces. The interaction model
defines an invocation scheme and a type scheme [19].

The invocation scheme describes the permitted forms of interaction, i.e., how clients
may use the interfaces provided by the server. It defines the mechanisms for parameter
passing between interfaces.

The type scheme provides a set of types into which computational interfaces can be
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classified. It defines a conformance relation over interface types which are a set of match-
ing rules between interfaces which must be satisfied before a binding between interfaces
can be established (Figure. 4).

The interaction model (invocation scheme) is simple and uniform. It is based on the
concept of operation invocation. The interaction between computational interfaces is via
operation invocations which carry input argument parameters. The result of operation
execution is returned to the invoker of the operation via termination.

The interaction model (invocation scheme) supports two styles of interactions
between computational objects (or more precisely between computational interfaces):
interrogations and announcements, to model interactions with and without the reply
respectively.

Interrogation is a synchronous request-response invocation style; the activity that
invoked the interrogation passes (via operation) to the object that provides the invoked
operation, and subsequently returns (via termination) to the object from which the invo-
cation was made. There is no change in the degree of concurrency of the system using an
interrogation type of invocation.

Announcement is an asynchronous request-only invocation style; a new activity is cre-
ated in the object that provides the invoked operation, and the invoking activity contin-
ues in the object from which it made the invocation. Invoking an announcement
increases the concurrency in the system, the completion of the evaluation of the body of
an announcement decreases the concurrency in the system. The object that invoked the
announcement is informed neither of the completion of evaluation (of body of opera-
tion) nor of the results delivered (if any). The concept of announcement on the ODP com-

putational model supports the idea of spawning concurrent and independent activities.
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The interaction model is independent of the kind of computational objects that par-
ticipate in the interaction as well as of the way in which a computational object has been
structured internally. The interaction model thus supports the notion of encapsulation
and information hiding. This model establishes the interpretation of parametrization

and gives failure semantics for the interaction.

2.5.2 Construction Model: The construction model is concerned with the construction of
the configuration of computational objects, and supports the creation of complex net-
works of interacting objects, giving the rules which govern object composition and
decomposition.

The computational objects can be connected in various ways, and networks of such
objects can be treated as a single computational object. Similarly, a single computational

object can be decomposed into networks of computational objects [5].

2.5.3 Programming Model: The computational model provides an abstract, distribution-
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transparent, language-independent specification and programming model for distributed
applications, and of their execution and interaction semantics. Concerns in this view-
point essentially include specification/programming language and programming sys-
tem interface issues. The computational model expresses the programmability of the
distributed platform [11].

The language-independent programming framework offered by the computational
model provides:

1. Application programming interfaces (APIs).

2. Programming concepts and abstractions necessary for the development of distrib-

uted applications (an abstract programming language).

From this viewpoint an ODP system appears as a large programming environment
capable of building and executing applications on the supporting engineering infrastruc-
ture. The distributed programming model provided by the computational model,
abstracts away, in an integrated framework, the generic set of distributed services pro-
vided by the engineering model from distributed applications designers and program-
mers. The ODP engineering model, that describes the structure and organization of these
distribution enabling and regulating services, constitutes a virtual machine model for exe-
cuting distributed programs conforming to the ODP computational model [20].

Hence, the computational model provides the equivalent of a programming lan-
guage, for use on top of the abstract machine realized by the engineering infrastructure.
Such a computational model will contain programming language features which are
commonly found in advanced object-based distributed platforms. As such, the computa-
tional model can be seen as some form of implementation language for building applica-
tions on top of ODP systems [21].

The ODP computational model is based on both synchronous (send-blocking) and
asynchronous (non-blocking) call and a lightweight threads style of programming. This

can very easily be noted since, in the computational model, all object interactions are
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considered remote and the invocation of interrogation corresponds to the remote proce-
dure call. Such a style is a natural extension of the procedural style found in the majority
of programming languages.

The computational model hides the actual degree of distribution of an application
from its programmer, thereby ensuring that application programs contain no deep-
seated assumptions about which of their components are co-located and which are sepa-
rated. Because of this, the configuration and degree of distribution of the underlying
platform on which ODP applications are run can easily be altered without having a
major impact on the applications software [22]. This desirable characteristic is called dis-
tribution transparency.

Since the main objective of ODP is to provide a generic architecture for distributed
systems, the role of the computational model is particularly important. It masks the
effects of distribution and heterogeneity, when required from applications.

By conforming to the computational model, application programmers are given a
guarantee that their programs will operate in a variety of different quality environments,
without modification of the source. The engineering model offers standardized system
programming interfaces for supporting the computational programming environment
[23].

The computational model concentrates on the problems and the opportunities pre-
sented by the execution of application components on distributed computing systems. It
identifies the functions that must be available to the programmer and the constrains on
the (application) program structure necessary to enable distribution, rather than a partic-
ular syntax of the computational language. The outcome of this approach is that all pro-
grams, in whatever language, are written with the same abstract (distributed) machine
as their target. Porting a program from one system to another is then a matter of only
changing the local representation of the abstract machine as it appears in the application

programming language, which does not require any changes to the application program
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itself [3].

PART-3 ENGINEERING MODEL
3.1 What is an Engineering Model?

The engineering model is an abstract model to express the concepts of the engineer-
ing viewpoint. It contains concepts such as operating systems, distribution transparency
mechanisms, communication systems (protocols, networks), processors, storage, etc. As
the notions of processor, memory, transport network play a more indirect role in a dis-
tributed system, the term ‘engineering model’ is used here in a more general way to
describe a framework oriented towards the organization of the underlying distributed
infrastructure and targeted to the application support. It mostly focuses on what services
may be provided to applications and what mechanisms should be used to obtain these
services. The term platform is used to refer to the (configuration of) services offered to
applications by the infrastructure [11].

The engineering model is still an abstraction of the distributed system, but it is a dif-
ferent abstraction than that of the computational model. Distribution is no longer trans-
parent, but we still need not concern ourselves with real computers or with the
implementations (technology) of mechanisms or services identified in the engineering
model [24]. The engineering model provides a machine-independent execution environ-
ment for distributed applications.

Unlike the enterprise, information, and computational models which deal with the
semantics of distributed applications, the engineering model is not concerned with the
semantics of the distributed application, except to determine its requirements for distri-
bution.

3.2 Engineering Model: An Object-Based Distributed Platform
The ODP engineering model is an architectural framework for the provision of an

object-based distributed platform. The basic services and mechanisms, identified in the
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engineering model, are modelled as a collection of interacting objects which together
provide support for the realization of interactions between distributed application com-
ponents.

The engineering model can be considered as an extended operating system spanning
a network of interconnected computers. In the networked-operating system! view of the
model, the linked computers preserve much of their autonomy and are managed by
their local operating systems which are enhanced with mechanisms to enable, regulate

and (if desired) hide distribution.

3.3 Engineering Model: Animation of Computational Model

The interest of the computational model is directly related to the existence of a map-
ping enabling it to relate to engineering concerns [15]. This means, for instance, being
able to map computational concepts onto the engineering structures.

The engineering model provides an infrastructure or a distributed platform for the
support of the computational model. The model provides generic services and mecha-
nisms capable of supporting distributed applications specified in the computational
model. The model is concerned with how an application, specified in the computational
model, may be engineered onto the distributed platform. The selection of distribution
transparency and communication (protocol) objects, among many other support mecha-
nisms, tailored to application needs, forms an important task [17].

The engineering model identifies the functionality of basic system components that
must be present, in some form or other, in order to support the computational model.
Hypothetically, there may be several engineering models for a particular computational
environment, reflecting the use of different system components and mechanisms to

achieve the same end. The issue in the computational model is what (interactions, distri-

1. In contrast, in the distributed operating systems,Wieevsystem management would be global and indi-
vidual computers have little autonomy
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bution requirements); the engineering model prescribes solution as to how to realize
these interactions, satisfying the stated requirements.
3.4 Structure of the Engineering Model

The engineering model reveals the structure of the distributed platform, the ODP
infrastructure which supports the computational model. The services or mechanisms
which enable, regulate and hide distribution in the ODP infrastructure, are modelled as
objects, called engineering objects, which may support multiple interfaces.

There are different kinds of engineering objects in the engineering model correspond-
ing to different distribution (enabling, regulating, hiding) functions required in distrib-
uted environment. This is illustrated in Figure 5. Some engineering objects correspond to
the application functionality and they are referred to as basic engineering objects while
those which provide distribution functions are classified as transparency objects, protocol
objects, supporter objects, etc. At a given host, the basic engineering objects belonging to an
application may be grouped into clusters. A host may support multiple clusters in its
addressing domain, known as capsule. A capsule consists of clusters of basic engineering
objects, a set of transparency objects, protocol objects and other local operating system
facilities.

From an engineering viewpoint, the ODP infrastructure consists of interconnected
autonomous computer systems (hosts), which are called nodes. Each node supports a
nucleus object and multiple capsules. The nucleus encapsulates computing, storage, and
communication resources at a node. All the objects in the node share common process-
ing, storage, and communication resources encapsulated in the nucleus object of the
node.

As mentioned before, the engineering model animates the computational model. The
computational-level interactions between a pair of computational objects (or their inter-
faces) are supported through channel structures in the engineering model. A channel

binds basic engineering objects in different clusters, capsules, or nodes. The channel is a
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configuration of transparency objects, protocol objects, etc. which provide distribution
support.

The services and mechanisms currently identified in the engineering model are
generic in nature and can support distribution requirements of applications in a broad
range of enterprise domains (Telecoms, Office Information Systems, Computer Inte-
grated Manufacturing, etc.). However, domain-specific supporting functions will be
defined in the domain-specific engineering models (which are the specialization of ODP
engineering model).

The following is a brief description of the engineering objects and structures cur-

rently identified in the ODP engineering model. The objects and structures which are
defined later in the text are italicized. Table 2 gives a relationship between the engineer-
ing objects and the real world system.
3.4.1 Basic Engineering Object: Basic Engineering Objects (BEOs) are the run time repre-
sentation of computational objects (obtained through compilation, interpretation or
through some other transformation of computational objects) which encapsulate appli-
cation functionality.

A basic engineering object is the corresponding computational object (computation-
ally) enriched with extra interfaces to interact with objects in the channel. In general, a
computational object can be mapped onto a single basic engineering object, but (because
of refinement, decomposition, and replication) a computational object will often map to
several basic engineering objects.

A BEO is an object all of whose interfaces are bound to either other basic engineering
objects in the same cluster or to (objects in the) channel. A BEO is always bound to a clus-
ter manager object in the same capsule (to enable object deactivation, checkpointing,
migration, etc.)

3.4.2 Cluster: A cluster is a configuration of basic engineering objects. Clusters are used

to express related objects (which belong to the same application) that should be local to
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one another, i.e., those groups of objects that should always be on the same node at all
times.

A cluster is a collection of BEOs in a capsule such that members of the cluster have no
interfaces bound directly to interfaces of objects in other clusters. Objects within a cluster
communicate directly, whereas objects in different clusters interact through channels.
3.4.3 Cluster Manager: A cluster is associated with a cluster manager which coordinates
the management of the cluster. The cluster manager performs the operations of activat-

ing a cluster, passivating a cluster, checkpointing a cluster, migrating a cluster, and other
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policy specific operations.

3.4.4 Capsule: A capsule consists of clusters of basic engineering objects, transparency

objects, and protocol objects bound to a common nucleus in a distinct address space from

any other capsule. A capsule provides to its clusters access to the objects in the channel

and to the nucleus to which it is bound.

A capsule is a collection of basic engineering objects, transparency objects, protocol

objects in a node such that objects in the capsule have no interfaces bound directly to

interfaces of objects in other capsules (except via the nucleus). A capsule consists of:

1. active clusters;

2. cluster manager objects, one for each cluster in the capsule;

3. transparency stub, transparency binder and protocol objects for each channel bound to an
interface of a basic engineering object within any of the active clusters.

4. a capsule manager. A capsule manager is bound to each cluster manager’s cluster
management interface.

A cluster is always contained within a single capsule. A capsule is always contained

within a single node.

3.4.5 Nucleus: A nucleus is an object that provides access to basic processing, storage,
and communication functions of a node for use by basic engineering objects, transparency
objects, protocol objects, bound together into capsules. A nucleus may support more than
one capsule. A nucleus has the capability of interacting with other nuclei (through its
communication function), providing the basis for inter-capsule and inter-node commu-
nication.

A nucleus supports the following interfaces:

1. interfaces to access storage resources, called nucleus resource interface.

2. interfaces to access nucleus communication facilities, called plug and socket.

3. interfaces to access processing resources, called nucleus interpreter interface.
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3.4.6 Node: A node consists of one nucleus object, a node manager, and a set of capsules.
All of the objects in a node share common processing, storage, and communications
resources.

3.4.7 Node Manager: The node manager performs the bootstrapping of the node. It ini-

tializes the services on the node. It is a repository of capsule templates.

3.4.8 Channel: A channel object is a configuration of transparency objects, protocol objects,
application specific supporting objects, etc. providing a binding between a set of interfaces
to basic engineering objects, through which interaction can occur. The structure of the
channel is dependent on the distribution function requirements of the interaction
between basic engineering objects. A general structure of the channel is described in the
next section.

3.4.9 Supporting Object: A supporting object is an object, outside of a channel, which
cooperates with objects within the channel for the provision of distribution transparency.
The supporting objects are shown in Figure 6. The supporting objects are the repositories
of information required by the transparency objects and protocol objects within the channel.
For example, the location transparency binder object registers and retrieves object locations
via a supporting object known as the relocator.

Table 2: System Abstractionsin the Engineering Model

Engineering object System representation

Node single computer system, network of workstations managed by a djstrib-
uted operating system, any autonomous information processing system
with independentucleus resources and failure characteristics.

Nucleus processing, storage, and communication resourcesaufea

Capsule the concept of address space in operating systems.

Cluster the concept of ‘linked’ modules to form an executable program image.
BEO the program module which may not be executed in isolation.
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Table 2: System Abstractionsin the Engineering Model

Engineering object System representation

Channel the run time ‘binding’ between distributed BEOs

Transparency Special purpose modules which enhance the operating system environ-

object ment of thenode and can be dynamically linked into the distributed
application program.

3.5 Structure of a Channel

This section describes the generic structure of the channel which provides the
binding between basic engineering objects. A channel supports distribution transparent
interaction between a pair of (interfaces to) basic engineering objects located in different
clusters.

As shown in Figure 6, a channel is a configuration of transparency objects, protocol
objects, application-specific supporting objects, and interceptor objects. It is parametrized by a
set of communication interfaces. The configuration of the channel can be dynamically
negotiated when establishing the binding between basic engineering objects.

The configuration of objects in the channel provides the medium through which
(remote) interactions among basic engineering objects pass.

The channel is composed of a variety of transparency objects. The transparency objects
that make up the channel are classified as either stub objects or binder objects (see Figure
6). Both stub objects and binder objects contribute to the provision of distribution trans-
parency between interacting basic engineering objects, but they differ in that the stub
objects actually modify the information exchanged across the channel, while binder
objects control various aspects of the binding between the interfaces of remote basic
engineering objects.

Figure 6 is a simplified view of the channel® that illustrates the object types used in

1. In spite of the resemblance of figure 6 to the layered communication models, such as OS], there is not neces-
sarily a peeto-peer relationship between the objects in the two halves of the channel. There may etast peer
peer relationship between the protocol objects. In contrast, binder objects may obtain the required information
from support objects outside the channel.
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the structure. In practice, a channel may be much more complex than this and may con-
tain several different types of stub objects, binder objects, etc., depending on the trans-
parency properties required [24].

The figure shows the client half and server half of a single channel object. Note that

the whole channel is a single object, even if the BEOs are on different nodes.
3.5.1 Stub Object: A stub is an object which acts to a basic engineering object as a repre-
sentative of another basic engineering object located in different clusters, thus contribut-
ing towards distribution transparency. Stub objects are bound to the basic engineering
objects for the purpose of hiding certain aspects resulting from distribution (or heteroge-
neity).

Stub objects have direct access to the basic engineering objects. The operation invoca-
tions on the interfaces of basic engineering objects are intercepted by stub objects to hide
some aspects of distribution such as concurrency in the system or to modify the informa-
tion exchanged between basic engineering objects, thus masking the heterogeneity in the
distributed system.

Stub objects add further interactions and/or information to interactions between
interacting basic engineering objects to support distribution transparency. As an exam-
ple, a stub object may provide adaptation functions such as marshalling and un-mar-
shalling of operation parameters to enable access transparent interactions between
interfaces of basic engineering objects.

Examples of stub objects include access transparency objects and concurrency transpar-
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ency objects discussed in the next section.
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FIGURE 6. SIMPLIFIED GENERIC CHANNEL STRUCTURE
Basic engineering objects are always directly bound to the stub objects. Stub objects
within a channel can interact using other objects in the channel, or via interaction with
supporting objects outside of the channel (Figure 6). Transparency support through the

combination of stubs and binders is discussed in section 3.6.1.

3.5.2 Binder Object: A binder is an object which controls and maintains the binding
between interacting basic engineering objects, contributing towards the provision of dis-
tribution transparency.

Binder objects maintain the binding between basic engineering objects, even if they
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are migrated, reactivated at new location, or replicated. Examples of binder objects
include location transparency objects, migration transparency objects, replication transparency
objects, failure transparency objects, and resource transparency objects. Transparency support
through the combination of stubs and binders is discussed in section 3.6.1.

Stub objects are bound to binder objects (Figure 6). Binder objects interact with each
other to maintain the integrity of the binding between the interacting basic engineering
objects. Binder objects in the channel can interact with each other using other objects in
the channel, or via interaction with supporting objects outside the channel. Binder

objects are interconnected by protocol objects.

3.5.3 Protocol Object: A protocol object encapsulates communication protocol function-
ality for supporting communication between basic engineering objects. A channel may
be composed of a number of protocol objects corresponding to different communication
support requirements of interactions between basic engineering objects. Protocol objects
interact with other protocol objects to support interaction between basic engineering
objects.

When protocol objects are in different (administrative) domains they interact via an

interceptor. When they are in same domain they interact directly.

3.5.4 Interceptor Object: An interceptor is an object which masks administrative and
technology domain boundaries by performing transformation functions such as protocol
conversion, type conversion etc. It enables interactions to cross administrative and com-
munication domains, thus contributing towards federation transparency.

When a channel connects basic engineering objects in capsules supported by a com-
mon nucleus object, i.e., in the same node, all of the protocol and interceptor objects in
the channel structure can be omitted.

When a channel connects basic engineering objects with no requirement for distribu-
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tion transparency to support interactions between them, the stub and binder objects can

be omitted from the structure.

3.6 Transparency System
Distributed systems exhibit a number of properties, inherent in distribution, not
found in centralized systems. Consequently, an application designed to work on a dis-
tributed system must take these additional properties into account. However, the appli-
cation designer does not have to deal explicitly with these properties, if they are made
transparent. The complexities of distributed systems may be hidden through the notion
of distribution transparencies defined by ODP.
The concept of transparency is related to the notion of abstraction, where irrelevant
details are ignored. Transparency is the property of hiding from the user (in the computa-
tional environment) some aspects of the potential behavior of the underlying ODP infra-

structure [25].

This section describes distribution transparency system (Figure 6) that binds a pair of
basic engineering objects within the channel of the engineering model. Currently, the
engineering model identifies a set of transparency mechanisms, which are by no means
exhaustive. There is scope for the definition of more generic distribution transparencies
in the engineering model. The distribution transparencies, currently identified, can be
used in a broad range of enterprise domains. However, enterprise specific transparency
requirements will be identified in the enterprise specific engineering models. It is
through the definition of a suitable repertoire of transparency objects that the ODP infra-
structure can be made sufficiently flexible to meet a wide range of enterprise require-
ments [1].

3.6.1 Transparency Support through Stubs and Binders: The transparency objects coop-

erate to perform the transparency function by bringing uniformity to some aspect of the
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distribution of the engineering objects they support. Some forms of transparency require
supporting services: for example, if basic engineering objects can move from one loca-
tion to another, a means of recording and discovering the current location of the object is
required. Supporting functions are modelled as engineering objects so that the architec-
ture provides a maximum degree of configuration flexibility. As shown in Figure 6, the
transparency system is composed of stub objects and binder objects in the channel, and
supporting objects outside the channel.

As mentioned in the previous section, the engineering model classifies transparency
objects as either stub objects or binder objects. While stub objects address masking of
some aspects of distribution - those arising due to the presence of heterogeneity and con-
currency in the distributed system, the binder objects address aspects of distribution
resulting from change of location of objects. The migration of the object may be required
for any of the following reasons:

1. load balancing, reduction of access time, etc. This aspect of distribution is masked by
location transparency binder and migration transparency binder.

2. failure of object at one location and its reactivation at another location. This aspect of
distribution is masked by failure transparency binder.

3. unavailability of (nucleus) resources at one location and its (re)activation at another
location. This aspect of distribution is masked by resource transparency binder.

4. replication of objects at different locations, for example, if the server object is repli-
cated, then it is required to maintain the binding between the client and the set of rep-
licated server objects. Changes to the membership of the replica group, such as
addition of a server object, would require establishing the binding with the new mem-
ber.

In all these cases the binding between the basic engineering objects is susceptible to
be broken down, resulting in a disruption of the service to the client. The binder objects

attempt to maintain the integrity of the binding between basic engineering objects.
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Hence, they are called transparency binder objects. Location transparency binder pro-
vides the basic service. All other binders require the support of location transparency
binder.

In ODP, the application designer can select the level of transparency needed in a
design and have full control of other aspects by turning off some transparencies. As a
general rule, a transparency is supported by placing the corresponding transparency
object between the user and the system, which acts as a filter to hide unwanted system
features from the user. By removing the object (i.e., turning off the transparency) the user
can directly deal with the system.

ODP permits distribution transparency to be selectively enabled in any binding
between basic engineering objects and specifies channel configuration rules to achieve or

avoid specific transparencies.

The following transparencies have been identified in the ODP engineering model, as
important in distributed systems. A brief description of each transparency, based on the
concept of client and server objects (or client and server interfaces) is outlined below
with respect to what aspect of distribution is masked by the transparency, the result of
the application of the transparency, and a brief description of the transparency mecha-
nism.

Transparency mechanisms provide an enhanced environment positioned on top of
the low-level operating systems and communications facilities of the distributed plat-
form, for the support of the distribution transparent programming environment offered
by the computational model. The technique for providing transparency services is based
on the principle of replacing an original service by a new service which combines the
original service with the transparency service, and which permits clients to interact with
it as if it were the original service. The clients need not be aware of how these combined

services are achieved [26].
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Since the interaction between the objects occur at their interfaces, these transparen-
cies are applicable to individual interfaces or to specific operations of the interfaces. An
interface may have a set of transparency requirements which may be different from
those of other interfaces of the same object.

A summary of transparency mechanisms is presented in Table 3.

3.6.2 Access Transparency: Access transparency hides from a client object the details of
the access mechanisms for a given server object, including details of data representation
and invocation mechanisms (and vice versa).It hides the difference between local and
remote provision of the service. It enables interworking across heterogeneous computer
architectures, operating systems, and programming languages.

3.6.3 Concurrency Transparency: Concurrency transparency hides from the client the
existence of concurrent accesses being made to the server. Concurrency transparency
hides the effects due to the existence of concurrent users of a service from individual
users of the service.

3.6.4 Location Transparency: Location transparency hides from a user (client) the loca-
tion of the object (server) being accessed.

3.6.5 Migration Transparency: Migration transparency hides from the user of the service
(client) the effects of the provider of the service moving from one location to another,
during the provision of the service (between successive operation invocations).

Location transparency is a static transparency in the sense that it is assumed that
once located the interface remains at its location (until the binding between the involved
interfaces is broken). Migration transparency is the dynamic case which arises if the
server interface can move while the client object is interacting with it, without disturbing
those interactions.

3.6.6 Replication Transparency: Replication transparency, also known as group transpar-
ency, hides the presence of multiple copies of services and the maintenance of the consis-

tency of multiple copies of data, from the users of the services.It enables a set of objects
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(their interfaces) organized as a replica group to be coordinated so as to appear to interact-
ing objects (or their interfaces) as if they were a single object (interface).

There are two main aspects of replication transparency. The first hides the difference
between a replicated and a non-replicated provider of a service from users of that ser-
vice, and the second hides the difference between replicated and non-replicated users of
a service from providers of that service.

Users are unaware of multiple providers of a service and need not be concerned
about making multiple operation invocations or dealing with multiple responses.
3.6.7 Resource Transparency: Resource transparency hides from a user (client) the mech-
anisms which manage allocation of resources by activating or passivating (server)
objects as demand varies. It also implies the hiding of deactivation and reactivation of
(server) objects from the clients. This transparency, also known as liveness transparency,
masks the automated transfer of clusters from a capsule to a storage object and back
again, to optimize the use of a node’s nucleus resources (processor, memory, etc.). With
resource transparency in place, clients can invoke operations on the server irrespective of

whether the server is currently active or passive.

Table 3: ODP Distribution Transparencies

Transparency Central Issue Result of Tansparency

Access The method of access to objects | Client need not be unawareaxfcess
(invocation mechanism and data repmechanisms at the server interface
resentation).

Concurrency | Concurrent access to objects in the| Clients are masked from thdexfts of

distributed system. concurrent access to the server inte
face.
Location Location of object in the distributed| Clients are unaware of the physical
system. location of the server
Migration Dynamic relocation of objects duringClients are unaware of the dynamic
the “bind-session”. migration of the server
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Transparency

Central Issue

Result of Tansparency

ing administrative and technology
boundaries.

Replication | Multiple invocations of replicated | Client invokes a replicated server
objects, multiple responses, and congroup as if it were a single server
sistency of replicated data. Distribution of requests, collation of

responses, consistency of data, and
membership changes are hidden.

Resource Resource management policies of th€lient unaware of the deactivation
node (deactivation and reactivation ofand reactivation of the server
objects).

Failure Partial failure of object in theode. Client unaware of the failure of the

server and its subsequent reactivation
(possibly at another node).
Federation Pan-oganizational boundaries. Clients unaware of interactions cross-

3.6.8 Failure Transparency: Failure transparency masks (certain) failure(s) and possible

recovery of server objects from the client objects, thus providing fault tolerance.

3.6.9 Federation Transparency: Federation transparency hides the effects of operations

crossing multiple administrative boundaries from the clients. It permits interworking

across multiple administrative and technology domains.
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PART-4
4.1 Application of ODP Architectural Concepts: An Illustration

This section illustrates the application of ODP architectural concepts discussed in
Part-2 and Part-3 of this chapter through a simple client-server example. The distributed
application consists of a set of distributed file servers and file users (clients). The clients
and servers are located on different nodes of a distributed platform. The distributed plat-
form conforms to the ODP engineering model.

In the following we illustrate the computational and engineering modelling of this
client-server distributed application. We focus on a single file user (F-CLIENT) and a file
server (F-SERVER) interaction in order to illustrate the issues involved in the computa-
tional and engineering modelling of distributed systems. Henceforth the modelling
activity is restricted to a pair of client and (possibly replicated) server(s) and interactions

between them.

Computational Modelling: From the computational viewpoint, the application consists of a
file user and a file server interacting in a distribution-transparent abstraction. The com-
putational modelling activity consists of the identification of:

1. Computational Objects: The computational objects in this example are F-USER and F-
SERVER. The activities performed by these objects are specified in the corresponding
computational object templates.

2. Computational Interfaces: In this example, each computational object consist of a single
computational interface. (More realistically, the file-server object may possess multiple
interfaces to model its interactions with different clients).

3. Computational Operations: The operations that are supported by (server) interfaces and
invoked from (client) interfaces are identified for each computational interface. They
are: F-Open, F-Read, F-Write, F-Close, etc.

4. Environment Constraints: The environment constraints associated with the computa-
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tional object and their interfaces are specified.
The environment constraint associated with the F-SERVER object may include, for
example, certain security requirements (with respect to the node in which that object is

placed).
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The environment constraints associated with the F-CLIENT and F-SERVER interfaces
include distribution transparency requirements such as access transparency, concur-
rency transparency, location transparency, replication transparency, communication
protocol requirements such as (a specific file transfer protocol) FTAM [27], and connec-
tion-oriented session and transport protocols of an OSI stack. The specification of envi-
ronment constraints in the computational interface template has a direct relationship
to realized engineering structures and mechanisms.

5. Computational Interactions: The F-USER and F-SERVER objects interact by exchanging
operations at their interfaces. The rules for operation exchange constitute the behavior
(exhibited by the computational object) at the interface.

Items 3, 4, and 5 are specified as part of the computational interface template. The F-

CLIENT and F-SERVER interfaces are bound on the basis of the matching of their com-

putational interface templates, performed by a special ODP system object called the

trader [28, 29]. The computational view of this application is shown in Figure 7.

Engineering Modelling: In passing from the computational viewpoint to the engineering
viewpoint, concerns shift from the specification of computational structures (e.g., com-
putational objects, computational interfaces, etc.) and statements of necessary properties
of interactions between object interfaces (e.g., distribution transparency requirements) to
engineering mechanisms capable of realizing these properties.

At the heart of the separation between the ODP computational and engineering
models is the idea of a tool-driven transformation between the abstract computational
description of a distributed application and its mechanization in terms of the engineer-
ing model. The engineering model animates the computational model [30].

The engineering modelling activity consists of identification of basic engineering
objects corresponding to computational objects, realization of interactions between com-

putational interfaces through the configuration and instantiation of appropriate channel
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structures between the (corresponding) interfaces of basic engineering objects, and the

placement of engineering objects in the appropriate environments (nodes). The composi-

tion of objects in the channel must satisfy the environment constraints specified in the
computational interface template.

1. Basic engineering objects: The F-CLIENT and F-SERVER basic engineering objects are
obtained through a compilation or any other transformation of the corresponding
computational objects, and may result in the decomposition of computational objects
and/or identification of additional interfaces to BEOs to interact with objects in the
channel. The computational interfaces are not decomposed.

2. Channel: The channel structure between the basic engineering objects carries the opera-
tions invoked by the interfaces of the BEO. In this example, the channel between the F-
USER and F-SERVER BEOs is composed of the following engineering objects, which

satisfy the distribution transparency requirements of the computational interface.

2.1 Access Transparency Object: The F-CLIENT and F-SERVER objects may be coded in dif-
ferent programming languages and compiled on different machines. An access trans-
parency object is interposed to enable them to talk to each other. Each of the access
transparency objects on the client and server half of the channel convert the opera-
tions into messages in the network format and vice versa. For example the client may
be coded in Smalltalk and the server in C. The client uses the Smalltalk methods to
invoke the server. However the server (written in C) cannot understand Smalltalk
methods. It can only respond to C function calls. The access transparency objects on
both sides of the channel convert the local invocation and data parameters into mes-
sages in the network format and vice versa.

2.2 Concurrency Transparency Object: The F-SERVER may have multiple clients invoking
operations on its interface. The concurrency transparency object hides the effect of

concurrency existing at the F-SERVER from the F-CLIENT [31].
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2.3 Location Transparency Object: The F-SERVER object may be migrated on a different
node (due to load balancing). If an operation for a migrated F-SERVER is received,
the location/migration transparency object on the server side of the channel informs
its counterpart on the client side of the channel. The client location transparency
object obtains the current F-SERVER address from the relocator (a supporting object)
and redirects the client operation invocation.

2.4 Replication Transparency Object: The example shows that there exists two replicas of F-
SERVER. If the F-CLIENT wishes that all its operations on the F-SERVER be transpar-
ently performed on server replica (instead of making separate invocations), then the
replication transparency objects on both ends of the channel perform the functions of
distribution of client requests and server responses, collation, and ordering in order
to perform consistent replication [32].

2.5 Resource Transparency Object: If the F-CLIENT wishes that the deactivation and reacti-
vation of F-SERVER be transparent between operation invocations, the resource
transparency object on the server side performs the reactivation of a passivated F-
SERVER when an operation invocation is received for it.

Note: As discussed before, transparencies are selective. Only those transparencies which
are specified in the computational interface template are included in the channel.
Some transparencies require peer objects (on each side of the channel), because they
require peer-to-peer protocols to achieve the transparency.

The objects satisfying the communication requirements of the computational interface

are as follows.

In this example, the File Transfer Access and Management (FTAM) protocol is con-
tigured in the channel along with the appropriate subset of OSI session and transport

protocols to support the communication of operation exchanges between F-USER and F-

SERVER over the unreliable transport network.
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PART-5
5.1 Conclusion and directions for future research

Using the five ODP viewpoints to examine system issues encourages a clear sepa-
ration of concerns, which in turn leads to a better understanding of the problems being
addressed: describing the role of the enterprise (enterprise viewpoint) independently of
the way in which that role is automated; describing the information content of the sys-
tem (information viewpoint) independently of the way in which the information is
stored or manipulated; describing the application programming environment (computa-
tion viewpoint) independently of the way in which that environment is supported;
describing the components, mechanisms used to build systems independently of the
machines on which they run; and describing the basic system hardware and software

(technology viewpoint) independently of the role it plays in the enterprise.

The field of Open Distributed Procesing offers numerous research opportunities,
related to both theoretical and practical aspects of viewpoint models. One of the main
research problems is ensuring consistency between viewpoint specifications. This
includes identifying the requirements and constraints that originate in the viewpoint
models, identifying the consistency constraints between the models, and defining consis-
tency-preserving transformations between the models. Similarly, it is required to ensure

consistency between the system design and the viewpoint specifications.

The computational and engineering viewpoints are the most important from the
point of view of distributed software engineering. They offer uniform and consistent
abstraction levels for the specification of the system and its engineering on the distrib-
uted infrastructure. They offer powerful design concepts for the development of applica-

tion programming environments and distributed platforms.
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The ODP Model is very generic. It can be applied in various application domains.
Currently, it is being used in the field of Advanced Intelligent Networks, Distributed

Network Management, etc. Its application in other domains is an area of active interest.
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