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" SUMMARY

LOTOS is an executable specification language for distributed systems currently being standard-
ized within ISO as a tool for the formal specification of open systems interconnection protocols
and services. It is based on an extended version of Milner’s calculus of communicating systems
(CCS) and on ACT ONE abstract data type (ADT) formalism. A brief introduction to LOTOS is
given, along with a discussion of LOTOS .operational semantics, and of the executability of
LOTOS specifications. Further, an account of a prototype LOTOS interpreter is given, which
includes an interactive system that allows the user to direct the execution of a specification (for
example, for testing purposes). The interpreter was implemented in YACC/LEX, C and Prolog.
The following topics:are discussed: syntax and static semantics analysis; translation from
LOTOS external format to internal representation; evaluation of ADT value expressions and
extended CCS behaviour expressions. It is shown that the interpreter can be used in a variety
of ways: to recognize whether a given sequence of interactions is allowed by the specification;
to generate randomly chosen sequences of interactions; in a user-guided generation mode, etc.
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INTRQDUCTION

The theory and practice of specification languages for data communications protocols
and services (often called formal description techniques or FDTs) has been the object
of much recent interest. Formal and exact specifications of protocols and services are
useful in every phase of the protocol development life-cycle. Even more, they are
essential for protocols and services that are international standards meant to be
implemented in compatible ways across the world. The specification must capture
those features of an implementation that are necessary for it to be able to communicate
with other implementations. Therefore, it is important that the specification be implem-
entation-independent. ' A

Several approaches have been proposed for the specification of data communications
systems, which' range the ‘whole gamut from very implementation-independent logic
specifications! to specifications written in implementation languages such as cz?

*.Pfeliminary versions of parts of this paper have appeared in the Proceedings of the 1986 ACM SIGCOMM
Symposium and in.B. Sarikaya and G.v. Bochmiann (eds) Protocol Speécification, Verification, and Testing V1, North-
Holland, Amsterdam, 1987.
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Much could be said on the advantages and disadvantages of executable and non-
executable specification techniques. Executable techniques provide a ‘running proto-
type’ of what is specified and thus have the advantage of allowing testing to begin with
specification. On the other hand, they force the specifier to make some implementation
choices that are premature at the specification stage and that may puzzle the implemen-
tor. Non-executable techniques have the opposite advantages and disadvantages. In
addition, non-executable specifications, such as temporal logic specifications, can give
explicitly the constraints that the system should respect (for example, that a certain
state of affairs always follows another), which may be difficult to extract from executable
specifications. Our feeling is that both types of specifications are needed. Further
discussion on this topic can be found in References 3-5.

The specification language LOTOS (Language Of Temporal Ordering Specifi-
cations), an FDT that is in the process of being standardized for the formal specification
of open systems interconnection (OSI)® protocols and services, has already been the
subject of several papers.”® Even though OSI was the immediate motivation for
LOTOS, the language is general in scope and could be used for the specification of
most types of distributed systems. The definition of LOTOS used here is that in
Reference 10. : :
~ This paper presents the philosophy of executability underlying LOTOS and reports
on our experience in implementing a prototype LOTOS interpreter. Since LOTOS is
expected to become an International Standard of the International Organization for
Standardization (ISO), presumably there will be several implementations in the future,
and therefore we hope that our experienc will benefit future implementors.

Reference 11 contains a survey of other related systems that have been developed
recently. Among them, those by Berthomieu'?'and Karjoth!® are worth mentioning as
sources of interesting ideas. Further background information is contained in Reference
14. Our system is the only one we know that accepts the language of Reference 10
almost in its entirety, including complete static semantics checking (the only features
not implemented were some ACT ONE features whose semantics could not be deter-
mined from References 10 or 15). R

LOTOS-CONCEPTS _

Since LOTOS is a relatively new language, it is-appropriate to present a brief overview
of its main concepts. For a full understanding of this paper, however, familiarity with
a more complete tutorial’"or with Reference 16 is necessary. A shorter tutorial, with
examples and discussion of LOTOS formal semantics, is.given in Reference 17. The
reader should be aware of the fact that LOTOS. was being substantially enhanced at
the time of writing of this paper. . A

LOTOS is based primarily on the principles of the calculus of communicating
systems (CCS),'® which provided the inspiration: for the representation -of behaviour
expressions. However, it is also influenced by. the.related work on Communicating
Sequential Processes (CSP).'® The augmented CCS on which LOTOS semantics are
based is called CCS". For the definition of data abstractions (i.e. values, data structures
and operations on them), LOTOS is based on the ADT formalism of ACT ONE.15

CCS and ACT ONE could then be considered the two parts that constitute LOTOS:
the first for describing the ‘control’, and the second for describing the ‘data’. These
two parts are mutually independent, except that the control part makes reference to
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the data part-for-the semantics of value expressions. One advantage is that a LOTOS
interpreter can be written in-two.independent parts, where the control part has to call
on the data part every time a value expression has to be evaluated. Another possible
advantage is that users who prefer other data formalisms to ACT ONE could use such
formalisms in lieu of ACT ONE (this, however, is likely to require important changes
to the static semantics of LOTOS).

LOTOS is a recursive language without side-effects. The structure of a typical
LOTOS specification could be graphically represented as a tree made up of many
small, nested processes. LOTOS favours stepwise decomposition of specifications. For
example, a service specification may, at the top level, consist of four processes, a
sending entity, a receiving entity and two bidirectional queues. These processes may
themselves be subdivided, and this subdivision continues down to small processes,
such as the service primitives themselves. Some of these processes may share ‘gates’
through which communication occurs. Also, various control relationships may hold
between processes. One process may be alternative with relation to another, or may be
in parallel with another, or may be capable of ‘disabling’ another. All this is described
in greater detail below.

In LOTOS, interprocess communication occurs by means of a two-way ‘rendezvous’
mechanism, called ‘interaction’. In an interaction, each one of the participating pro-
cesses specifies the name of a gate and whatever information it wishes to provide on
the values to be established. This can range from a specific value to a ‘sort’ (i.e. data
type) only. Processes can participate in an interaction only if, at the same time, they
are ready for an interaction where they specify the same gate and compatible sorts.
For example,

g ?x:int 1(3+5) !true (1)

is an ‘action denotation’ in LOTOS. It describes an ‘interaction offer’ at gate g, i.e.
the process executing this action denetation is ready to interact with other processes in
the environment, which are or will become ready to execute complementary (‘matching’)
interaction offers. If it occurs, the interaction establishes three values: the first of these
values, x, is not known to this process, hence the question mark or ‘query’. Only its
sort is known to be ‘integer’. The next two values are known, hence the exclamation
marks, or ‘shrieks’. The first is the integer 8, and the second is the boolean true. A
matching offer could be something such as

g 13 ?y:int ?z:bool 2)

If a process B2 becomes ready to execute (2) at the same time that another process B1
is ready to execute (1), an interaction may occur, and one can say that process B2
passes to B1 the value 3 (which becomes the value of x in B1), and receives the values
8 and true, which become the values of y and z in B2. After the interaction, each
process proceeds independently. Another matching offer for (1) would be :

g ?y:int ?2:int !true (3)

In this case, the sorts of x and y match, but neither offer provides a value. An
interaction can still occur as it is assumed that ‘some’ integer value will be established
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by the interaction mechanism and sent to both processes. It is also interesting to note
the way the two offers match in their third component, where they both agree on the
value true. In this case, there is no exchange or generation of values, but just synchroniz-
ation on a value known by both.

An example of non-matching offer would be

g !3 ?y:bool ?z:bool

because the processes cannot agree on whether the second value should be a boolean
or an integer. _ ' o

The LOTOS concept of interaction is a generalization of the traditional concept of
output with matching input (a shriek with a matching query). One can have interactions
where both- parties already have all the information (two shrieks), and others where
neither party has it (two queries). ‘ ‘

A process that executes an offer will wait for a matching offer to occur. If the latter
cannot occur, the process containing the offer is said to be in deadlock.

The symbol i (the ‘internal’ action) denotes an action that needs no co-operation
from the environment in order to occur. It takes time, but it does not involve any
variables. It is also used to represent the external view of an:interaction that has
occurred between two processes (it is visible to the external environment as lapsed
time only). On the other hand, the symbol 'stop denotes a process that does nothing.
It models a deadlock. : S

The important characteristics of the LOTOS intérprocess communication mechanism
are: it is symmetric (a query can be defined as a-disjunction of shrieks); it is anonymous,
i.e. neither side knows the name of the other; it does not involve queuing; it is atomic,
although not (necessarily) instantaneous; it is non-deterministic, since at a given point
several rendezvous may be possible and several different values could be agreed on.

Action denotations are the basic building blocks of LOTOS. These building blocks
can be composed in increasingly larger blocks (called ‘behaviour expressions’) by means
of certain operators: o ‘ o '

1. The operator ; is used to prefix an action denotation to a behaviour expression
(first perform an offer, then proceed to the behaviour expression).

2. The operator [] expresses alternatives. B1 [] B2, where B1 and B2 are behaviour

~ expressions, means do either B1 or B2. The choice may be specified to be either
completely non-deterministic (this is useful for example to express ‘spontaneous
transitions’, such as in the case where B1 or B2 start by i); or determined by the
environment (in this case, each choice starts by-an action denotation, and the
choice is determined by what complementary offers are provided by the environ-
ment); or determined by a ‘guard’, i.e. a condition (the notation for guards is:
[{condition)]-> B, where B is a behaviour expression). . .

3. The operator || expresses parallel composition. B || B2, where B1 and B2 are
behaviour expressions, means: do B1 and B2 in parallel. Furthermore, B1 and
B2 may interact, by the mechanism described above, through the gates they
share. There is a way to restrict the set of gates through which B1 and B2 can
communicate. T

4. The operator >> performs the sequential composition of behaviour expressions
(‘enabling’). B1>>B2, where B1.and B2 are behaviour expressions, means do B1,
then B2. There is a mechanism by which-B1.can pass values to B2, namely
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Bl »> def x1, ... ,xn in B2

states that B1 ‘exports’ a vector of n values that become the values of variables
x1,...xn in B2.

5. The operator [> is called ‘disabling’ and represents situations, common in data
communications systems, where a process is allowed to interrupt another process.
The intuitive meaning of the expression B1 [> B2, where B1 and B2 are behaviour
expressions, is that process B2 may disrupt or prevent the execution of process
B1. B2 may or may not be executed, depending on a non-deterministic choice.
If it is not executed, B1 executes normally and the whole construct terminates.
However, at any time during the execution of B1, B2 can take over. In this case,
B1 will not be resumed, and B2 runs to completion.

6. Gate hiding. A LOTOS system can be seen as a ‘black box’, say A, communicating
with the external environment through gates. A itself may contain other black
boxes, say B and C, that also communicate through gates. Some of the gates of
B and C may also be gates of A. Others instead may be for only internal
communication between B and C. These latter gates must be hidden inside A,
which is accomplished by the operator \. Hence, A\X], where A is a behaviour
expression, and X is a list of gate names, indicates that gates in the list X are
invisible outside A.

Furthermore, LOTOS has mechanisms to name behaviour expressions (similar to
procedure declarations in conventional programming languages), and mechanisms to
instantiate behaviour expressions, similar to procedure calls in conventional languages.
Named behaviour expressions are called ‘process abstractions’. Particularly noteworthy
is the ‘gate parametrization’ mechanism, by which formal gates can play different actual
roles in different instantiations. Gate parameters are shown between square brackets
after the name of a process abstraction. For example, the following line:

process check[retry,deliv] (Expect:int, Mes:int|int) :=

names a process check that has two formal gate parameters (retry and deliv) and two
formal variable parameters, Expect and Mes, that are of sort int. Also, the vertical bar
indicates that the process exports an integer value (see item 4 above).

As mentioned above, LOTOS has also a data part, which is used to specify the data
structures and the operations on them. This portion of LOTOS is taken almost verbatim
from well-known approaches to data abstraction specification.'® '* Accordingly, the
description of a data abstraction consists of two parts: a syntactic part, where the
arguments and the functionality of each operator are described, and a semantic part
where the meaning of each operator is described implicitly by means of axioms.

EXECUTABILITY OF LOTOS

LOTOS has been designed as an executable specification language. However, because
precise and clear specification, rather than executability, was the primary goal of its
design, LOTOS does not particularly cater to ease of translation or efficiency of
execution. For example, implementing the LOTOS interprocess communication mech-
anism requires in principle that, at each step of execution, all pairs of active processes
be examined to determine which ones are able to participate in an interaction.
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More seriously, there are several features of LOTOS that, if used, may prevent
executability altogether. A first such feature is the possibility of defining infinitely
branching execution trees, such as the ones generated by

process Plg] := (g; stop) * P[g] endproc

where * can be the parallel operator, the alternative, or the disable operator (this
example is due to Elie Najm). Note that process P is not ‘guardedly well-defined’.

Further, in LOTOS one can have infinitely branching trees generated by a non-
deterministic choice among the elements of an infinite set of values, such as in example
(3) above. In this case, however, the non-determinism can be solved by intervention
of the user who specifies the value(s) to be used, as is done in our interpreter.

Finally, it is of course possible to define sets of ADT axioms that do not have the
termination property.?> ! For example, sets including permutative rules such as
plus(A,B) = plus(B,A) that may cause the value expression evaluator to enter an infinite
loop.

The problem of detectmg or ‘repairing’ such specifications presents serious theoretical
difficulties, and was not attacked at the present stage of work. However, the
Knuth-Bendix algorithm is an option in our system, as mentioned in the next section.
In addition, as discussed above, one could observe that forcing full executability on a
specification language is likely to reduce its expressive power. A specifier that is
interested in using our interpreter will have to choose a constructive and computation-
ally efficient style of specification, and be aware of such pitfalls.

Therefore, it is not practical to use LOTOS executable specifications in lieu of
implementations. An additional reason is that a specification usually contains non-
determinism to specify implementation choices. Such non-determinism must be
resolved at implementation time. The usefulness of our approach, therefore, is limited
to prototyping and to preliminary testing of a specification.

STRUCTURE OF THE INTERPRETER

The main aim underlying our work was to. produce a full LOTOS interpreter in a
relatively short time and with limited resources. We wanted a tool to experiment with,
rather than a production tool. Because the definition of LOTOS is not stable yet, we
wanted a system that could be adapted to ‘change easily. The environment had to be
fairly widely used in research establishments, so the intrepreter must be portable.
Furthermore, the language was to be implemented in a straightforward way, close to

. its semantic definition, and av01dmg all but the most obvious short cuts or optimiza-

tions. The language definition'” 51mp11ﬁes this task by providing constructive semantics.
In this way, our interpreter is a running test bench of the language definition, and the
several minor changes that can be expected at this stage are likely to result in equally
minor changes to the interpreter.

The general structure of our 1nterpreter is shown in Figure 1. The control part is
kept separate from the data part. Further, both parts are implemented by first translat-
ing LOTOS code into an internal representation (intermediate CCS* code and ADT
rewrltmg rules, respectively). Thus, the first part of the interpreter (the top four boxes
in Figure 1) is a compiler. The real interpreter works on the internal representations
and is made up of two parts: the CCS* interpreter and the ADT rewrltmg rule
interpreter. The ADT interpreter is a subordinate of the CCS* interpreter in the sense
that it evaluates ADT functions when requested. The interpreter is called SINAPS,
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Figure 1. The structure of the interpreter

for Simulation and INference APplication System.

We used UNIX?? and the language C, with the related compiler-writing aids such
as LEX and YACC, for the compiler. The CCS* interpreter and the ACT ONE
interpreter are written in Prolog. Various reasons motivated the use of Prolog.> * B
The most important reason was that the operational semantics of both CCS* and ACT
ONE are defined in terms of rewriting rules involving variable replacements, which
can be easily programmed in Prolog. The other was that Prolog programs can be made
reversible, i.e. capable both of recognizing whether a set of arguments satisfies a
condition, and of generating a set of arguments that satisfies the same condition.
Further, the same program can be used to traverse a tree both ‘top down’ and ‘bottom
up’. These features are used to advantage.

Syntax analysis, static semantics analysis and the LOTOS tree

The compiler is made of four modules (or passes), each of them corresponding to
a chapter in the formal definition of the syntax and static semantics of the language.”
Since LOTOS allows forward references to processes and sorts prior to their definitions,
syntax and static semantics analysis cannot be performed (at least not at low cost) in
a single pass. On the other hand, the four passes make the compiler easy to update
and modify, which is an important advantage for a language that is still unstable.

As in MENTOR,? a specification is internally represented by an attributed tree (the
LOTOS decorated tree), the skeleton of which is the abstract syntactic tree of the
specification. This tree, which is updated at each step, is the central data structure of
the compiler, and is the interface between its four passes. This internal representation
is potentially useful not only for the interpreter, but also for other future applications,
such as verifiers, graphic interfaces, etc.

The first step is parsing. The kernel of this module is the parsing function produced
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by YACC from the BNF representation of the grammar. This function builds an
incomplete abstract syntactic tree (i.e. with no semantic attributes).

The second step processes instances of identifiers that are declarations by checking
their uniqueness and building a symbol table entry of the right scope.

The third step processes all remaining instances of identifiers by looking in the
symbol table for the corresponding declaration. It also builds the attributes of value-
identifiers (sorts of the values), operation-identifiers (sorts of the arguments and sort
of the results) and process-identifiers (number of gates, sorts of the arguments and
functionality).

The last step checks if all value-expressions and behaviour expressions are well-
formed with respect to their sort and functionality.

The structure of the LOTOS decorated tree was designed according to the following
requirements:

(a) It has to be free of syntactic or semantic errors.

(b) It has to be structured: it should eliminate the need of sequentially scanning the
input to obtain specific information.

(c) It has to be equivalent to the input: one must be able to ‘decompile’ the internal
representation into the external one and get the original specification, or at least
a similar one. ;

Each node in the tree corresponds to an entity in the abstract syntax and holds three
kinds of data: identification data, housekeeping data (arity of the node, source line
number, pointers) and synthesized semantic attributes. The latter are built by semantic
routines. Furthermore, certain nodes are associated with local symbol tables. These
tables group particular sets of attributes and collect information on every relevant
symbol in the specification (identifiers, constants . . .). They are built according to
the scope rules given in Reference 10, where a scope is defined as a part of text
associated with a non-terminal (a node). Therefore, the table associated with a node
gathers all the symbols whose scope is the tree under the node. The synthesized
attributes in the symbol tables are used to build and check the sorts and functionality
of value and behaviour expressions, respectively.

The three requirements mentioned above are met. The attributes ensure the correct-
ness of the specification (i.e. from the point of view of static semantics), whereas access
to a specific item is achieved by simple tree-traversal algorithms. F urthermore, we
were able to write a decompiler as described above.

As for most modern specification languages, LOTOS rules allow different objects
having different meanings or defined in different parts of the specification to have the
same name. Hence the need for a flattening function, i.e. a renaming function that
transforms the structured name space of LOTOS into a flat one where any two different
objects have different names. This function is applied on the decorated tree just before
the translation phases described below.

Translation and execution of the data part

ADT definitions can appear in different places in a LOTOS specification and hence
may have different scopes. Our interpreter, however, removes this scope structure first
of all by flattening and then by performing the union of all the sets of equations included
in a specification into a single unstructured specification. Further, the equations are
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translated into rewriting rules by traversing the internal representation of the equations
in the LOTOS decorated tree and orientating the equations from left to right:in such
a way that the set of variables in the right side of the rewriting rule'is included in the
set of variables of the left side. (Unfortunately, this may not be possible, and even if
it is possible, it does not guarantee termination of the system). ... - -

The ADT Rewriting Rule Interpreter is the part-of the LOTOS interpreter that
evaluates value expressions. It executes the rewriting rules by a rewriting algorithm of
the type ‘leftmost-innermost’. In other words, it reduces value expressions beginning
from the innermost subterm at the leftmost side -of a term. During the reduction, our
algorithm memorizes all the reductions accomplished since its invocation in. order to
avoid reducing an expression that was previously encountered and completely reduced.

For this evaluation method to be effective, there are certain properties that must be
satisfied by the rewriting system in use; it must be confluent and terminating. Termin-
ation is necessary both in order to guarantee termination of the evaluation and for
checking confluence. It is undecidable, but can often be proved by various methods.?
Confluence means that the result of the computation does not depend on the choice
of rules to be applied, or the order in which they are applied. This property can be
checked by executing the Knuth-Bendix algorithm,?* which is an option in our system.
When a rewriting system is not confluent, the Knuth-Bendix algorithm can also be
used. to help transform it into a confluent one. This algorithm is based on the use of
equations as rewriting rules and on the computation of critical pairs when left members
of rules overlap. If a critical pair has distinct irreducible forms, a new rule must be
added and the procedure applies recursively until it stops. This algorithm was
implemented in our system. It executes interactively; in other words, the user is
prompted to provide information such as the preferred orientation of the rules and
additional rules that may be needed. :

As an example of LOTOS ADT definition we provide the specification of the queue
in the simple service provider, which is discussed below.

type buffer is intl with booleanl with boolean with
sorts queue

opns new =? queue
error: . => int
add : int, queue - queue
rem : queue —> queue
first: ~ queue —» int
empty: queue —> bool

if then else: bool,queue,queue —> queue

eqns

forall M:int, Q:queue, Ql:queue, Q2:queue in
rem {(new) = new
rem(add(M,Q)) = if then else(empty(Q),new,add(M,rem(Q)))
first(new) = error .
first(add(M,Q)) = if_then_else_int(empty(Q),M,first(Q))
‘empty(new) = true
empty(add(M,Q)) = false
if then else(true,Q1,02) = Q1
if then else({false,Q1,Q2) = Q2

endtype
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Translation and execution of the control part

In Reference 10, LOTOS semantics are defined by a translation function that maps
instances of LOTOS behaviour expressions to CCS* behaviour. expressions. Operators
that exist in LOTOS but have no direct correspondent in CCS* (an example is ‘enable’)
must be expanded. Properties of an occurrence of a LOTOS behaviour expression are
defined to be the properties of the occurrence of the corresponding CCS* behaviour
expression. In our implementation, the translation process consists of translating the
control part of the renamed LOTOS decorated tree in the CCS™ internal representation,
which is conceived in terms of the need for efficient execution in Prolog.?® %

In Reference 10, CCS* semantics are defined as operational semantics, i.e. as an
idealized interpreter capable of executing certain types of rewriting rules. In CCS style,
interactions are defined to cause the transformation of a behaviour expression into
another behaviour expression (its derivative), which defines what has to be done after
the ‘interaction has occurred. The type of transformation depends on the operators
contained in the behaviour expression. For example, if a behaviour expression B is of
the form a; B1 where a is an action denotation and B1 is a behaviour expression, the
effect of the occurrence of a matching offer for a is defined by the following transform-
ations on B: B becomes B1 (a has been taken out since it has been executed); and, if
the interaction has determined the value of some variables, this value is replaced for
the variables everywhere in the variables’ scope in B1.

As a further example, the following are the inference rules for the CCS* choice
operator + (which is the translation of the LOTOS operator [I): they state that a
derivative of a choice is the same as the derivative of the branch on which the derivation
has been performed (B, B1 and B2 are behaviour expressions, whereas a is an interaction
offer). Either one of the two rules can be selected non-deterministically if a applies to
both sides of an alternative.

if B1 -a-> B2 then B1+ B-a-> B2 (rule 1)

if Bl -a-> B2 then B + B1-a-> B2 (rule 2)

According to CCS* semantics, at any instant of execution, one can determine the
set of possible next actions of a CCS* process.
Inference rules were implemented in Prolog.?®: #” For instance, rule 1 above can be
written in Prolog as ' o
infer(choice(Bi:,jB)‘('V Aétion, B2):~
isaction(Action), -
infer(B1l,A&tion,B2).

where isaction verifies if Action is a legal action. =
As mentioned below, the non-determinism in the set of inference rules is resolved
either by the user (in the ‘one-stepper’ mode) or automatically by random selection.
Our interpreter, therefore, is inherently a uniprocessor, and this is consistent with
CCS*, where global system states are captured by behaviour expressions.

An example E |

As an example, a simple service providér is described in LOTOS and CCS*. The
example may seem somewhat contrived; however, it shows several LOTOS features.
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Figure 2. A simple service provider -

The general structure of the system is shown in Figure 2. Reasons of space prevent
us from showing the full LOTOS specification (the interested reader is referred to
Reference 28 for further details). The body of the paper concentrates on its CCS*
counterpart, which is the one that is actually interpreted. For clarity, standard CCS*
notation is used, in lieu of the more obscure CCS* internal reprsentation used by our
system.?® There are sender and receiver processes, which communicate with each other
by an unreliable channel, represented by a crazyfifo process. Upon prompting from
one of the users, and upon reception of credits from the receiver, the sender starts
sending integer-valued messages, numbered from 1 onwards. These messages must be
received by the other user in the order they were sent. Therefore, the reciever will
perform a sequence check and can ask the sender to transmit starting with a designated
integer. Whenever the sender runs out of credits, it blocks until credits are sent to him
by the receiver.

Proceeding bottom up, the LOTOS specification of the sender is as follows:

process sender [out,reqst,xretry] (Mes:int,Cred:int) :=
(* sender sends if it has credits
[gt(Cred,zero)] —> out!Mes;
sender [out,regst,retry] (succ(Mes),pred(Cred))
[ (* or it waits for credits
[eq(Cred,zero)] —> reqst?New_cred:int;
sender [out, reqgst,retry] (Mes,New_cred)

[1 (* or it retransmits if requested
retry?Expect:int ; sender[out,regst,retry] (Expect,Cred)
endproc

The corresponding text in CCS* is:

sender(mes,cred) :=

[ecred > 0] -> outlmes; sender(mes+l, cred-1)

+

[cred = 0] ~> regst?new_cred:int; sender(mes,new_cred)
+ ' '
retry?expect:int; sender(expect, cred)
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The crazyfifo process uses the queue ADT shown above. It is in this ADT that the
operations add, rem, etc. are defined; add(mes,q) is the queue that results of adding
message mes to queue q; first(q) yields the message in q; and rem(q) is the queue that
results of removing from q its first element. crazyfifo can either input a message at gate
mes_in or, if the queue is not empty, output its first element or lose its head. It can
also play the role of one-place buffer from the receiver to the sender (the last two
alternatives), which is used in order to carry retransmission and grant messages (for
which we did not wish to -specify queuing or possible loss). Note that the choice
between regular output and loss is non-deterministic, and this is expressed by the
internal event i.

crazyfifo(q) :=
mes_in?mes:int; crazyfifo(add(mes,q)) (* input
+
[not (empty(q))] -

( mes_out!first(q); crazyfifo(rem(q)) (* regular delivery
+ .
i; crazyfifo(rem(q)) © (* loss

)
+

, retry_in?expect:int; retry out!expect; crazyfifo(q)
+
cred_in?cred:int; cred out!cred; crazyfifo(q)

The following process is the receiver. Its parameter expect is the expected message
number. receiver can either receive a new message or grant five credits to sender. In
the first case, it calls the local process check, which checks if the received message is
the expected one. In the affirmative, the message is delivered to the end user via gate
deliv. Otherwise, check asks for retransmission starting from the expected message
number. Gate d (called d1 outside check) is used to represent sequencing from check
to receiver. To understand its function, it must be recalled that CCS* does not have
the enable construct >>. Therefore, a LOTOS construct where a process B1 enables
a process B2 is translated into CCS™ by a construct where B1 and B2 are run in parallel,
but B2 must wait for transmission of values from B1 over an internal gate. This gate
must be hidden from the outside environment. :

receiver(expect) :=
mes_in?mes:int;
( check(expect,mes) [dl/d]
|| dl?new_expect:int; receiver(new_expect)) \[d1}
+

grant!5; receiver(expect) . : (* granting credits
check(expect,mes) :=

[mes = expect] ->» deliv!mes_ in; dlexpect+1, stop (* a "good" message

+

{mes > expectl => retry!expegt; dlexpect; stop (* a "bad" message

In order for the processes to communicate, they must be composed in parallel and
linked via certain common gates. For this purpose, one must rename some gates using
common gate names. Below, one can see that sender and crazyfifo can now communicate
via gates mes1, credl and retry1; crazyfifo and receiver can communicate via mes2,
cred2 and retry2. At the same time, one must worry about other processes present in
the environment also being able to communicate over these gates. To prevent this,
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they were made invisible by the hiding. operator \. Note that- all gates are hidden,
with the exception of the two externally visible ones (go and deliv). Note also that for
the three processes to become active a go_signal must be provided by the user on gate

go.

service :=
golgo_signal;
( sender(succ(zero),zero) [mesl/out, credl/reqst, retryl/retry]
|| crazyfifo (new) [mesl/mes_in, mes2/mes_out,credl/cred out,
cred2/cred_in,retryl/retry out, retry2/retry in}
|| receiver (1) [mes2/mes_in, cred2/grant, retry2/retry]’
) \ [mesl, mes2, credl, cred2, retryl, retry2] = B

A possible derivation sequence for process service above is. shown, where for brevity
the different renamings are denoted by the substitutions [S1], [S2] and [S3], and the
set of hidden gates by A. Note that only the first and last interactions are with the
external environment. All the others are internal to the system and so, according to
CCS* semantics, they result in the internal action i.

service

golgo_signal (* we start, the only process that can proceed is receivexr
----- >{ sender(1,0) [S1]
|| crazyfifo(new) [S2]
|| receiver (1) [S3]
)\ A

i (* credits are trasmitted to crazyfifo
————— >( (sender(1,0)) [s1]
(cred_out!5 ; crazyfifo(mew)) [S2]
receiver (1) [S3]

\a

~ ——

i (* 5 credits are received by sender
————— >( sender(1,5) [S1]
|| crazyfifo(new) [S2]
|| receiver(l) [S3]

)\ A .

i (* 1 transmitted to the queue
————— >( sender(2,4)([S1]
|| crazyfifo(add(l,new)) [S2]
|| receiver(l) [s3]
)\ A

i (* 1-is lost
————— >( sender(2,4) [S1]
|| crazyfifo(new) [S2]
|1 receiver(l) [83]
)\ A

i (* 2 is transmitted to the queue
—————>( sender(3,3) [sl1] '
|| erazyfifo(add(2,new)) [S52]
|| receiver (1) [83]
)\ A

i (* 2 is received, check will fail:
————— >( - sender(3,3) [S1]
|| crazyfifo(mew). [S2]
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I ((check(1,2)[d1/d] ]| dl?newv_expect:int; receiver(new_expect))
\[d1]) [s3]
)\ A

i (* receiver asks crazyfifo for retransmission of 1
—————— >{ sender(3,3) [S1]
|| (retry_out!l; crazyfifo(new)) [S2}
|l ((a111; stop||dl?new_expect:int; receiver(new expect))
\[d1])[s3]
Y\ a

i (* crazyfifo asks sender for retransmission of 1
------ >( sender(l1l,3) [S1]
|| crazyfifo(new) [S2]
Il ((aiti;stop||di?new_expect:int; receiver(new_expect))
\[d1]) (s3]
)Y\ A

i (* 1 is sent via gate di
——==——>( sender(1,3) {81}
|| crazyfifo(new) [S2]
|| receiver(l) [S3i
)\ A

and the process restarts again from message 1. It is hoped that this time message 1
will not be lost and will be delivered. Assuming that no other messages were sent in
the meantime, one would have

]
;
|
i
|
i
i
:

deliv! 1
———————— >( sender(2,2) [S1]
‘|| crazyfifo(new) [S2]
|| receiver(2) (s3]}
)\ a

and so on.

USE OF THE INTERPRETER

The use of the interpreters of most traditional languages is straightforward: some data
are read, and some are printed. This will happen in a predetermined order each
time, and the internal mechanism is deterministic. The situation is not so simple for
interpreters of specifications of distributed systems, because these describe systems that
are highly non-deterministic in nature. For example, suppose that the purpose of the
exercise is testing the design of a two-user data link service provider. It would not be
sufficient for testing purposes to provide two sequences of messages to be sent from
each end to the other, because in addition to regular delivery one would like to be able
to test various internal conditions such as errors, etc. In many cases, the user is
interested in exercising all the possible (or many of the possible) different orders of
execution of the elementary operations, and there is a large number of these. Systematic
exploration of the global state space of the system specified is possible with our
interpreter using the backtracking feature of Prolog.* 5 Unfortunately, in most cases,
efficiency problems would prevent us from completing this procedure. The question
then is how to direct the interpreter to take various ‘interesting’ internal choices.
Our system can be used in at least two different ways: to validate interaction
sequences, that is to tell whether an interaction sequence that is submitted is a
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valid behaviour for the specified entity, and to generate interaction sequences, either
exhaustively, or at random or (more commonly) under human direction. For a related

approach based on different principles, see Reference 30.

Validation of interaction sequences

Validating sequences of actions is useful whenever one wants to test a specification
on some concrete cases, for example, to help increasing the confidence that the desired
process behaviour was specified. For instance, the sequence of derivation of service in
the example above can be represented as

golgo_signal; i; ...; deliv!l
service : >( sender(2,2) [S1]
|| crazyfifo(mew) [S2}
|| receiver(2) [83]

)\ A

In order to exercise a sequence the following Prolog clause was defined:

exerce(Bl1l,[],Bl).

exerce(B1, [Action|RestOfActions],B11):—
infer(Bl,Action,B2),
exerce(B2,RestOfActions,Bll).

The first clause stops the program with the empty sequence. The validation process
consists of providing an initial behaviour expression that will instantiate B1, a list of
actions that will instantiate [Action|RestOfActions], and the resulting behaviour
expression that will instantiate B11. The result will be either acceptance or rejection
according to whether the sequence is valid or not. By not instantiating one of the three
parameters one obtains the (possibly infinite) set of all possible values for that parameter
that satisfy the relation exerce: by not instantiating two of them one obtains the set of
all possible pairs of values that satisfy the same relation, etc. For example, by not
instantiating the list of actions one obtains the set of all possible lists of actions leading
from B1 to B11.

Below, a transcript of a terminal session is shown, giving a simple validation sequence
for the receiver process by itself. The user submits a sequence to the receiver process,
where the latter is made to offer the value ‘5’ on gate grant three times, after which it
is made to accept an integer on gate mes_in. The system responds with the resulting
behaviour expression and states that the sequence submitted is valid.

Note that the sequence is shown in our internal CCS* representation, in which
(among other things) ? and ! are represented by $ and #, respectively.

| ?- call_validator(receiver(succ(zero)),
[[grant,[#,succ(succ(suce(succ(succ(zero))))),int]]
,[grant,[#,succ(succ(succ(succ(succ(zero))))),int]]
,[grant,[#,succ(succ(succ(succ(succ(zero))))),int]]
, [mes_in, [$,mes,int]1],B11)..

Initial behavior expression :
receiver(succ(zero))

The resulting behavior expression is :

i 10

b
;
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( ((check(succ(zexo) ,ms)) [[d], [d11])
|| (dl?new_expect:int;(receiver(new_expect)))

)\[d1]

Valid sequence

Other actions, such as the ones in process check, could not have been tried, because
they involve the evaluation of guards on values that are not known. In order to try
such actions, it would be necessary to compose check with another process capable of
providing these values. ,

If the users so prefer, they can select an option where they provide the list of the
interactions with the environment only. In this case, the system will automatically
generate all possible sequences of intermediate internal actions.

Generating sequences of interactions

It was mentioned above that our LOTOS interpreter can be used in order to
systematically generate the tree of all possible sequences of actions for a CCS* specifi-
cation as defined by the inference rules. When one deals with systems of realistic
size, however, random exploration may be more practical.’! To implement a non-
deterministic choice between two or more rules, these rules are combined in a compound
rule and one of them is chosen at run-time by generating a random number. Further-
more, since a process might loop, a mechanism for limiting the number of calls to a
procedure is included.

Below, a random selection of mcreasmgly longer sequences generated for service is
shown. Credits are passed from receiver to. sender, and then crazyfifo loses the first two
messages.

| ?- call generator(service).
Initial behaviour expre551on : 7

service '
Generation starts :

Applied action sequence :
< golgo_signal:signal >

Applied action sequence :
< golgo slgnal 51gnal ),
<i oy cred2 9'[succ(succ(succ(succ(succ(zero)))))]

Applied action sequence I
< golgo_signal: 51gnal >
< i>» : cred2 °l[succ(succ(succ(succ(succ(zero)))))}
<41 > : credl ?![succ(sice(succ(succ(succ(zero)))))]

Applied action sequence "
< golgo_-signal: 51gnal >

<i> : credz 9'[succ(succ(succ(succ(succ(zero)))))]
<i? : credl °l[succ(succ(succ(succ(succ(zero)))))]
< i > : mesl ?![succ(zero)]

< i ‘

< i > : mesl ?![succ(succ(zero))]
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sequence :

gotgo_signal:signal >

5> : cred2 ?![succ(succ(succ(succ(succ(zero)))))]
: credl ?![succ(succ(succ(succ(succ(zeto)))))]
. mesl ?![succ(zero)]

; mesl ?![succ(succ(zero))]

. mesl ?![succ(succ(succ(zero)))]

Another way of selecting consists of directing the execution of a process by giving
for each execution step a number indicating a particular choice. This is similar to the
method discussed in the next section; however, the selection is fixed by the user at
the beginning, rather than during execution. This method of operating will not be

illustrated.

Simulation (the ‘one-stepper’)

Interactive execution is made possible by displaying the set of all possible next
actions a process can execute at each step, and requesting a choice. This is done by
generating the set of possible actions linked by an inference to a given behaviour
expression. This method of step-by-step user-controlled execution was chosen to make
it possible for the user to have full control on the execution by selecting the branches
of interest. Also, in this way the user is able to prevent the system from running into
infinite loops such as those possible in cases such as P := i; P + Q. The one-stepper
is the most commonly used option of our system.

Three types of choices are possible: interactions with the environment, internal
communications, and the internal action i. In the first case, the user would be prompted
with something such as

gate !succ(zero):int ?x:bool

for which a possible valid user answer would be

gate ?y:int !true:bool
An example of the second case would be

i {gate ?! zero}

for an internal communication where the value zero is agreed on.

Once the list of possible actions is displayed, the user chooses one of them. The first
few steps of simulation of our service provider example follow. User responses are
preceded by |: (of course, other choices could have been taken, leading to a different

simulation).
Choose an action or a command:
1 : golgo_signal:signal

|: 1>goigo_signal:signal. (* user gives starting signal
ok ... -
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Choose an action or a command:
1 : i {cred2?![succ(suce(succ(succ(succ(zero)})))l}
<—-> Between: crazyfifo and receiver

= 1. (* receiver grants credit of 5
Ok ...

Choose an action or a command:
1 : i {credl?![succ(succ(succ(succ(succ(zero)))))]}
{—> Between: crazyfifo and sender

l: 1. (* sender now has 5 credits
Ok ...

Choose an action or a command:
1 : i {mesl?![succ(zero)]}
<—> Between: sender and crazyfifo
2 : i {cred2?!{succ(succ(succ(succ(succ(zero)))))]}
<-> Between: crazyfifo and receiver
|s 1. (* sender sends message 1
Ok ...

Choose an action or a command:

1:13

2 : i {mesl?! [succ(succ(zero))]}
<{—> Between: sender and crazyfifo

3 : i {mes2?![succ(zero)]}
{-> Between: crazyfifo and receiver

4 : i {cred2?![succ(succ(succ(succ(succ(zero)))))]l
<{-> Between: crazyfifo and receiver

|+ 1. (* usexr decides loss of message 1
ok ...

Alternatively, the user can ask the system to make a random choice between several
alternatives not involving interactions with the environment. This can be done for a
single step, or for a series of steps up to a specified maximum.!?

The system normally saves all the behaviour expressions derived during the simul-
ation process. At any point, the user can ask the system to print a list of these
expressions, and then can direct the system to return to any of them in order to select
a different choice. Alternatively, the user can bypass this mechanism, and ask the
system to save only the behaviour expressions of interest. «

In all cases, the event sequences are recorded to remember the execution history.

Yet another option available allows the user to declare dynamically during execution
new behaviour expressions to be connected in- parallel with the current one to play the
role of the environment.

"The system provides some twenty-five commands. A list of them is given in Reference
27.

It was by using the simulator that the possibility of a deadlock in our service provider
was discovered. Notice that the receiver can decide to send credits, and crazyfifo may
attempt to transmit them, even if the sender is not ready to accept them. In such a
situation, crazyfifo and sender cannot co-operate, because the first will be attempting
to deliver credits, whereas the second will be attempting to send messages. An easy
way to eliminate this deadlock is to remove the guard [cred = 0] in the sender so that
the latter is always ready to accept credits.
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CONCLUSIONS AND CURRENT WORK

Although the ideas in LOTOS and in our interpreter are not new, their combination
is new. The language combines two powerful specification techniques. It was specified
semantics-first and its semantics are formal and constructive. Further, the language
has already proved its usefulness, since extensive specifications are being written in it
within the OSI project (among others, the Transport layer® and the Session layer®?).

By using the interpreter, a LOTOS specification becomes a prototype of the system
specified. This prototype can then be exercised in several ways: to validate interaction
sequences, to generate sequences of interactions, and in interactive simulation. This
helps increasing the specifier’s confidence that the specification is correct, and allows
early detection of specification errors.

The issue of using our system for testing or verification is currently being investi-
gated. In order to make our prototype really useful for these purposes, several features
must be added. Several such features have been considered and most of them would
not be difficult to add, due to the high-level approach followed.

It is possible to define LOTOS operational semantics in terms of LOTOS constructs
directly, rather than in terms of CCS*.* This approach, which has been adopted by
the forthcoming LOTOS Draft Proposal, suggests an interpreter that does not need
the intermediate step of translation into CCS*. Such an interpreter would be more
convenient to use because it removes the need to become acquainted with CCS*, which
exists for users wishing to take full advantage of our system. We are already working
on an interpreter that follows this philosophy. Its structure is very similar to the
structure of the interpreter discussed in this paper, but CCS* is replaced by an internal,
Prolog-oriented representation of the LOTOS source. The user will never see the
latter, because it can be easily translated back into LOTOS. At the same time, we are
extending the system’s capability to execute more general sets of ADT axioms.>*
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