manuscript No.
(will be inserted by the editor)

Implementation of a partial order data security model for the Internet of
Things (I0T) using Software defined networking (SDN)

Abdelouadoud Stambouli®!, Luigi Logrippo®'->

1Université du Québec en Outaouais
2University of Ottawa

Received: date / Accepted: date

Abstract In previous work, the authors have shown that a
generally applicable method for data security (involving se-
crecy, integrity and conflicts) can be built by generalizing to
partial orders the well-known lattice security model and by
associating simple set labels to network entities. They have
have also shown how, in principle, this method can be used
for data security in the Internet of things (IoT). We show in
this paper how our method can be implemented by using the
architecture of Software defined networking (SDN). Essen-
tially, the labels of the entities can be used to compose SDN
forwarding tables, thus ensuring that each entity can send or
receive only data that is authorized to according to security
constraints. We propose a centralized IoT architecture with
a cloud structure using SDN as networking infrastructure,
where storage entities (i.e. cloud servers) are associated with
application entities. We introduce also methods for network
transformations, to allow for adding or removing entities, or
for changing their levels of secrecy and integrity. Finally, we
show how our architecture can be used in the normal case
where several data flows must be allowed in a network. A
small ‘hospital’ example is developed for illustration. Con-
siderations of scalability complete the paper.

Keywords:: Internet of things (IoT), Software defined net-
working (SDN), data and information security, data flow
control, access control, secrecy- confidentiality-integrity.

1 Introduction

The Internet of things (IoT) is seen here as an evolving set
of entities among which data flow. Data security, informa-
tion security and data privacy are major research issues in
this context, see Alaba et al.[S] Suo et al.[46], Qiang et al.

#e-mail: staal 6@uqo.ca
be-mail: luigi @ugo.ca

[36], Hou et al. [22]. This paper presents an implementable
method for directing data flows in the IoT in such a way
that common data security requirements are satisfied. We
decompose data security requirements into the two aspects
of data secrecy (often also called confidentiality) and data in-
tegrity (Bishop [8]). Further, our method is capable of deal-
ing with conflict requirements, which are also security re-
quirements. As a corollary, data privacy requirements can
also be addressed, insofar as they can be addressed by con-
straining data flows (Landwehr [29]).

Common approaches for data security in the IoT are
based on data encryption, where the responsibility is for the
entities to encrypt and decrypt data so that only certain enti-
ties can read or write them; however these operations can be
burdensome or unfeasible for some devices. Our solution is
based on routing: entities are labeled according to the data
that can flow to them (or equivalently, that they can contain).
Thus labels can be used to construct routing mechanisms
allowing only secure data flows. This solution is based on
the results of [31] where it was shown that the well-known
lattice security model can be generalized to a partial order
security model, corresponding to an entity labeling method.
These principles were shown to be applicable to any network
that can be represented as a directed graph (note that partial
order security models are also called multi-level models in
the literature [31]).

We propose an implementation of this method on a highly
recognized telecommunications network architecture, the Soft-
ware defined networking (SDN). We formulate an SDN ar-
chitecture where SDN routing tables are compiled by the
SDN controllers using the entities’ labels. We use a cen-
tralized IoT architecture where all data are transferred and
stored in cloud platforms and accessed by user applications.We
also formulate methods for implementing transformations
in the partial order of entities, following administrative or
policy decisions or events determining security changes. Fi-

nally, we show how several coexisting data flows can be de-
fined and implemented in a system.

We have drawn inspiration from the work by Etalle et al.
[15], where a function Tag is defined, that maps subjects or
objects to the set of tags assigned to them, and where a se-
curity administrator can formulate logic-based authorization
policies that define access rights in terms of these tags. In
Singh et al.[42], entities and data are labeled with two labels,
one for secrecy and another one for integrity, and security
policies are defined in such a way that data from entities can
only flow into other entities labelled to receive them (only
one label is required in our method). This research traces
back to well-known foundational work by Denning, Sandhu
and others on labeled lattice security models [11][41], which
we have generalized to partial orders.

In Sect. 2, we briefly introduce Software defined net-
working. In Sect. 3, we provide a literature review, with a
brief comparison to our contributions. Sect. 4 presents some
background about our method. Sect. 5 presents our method
in principle. Sect. 6 presents a concrete ‘hospital’ example.
Sect. 7 present methods for network transformation. Sect. 8
shows how our method can be generalized to deal with sev-
eral data flows in a single network. Sect. 9 presents how our
method was tested. Sect. 10 deals with efficiency and scala-
bility. Sect. 11 concludes the paper.

2 SDN: Software defined networking

Just as the IoT, SDN is a networking technology introduced
at the beginning of this century. The literature on SDN is
abundant, we mention some points in this section for com-
pleteness. Reviews of SDN and its use for security can be
found in several papers, a recent one that cites many others
is Huang et al.[24]. Kalkan and Zeadally [26] is a review pa-
per that focuses on the use of SDN specifically for security
in the IoT.

SDN is an evolution of the classic network model into
a network defined by applications. SDN architecture sep-
arates the network control (control plane) and forwarding
functions (data plane) enabling the network control to be-
come directly programmable and centrally managed. This
programming is done via SDN controllers instead of clas-
sical Internet protocols. The centralization allows the con-
troller to maintain a global view of the network and control
it through standards such as Open Flow, which is a proto-
col defined by the Open Networking Foundation to transfer
forwarding rules from the controllers into the routers using
APIs. We use in our work the most common way of pro-
gramming SDN networks, where applications give abstract
rules to controllers, which translate them into commands to
the network equipment concerned, the SDN routers.

To justify our choice of the SDN architecture, we start
from the observation that global security solutions are more

efficient and focused when they are centralized, as SDN is.
Further, SDN is a system designed for efficient networking
and so its use for data security will be efficient. Finally, we
will see that SDN allows a straightforward translation of our
labels into rules for controllers and then routers. Many types
of controllers and routers exist in practice, but our approach
appears to be feasible on any of them.

There is research in the literature that proposes SDN-
based security frameworks for the IoT. This literature will be
reviewed. However, the main concerns of this literature are
the management and deployment of security policies, iden-
tity management, and detection or prevention of intrusions
and attacks, these subjects are outside of the scope of this
paper, and some solutions proposed in these fields could be
combined with our solution. Little has been done on subjects
related to data secrecy and integrity and data flow control
with SDN as we do in this paper.

3 Related work

We have mentioned in the Introduction some papers that
have influenced our work. Other notable contributions will
be discussed in this section, starting with some that propose
the use of SDN within the IoT for data flow and security
management. Many papers propose IoTs architectures based
on SDN for the evolution of such networks.

Mamdouh et al. [33] present a new architecture for IoT
infrastructure based on network virtualisation including SDN.
Their SDN paradigm for the IoT consists of three different
planes. The data plane regroups all the IoT network elements
as simply forwarding devices. The control plane residing in
the SDN controller and the management plane are comple-
mentary planes and they are jointly responsible for the man-
agement and control of network operations. This architec-
ture provides efficient network sharing and can handle large
data input from IoT devices, as well it simplifies manage-
ment tasks.

In a recent paper, Quinn et al. [38] propose MLS-Enforcer,
a Software-defined networking (SDN) controller that enforces
MLS policies while retaining the ability to securely rela-
bel network nodes under changing topology state and net-
work traffic demands; this is done by using a polynomial-
time heuristic relabeling algorithm. The method is restricted
to lattice-structured networks, and the labels used are more
complex than ours. Future research can deal with combin-
ing the ideas of this paper with the ones of ours, possibly
leading to more general results.

Yassein et al. [50] propose some solutions that combine
SDN and IoT networks in order to respond to the latter’s
challenges. Hakiri et al. [19], Wu et al. [48], and Qin et al.
[37] propose solutions based on SDN to handle and to man-
age large numbers of devices and to schedule the flow of the
data generated by those devices.

Other papers propose specific solutions that use SDNs to
secure [oT networks. Flauzac, Gonzalez et al. [16][17][18]
first introduced the notion of multi domain SDN. The net-
work is divided into multiple SDNs where for each SDN we
have an SDN controller as a cluster head. Then the securi-
sation of domains will be the task of the controller that au-
thenticates the network devices and then pushes the appro-
priate flow to the switch software. To ensure security of the
whole network, security policies are shared among other do-
main controllers using the concept of security grid. In their
work, an IoT device is seen as a combination of legacy inter-
faces and an SDN controller. They do not use a centralized
SDN controller, but some devices will have SDN capabili-
ties and will act as SDN controllers. In addition, those con-
trollers alongside border controllers distribute routing and
security rules. They also suggest DISFIRE, a Smart Fire-
wall to provide a safe structure for SDN networks. The net-
work is divided into clusters with an SDN controller in each
cluster. These clusters execute safety strategies. For this ob-
jective, they use a protocol named OpFlex as an alternative
to OpenFlow. The SDN controller can then execute a fire-
wall that can exclude any unauthorized devices. A critique
for such solutions is the use of IoT devices to play the role
of controllers, given the limited resources that some of these
devices have.

Aggarwal and Srivastava [3] propose a solution to se-
cure [oT devices against external attacks instead of the data
flow security that we implement. The method uses the im-
plementation SDN & Edge Computing and the security of
the devices depends on the way they are connected to the
Internet.

Karmakar et al. [27] propose a security architecture for
IoT networks using SDN features. This solution is divided
in two phases. First, the devices are authenticated to the
SDN controller using a lightweight protocol based on El-
liptic Curve Cryptosystem (ECC), and then using a Policy
based Security Application (PbSA). Security policies are en-
forced by the SDN controller. To enforce such security poli-
cies, each device of the network is assigned a number of at-
tributes. Then, predefined security expressions will use those
attributes to determine the behavior of the switches of the
network.

Prabhakar et al. [35] present an SDN framework for se-
curing IoT networks against external attacks and principally
against distributed denial-of-service attacks (DDoS). This
paper presents a design that incorporates the Cloud and Fog
to demonstrate the capabilities of SDN in monitoring dy-
namic policy enforcement and access control at run time. Fi-
nally, they simulate DDoS attacks to show the capability of
their solution to detect and mitigate such attacks. Chakrabarty
et al. [9] propose a solution with SDN involving encrypting
headers and payload to mitigate a range of attacks, but they
don’t consider data flow control.

Papers [13][20] propose secured solutions for the Cloud
based IoT. Djouani et al. [13] use the same domains architec-
ture presented in the mentioned work by Flauzac et al., with
the addition of encryption by the devices before they send
data through the network. In Han et al. [20] the authors de-
velop a three- layer framework (perception layer, software
defined network layer, and cloud-based application layer)
that integrate SDN and Cloud-IoT. The developed frame-
work consists of 23 indicators for security features, those
indicators are scattered in each layer meaning that each layer
has its own indicators. Each one of those indicators was
given a weight based on online interviews with researchers
alongside with three weighting methods. Finally, those indi-
cators are mapped into Cloud IoT platforms such as Google
Brillo and Microsoft Azure IoT to get an overall end-to-end
security framework.

Liu et al.[30] address issues of SDN network latency
and load balance as well as protection against spoofing and
flooding attacks.

Hou et al. [22] is a recent survey paper that deals with the
data perspective of security in the IoT. The authors mention
the problem of data flow observation and control but they
present no specific solution for it.

As we have seen, the vast majority of these papers tackle
security factors such as exchange and deployment of se-
curity policies within the network in the case of SDN do-
mains, intrusion detection, security against external attacks,
etc. Some of the proposed security solutions use crypto-
graphic algorithms that normally require sizeable compu-
tational resources. Considering that IoT devices have often
limited computing resources, such solutions may be impos-
sible to implement. Surely, some of the techniques reviewed
may be compatible with our approach and, in combination
with it, may lead to efficiency improvements; this will be the
subject of further research. It should be clear however that
none of these papers presents a data flow control method
comparable to the one presented here.

Coming to work more related to ours, some papers pro-
pose the use of different types of access control and data
flow control policy models in the IoT, for example Smriti
and Sandhu[43] propose the use of Attribute-based Access
Control (ABAC), and Xie et al. [49] propose the use of prove-
nance based data flow control (PDFC), defined by fairly com-
plex authorization rules. Our policy model is simpler, covers
both access and flow control, and has well-defined concepts
of secrecy and integrity. It also considers prove-nance to the
extent that our labels express provenance.

One of the closest approaches to ours, since it deals with
data flow control and privacy concerns, is Al-Haj and Aziz
[6]. This paper presents a solution to enforce security poli-
cies to control the routing configuration in database-defined
networks. To achieve this, the authors use row-level security
checks and the lattice-based model [11][41] alongside with

KAAB.COGHALK)
1 o 1

(a) (b) (0

Fig. 1 a) arbitrary directed graph. b) Graph condensation. c)Partial or-
der of component

the RAVEL architecture (Wang et al. [47]). Their solution
consists in constructing routing tables by using the lattice
model, encoding the tables in the data base-defined network
architecture of RAVEL and enforcing multi-level security
policies using row-level security as an enforcement mecha-
nism. The authors deal separately with secrecy and integrity.
To enforce upward flow of data, the authors propose to de-
fine the flow path in the Can Flow table. This path consists
of sequences of nodes that data can flow into. Once a path
is defined, each node in this path starting from the first one
will be given a security label. Finally, a security policy is
defined in respect to a multi-level model, which states that
data can only flow upward from a security level into a higher
one. The enforcement of downward data flow for integrity is
dual. Our work considerably generalizes the work done in
this paper, and in several directions. One idea that we re-
tain for further research is the use of a data base approach to
represent data flow policies.

Although many approaches have been proposed for se-
curity in SDN-enabled scenarios, several of the reviewed pa-
pers are short and present only ideas of solutions. Many do
not concentrate on data security. We note the following con-
tributions of our work: instead of using the lattice model, we
use the partial order model, applicable to any network; we
represent secrecy and integrity policies with a single mech-
anism, based on the use of a simple labeling method; we
develop a generic SDN framework; we show how differ-
ent data flows can be defined in a single network; we have
methods for network transformations; finally, we propose an
implementation and a simulation of our SDN-enabled net-
works.

4 Preliminaries

This work is based on results published in papers [45][32][31].
To make our paper self-contained, the essence of these re-
sults is presented in this section. We start by illustrating our
use of basic results of graph theory, so far little known in the
theory of data security. We refer to Figure 1.

In Figure 1a), we see a directed graph, which we call a
data network, or simply network. It represents a set of en-

tities in the IoT, with directional communication channels
between them. E.g. one path in the graphis/ - A — C —
K and represents a data path such that data in entity / can
go to entity A, C and K. We say that data can flow from I to
A and the other entities, written CanFlow(I,A etc. Channels
can be defined by capability lists or access control lists. A
component (or equivalence class) in the graph is defined as
a set of entities such that data can flow between any pair of
them. Such entities are thought as being data flow equiva-
lent, in the sense that whatever data might be in any of them
might also be in the other. In Figure 1 b), we have identified
two non-trivial components in the graph (a), they are A,C
and B,D, with several trivial components containing only
one entity. Double-sided rectangles will be used to repre-
sent components. A basic graph-theoretical result says that
a directed graph where all components have been reduced to
a single node (such is graph (b)) is a partial order of compo-
nents. For our example the partial order is represented in (c),
transitively reduced and not showing self-loops. The graph
has been reoriented in order to show clearly the partial or-
der. In Figure 1 c) we have also added labels to entities, by
using the rule that an entity named X contains the name of
Y in its label iff CanFlow(Y,X). Data flow equivalent entities
have the same label.

Arrows represent permissions for data receiving (or read-
ing) and data sending (or writing), which in the IoT are of-
ten expressed as permissions to pull and push data (an ex-
ample related to the one that we will present in Sect. 6 is
in Abawajy and Hassan [2]). Henceforth we shall use the
terms send as a synonym of write or push, and receive as a
synonym of read or pull.

When CanFlow(X,Y) we also say that Y can contain X
or that Y can know X.

In papers [45][32][31] it was shown that the previous
graph theoretical result can be used to conclude that:

1. Any network can be seen as a partial order of equiva-
lence classes of entities, where:

— The entities in the top equivalence classes, the data
sinks, cannot send to entities outside their class and
thus can be considered to be the most secret: in the
example of Figure 1, entityK is the most secret.

— The entities in the bottom equivalence classes, the
data sources, cannot receive from entities outside their
class and thus can be considered to be of maximum
integrity: in the example of Figure 1, entities H,I,J
are of maximum integrity.

— Other equivalence classes are at intermediate levels
of secrecy and integrity according to their receiving
or sending permissions.

2. The position of equivalence classes of entities in partial
orders (top, bottom or in between) can be defined by as-
signing to them labels; conflicts can be addressed by ex-

cluding certain combinations of entity names in labels;
entities get the labels of their equivalence classes.

3. As in established theory [8], data in a network can flow
from an entity A to an entity B iff B dominates A in the
partial order of equivalence classes. This is the case iff
the label of B includes or equals the label of A. This im-
plies the existence of flows between each entity and it-

self, such reflexive flows are postulated for order-theoretical

reasons, but are not shown and do not have to be im-
plemented. There are two important consequences from
these points, two basic facts that justify our method:

— Complex labels showing both security levels and cat-
egories, commonly used in multi-level data security
theory, can be reduced to simple sets.

— Set labels can be used for routing data in networks,
from the entities where data originate to all the enti-
ties where they can flow.

4. Given a network, efficient algorithms exist to calculate
the partial order of equivalence classes and the labels of
entities in the network [45]; conversely, a partial order
of equivalence classes or an assignment of labels to en-
tities define a network, which can be implemented with
different channel configurations where the partial order
relation is respected.

5. These results apply to any network that can be speci-
fied by means of access control matrices or permission
lists, including the widely implemented Role-based ac-
cess control (RBAC).

But how do we find networks such as the one of Fig-
ure la), representing data flows useful for specific applica-
tions? For this, we use labels that identify the possible con-
tents of entities instead of simply entity names. The term
data category or simply category is used in security theory
(Bishop [8]) to identify such contents. This will becomes
clear in the example of Sect. 6.

5 Our implementation method
5.1 Network configurations and graphic representation

On the basis of the mentioned previous results, we propose
an SDN configuration where SDN forwarding tables are com-
piled by the SDN controllers using the entities’ labels.

As mentioned, we choose to work on a centralized IoT
architecture with a cloud structure using SDN as communi-
cation infrastructure. Several papers in the literature propose
centralized configurations for IoT security such as Christos
et al. [10], Hany et al. [21], and Roy et al. [39]. Centraliza-
tion might seem to be inconsistent with the decentralized
nature of the IoT, however our efficient centralized algo-
rithms can reconfigure networks dynamically as necessary,
see Sect. 7. SDN will work very well in closed systems such

User applcation

User appicat m\

Server1 Sewer? Sewver3 Server i

TR

Sensor 1

&

User application

Cloud

Sensor 2 Sensor 3 Sensorn

Fig. 2 Generic centralised cloud-based IoT implementation configura-
tion

as hospitals, industrial plants, smart homes, and the like,
since its architecture is well conceived for scalability and
speed.

We will not discuss the characteristics and advantages of
cloud architecture since this subject is part of general knowl-
edge. In the Cloud, a data container and a server can be two
distinct entities interconnected via the network. For simplic-
ity, we choose to represent them as a single entity. In central-
ized IoT systems, all devices are connected through central-
ized cloud servers and communication between different de-
vices must be achieved through these servers. This IoT con-
figuration, shown in Figure 2, consists of three main layers:
Sensing layer, Networking layer and Application layer. The
Sensing layer consists of different types of sensors, RFIDs
and other data collecting devices. This layer collects data
from the environment and sends them to the cloud servers
via centralized gateways. Entities requiring high integrity
are found in this layer. The Application layer involves var-
ious IoT applications that use the data collected by sensors
in context such as healthcare system, smart cities, etc. High
secrecy entities are found in this layer. The Cloud constitutes

the IoT Networking layer and all communication passes through

it. Figure 3 represents a view of this architecture with the
graphical notation to be used in this paper.

The Networking layer is used to connect IoT objects to
the Internet, it also contains all the servers used to store the
data collected from the sensing layer. Several communica-
tions technologies and protocols are used in this layer such
as 3G/4G/5G, Zigbee, Bluetooth, Wi-Fi to transport data
from the sensing layer to the application layer on one hand,
and inside the networking layer between the servers on the
other hand. Our solutions are oriented towards Wi-Fi since
with this technology every entity or object in the system will
have an IPAD (or IP address) that identifies it. This sim-
plifies our presentation, but our approach can be extended.
Some of the concepts used or implied in our architecture are:

[User application] { User application]

R i 2
User application
oxxn

¢ N

App router

Cloud

oxn
Cloud Ruu«s\
Servern

Fig. 3 Our generic implementation configuration

— Connecting servers in the Cloud using cloud routers al-
lows us to create communication channels between dif-
ferent servers in the Cloud. Routers are centralized en-
tities that the servers are connected to. We find this ar-
chitecture clearly presented in Ahmad Khan [4] but is
implicit in other publications.

— Server to server communication: since servers are con-
nected using cloud routers, data can flow from a server
into another server. We can do this using Web-socket
connection between servers so either side can send data
to the other.

— Server to client communication: normally in a network,
we have client to server communication, where the client
sends a request to the server and the latter grants the re-
quest. However, in our case, we can have server to client
communication. This can be done just like the server-to-
server communication using socket.io which is a library
that enables bi-directional communication between web
clients and servers.

We adapt the architecture of Figure 3 to the SDN architec-
ture, see Figure 4. The Controller will have two routers to
take care of. The first router is the Cloud router, which in-
terconnects the servers in the Cloud, implementing the Net-
work layer. The second router is the Application router to
which the cloud router connects, and which interconnects
the entities in the the Application layer. We also have an
Access point that connects the sensing layer with the cloud
layer, but we do not program this one, since it is mainly
charged with forwarding the data to the cloud router. These
are logical devices that can be implemented by several phys-
ical devices.

Many papers in the literature mention a single controller
for Wide-area SDN. In El-Garoui et al. [14] and Dias et al.
[12], authors use the same controller as us (Ryu controller)
to control multiple routers in their wide area SDN. The con-

[User application] [User application]

K i 2
User application
N

e
OpenFlow Connection APP router
tion
5 /
oxxn
¢ N
Cloud Router
: Access point

Fig. 4 Our SDN network configuration

Data flow
control policies

A

Network

'

Partial Order Centralized
of equivalence > network
classes architecture
Forwarding
table in SDN < Labeling table
controller

Fig. 5 Summary of our method

straints on the physical placement of the servers and of the
application entities will depend on factors such as the type of
controllers and routers used, for example hierarchical con-
trollers allow a more distributed placement. These are im-
plementation concerns.

5.2 Labeling tables, forwarding tables and data flow control
policy enforcement

Our method starts by following the principles stated in Sec-
tion 4 and the references given there and is summarized in
Figure 5.

We start with a network representing an application layer
configuration of directly connected application entities. We
identify the equivalence classes of entities in the network
and the result is a partial order of equivalence classes with
sources and sinks. We then assign labels to the equivalence
classes, which will become the labels of the entities in each
class. The label associated to an equivalence class is the
set of all the data /emphcategories that the entities in the
equivalence class can contain, including the categories in
the labels of the equivalence classes it dominates in the par-

tial order [31][45]. These labels can be simply obtained by
set union proceeding from sources to sinks. For example, if
the label of a source equivalence class contains the category
BobPulse, then all equivalence classes that dominate it will
also contain this category in their labels.

The initial network will not be in the form of the cen-
tralized cloud-based configuration of Figure 2 since appli-
cation entities will be shown as communicating directly and
not through the Cloud. So, the next step, an addition to the
method described above and in our previous work, is to cre-
ate the cloud infrastructure. This will be done by assigning at
least one storage entity (in practice, a server or database), to
each equivalence class of entities. Hence in our architecture,
data are sent simultaneously to application entities and to
their associated storage entities for permanent storage. The
partial order of equivalence classes will be unchanged, with
storage entities added to equivalence classes. The collection
of these storage entities forms the Cloud and implements the
Networking Layer of the IoT.

At this point, we note that we can eliminate labels based
on categories and use only entity names in labels, thus go-
ing back to the initial model presented in Sect. 4. For exam-
ple, if a category such as BobPulse originates from an en-
tity (a sensor) named A, then each occurrence of BobPulse
in labels can be replaced by the name A. The partial order
and the label inclusion relation are the same whether we
use category names or entity names in labels. These new
labels based on entity names will directly give the routing
information needed to configure the SDN routers. They are
compiled in labeling tables in the following simple way.
For each entity such as B, we say that A € Holds(B) iff
Label(A) C Label(B). A labeling table will have a line for
each entity B in the network and a column Holds containing
the set of As such that A € Holds(B).

For the controller, A € Holds(B) means that data in en-
tity A can be forwarded to entity B. The programming of
SDN routers is then immediate. Forwarding tables contain
the command forward if a packet should be forwarded from
an entity to another. For each router we implement a for-
warding table that only includes the entities that are con-
nected to it. Recall that we assume an architecture where
every entity has a unique /PAD.

We assume that we deal with routers with arbitrary large
capacities. Average routers in use today can have a maxi-
mum of 250 entities connected to them [1], but this number
can be increased by connecting routers sequentially (in cas-
cade). Many modern routers adapt automatically if a port is
connected to another router. These technical details are ig-
nored here because they depend on the technology available.

Of the several columns a forwarding table may have, we
take into consideration only the columns Match Rules and
Action. Each packet will have a source and a destination
header. If in the labeling table A € Holds(B) then the con-

troller will create in the router a flow entry using the/PAD
(A) source (IP src) and IPAD (B) destination (IP dst) in
match rules and define the forward action for such a pair
since it is an authorized flow. When a packet arrives to the
router, the latter will compare the IP src and IPAD dst in
the packet headers. If there is a forwarding rule, the router
will perform it. Otherwise, the packet will be dropped. If a
packet arrives to a router and the destination entity cannot be
found connected to this router, the router will forward this
packet to next router in the configuration. This will prevent
overloading routers and will eliminate unnecessary delays.
In this way, the partial order of equivalence classes, which
is essential for data flow security, will be implemented.

6 Example

As an example, we consider a very small health system. It is
chosen very small so that all aspects of our method can be
shown in detail, with all figures fitting in the pages. A simi-
lar example was proposed in [32] but is reformulated here. It
belongs to a class of systems having the following configura-
tion: there are sensors for patients’ blood pressure and pulse.
There are wards, each of which has doctors and nurses, and
patients are assigned to wards. There is also aReanimation
department and a Chief of Medicine department, each with a
workstation. Entities other than sensors are application enti-
ties. There are the following data categories: Press and Pulse
data for each patient, and Stat (statistics) data for each ward.

The security policies or requirements to be implemented
are:

— The sensors should have highest integrity but also low
secrecy, since their Pressure and Pulse data are needed
by all other entities.

— The Chief of Medicine department will have the lowest
integrity, since it uses data collected from all other enti-
ties, but also the highest secrecy, since it contains highly
sensitive data for all patients and Wards.

— TheWards and Reanimation department take data from

the sensors, process them and forward the results to theChief

of Medicine department, thus should have intermediate
levels of integrity and secrecy.

— Conflicts: a) Patient data should be known only in each
patients’ own Ward and in the Reanimation and the Chief
of Medicine departments. In addition, b) Each Ward keeps
its own statistics that should be known only to it and to
the Chief of Medicine.

We limit ourselves to an instance of this type of net-
work where there are two Wards and three patients, Sam,
Bob and Sally, each using a sensor. It is shown in Figure
6, and implements the specified security policies. In the fig-
ure, each rectangle represents what we call a sensor (three in

K
ChiefMedicWkstn
{SamPress BobPulse, SallyPulse,Stat1 Stat2)

Cc
Doc1Wkst

oc1Wks
{SamPress,BobPulse,Stat1}

Doc2Wksin
{SallyPulse,Stat2}

{ wargt

G
ReanimationWkstn
1Press, BobPulse, SallyPul

B
Nurse2Wkstn
{SallyPulse,Stat2}

A
Nurse1Wksin K
{SamPress,BobPulse Stat1} | -

H
PressDetect

1 J
PulseDetect PulseDetect
{SamPress} {BobPulse} {SallyPulse}

Fig. 6 Hospital example

Fig. 7 Partial order of equivalence classes for the example of Fig. 6

the bottom layer) or an application entity (six in the layers
above), and includes an upper case letter for a short name
of the entity, a longer descriptive name and a label (a set of
categories) in braces. Labels give the data categories that
each entity can know. As earlier, arrows represent direc-
tional channels for receiving or sending, so for example in
Figure 6 entity C can send data to K, or equivalently K can
receive data from C.

According to IoT terminology mentioned above, the sources

are the Sensing layer and the rest is the Application layer.
As mentioned, the Networking layer will be provided by the
storage entities that will be added in the next step.

It can be checked that the security policies above are
implemented by the choice of label sets. For example, the
blood pressure of Sam can only be known in Wardl, in the
Reanimation or Chief of medicine departments. This config-
uration implements a partial order of equivalence classes,
as discussed in Section 4. Note the equivalence classes A,C
and B,D, since the entities in Wards have symmetric chan-
nels and thus can know the same data. The other equiva-
lence classes are singletons. Using double-sided rectangles

for equivalence classes, the partial order of equivalence classes

for the network of Figure 6 is shown in Figure 7, identical
to Figure 1(c). As earlier, in order to simplify the diagrams
we show them transitively reduced. For example, a direct
flow from H to K is allowed, and it will be in our SDN im-
plementation.

As presented in Sect. 5, we now add the cloud layer, or
network layer, to the network of Figure 6. Flows between
application entities must pass through this layer, and so stor-

age entities (such as databases, servers. ..) must be added to

I Ward2 !

the Cloud, so at least an equivalent storage entity (i.e. with
the same label) is associated to each equivalence class of
application entity. Our centralized architecture is shown in
Figure 8, where storage entities, which constitute the Cloud
and the IoT networking layer, are identified with primes. For
example, we have added an entity G’ that allows the Reani-
mationWkstn, entity G, to retrieve the data received from the
Sensors.

When doing this configuration, we delete any entity to
entity channels that are not transiting by a storage entity.
None of these modifications changes the connectivity of the
network, since the required data flows can still be obtained
by transitivity. The partial order of equivalence classes for
Figure 8 is given in Figure 9. Note that, as expected, the
latter is the same as the partial order of Figure 7 for the
entities that appear in both partial orders.

For the implementation configuration, the sensors are
connected to access points that transfer their data to first-
level cloud routers. These cloud routers forward the data to
the storage entities. Finally, second-level routers are config-
ured to connect the user endpoints to the first level of cloud
routers. By adding the required routers, we obtain the con-
figuration shown in Figure 10.

Note that all the storage entities are connected to the
Cloud router, the application entities are connected to the
App router, while the sensors are connected to an access
point, which in its own turn is connected to the cloud router,
just as in Fig. 3. As mentioned, no direct communication
between application entities is allowed, all data must pass
thought the central Cloud. However, we allow communica-
tion between storage entities in order to permit data flows to
higher levels in the partial order.

This having been done, we must configure our routers;
we do this by constructing the labeling tables.

The cloud router will have the function of allowing ap-
plication entities and sensors (right column) to send data to
the storage entities, see Figure 19. In all labelling tables
that we will present, an entity name such as A will stand for
IPAD(A).

So, for example, data sent from sensor J that detects
SallyPulse will arrive at the Coud router through the access
point. The router will find the rows containing J which are
the ones for storage entities B’ and G’ and forward the data
to these entities. If the destination is not found in any row
of the first router, the latter will send the data to the second
router.

As a further example, note that Label(J)= SallyPulse
and Label(B)=Label(B’)=Lab(D)=SallyPulse,Stat2. So by
label inclusion, J,B,D,B’ can all flow to B’. These are all

K
ChiefMedicWkstn
{SamPress,BobPulse SallyPulse Stat1,Stat2}

K

2 Doc1Wkstn
(SamPress,BobPulse, Stat1}

G

A
Ward1DB
SamPress,BobPulse, Stat1

Ward 1

\ A
Nurse1Wikstn
Y [{SamPress,BobPulse Stat1}

H
sDetect

7 1
=" Pres

Fig. 9 Partial order for the centralized architecture

and only entities whose labels are included in the label of
B’, and so they are all and only entities whose data should
be allowed to flow to B’, as shown in Figure 11. The table
in Figure 11 can be easily constructed from Figure 9.

Once the data reaches the App Router the same treatment
is done, we check which row of the labeling table applies
according to the provenance of the data, we send the data to
each designated entity and we drop the rest. By this table,
the data sent to B’ will also be available to B, Dand K and
the data sent to G’ will also be available to G and K.

At first sight, the final configuration of Figure 10 seems
to have no relation with the partial order of equivalence classes
we started from, the only similarity being in the fact that
the sensors are at the bottom layer in both. However, by the

AdminDB
fSamPress BobPulse SallyPulse, Stat1,5tat2}

ReanimationDB
SamPress,BobPulse,SallyPulse

G
ReanimationWkstn
{SamPress BobFulse, SallyPulse}

DoCc2Wkstn 5
{SallyPulse, Stat2} \

B
Ward2DB
SallyPulse,Stat2

Ward 2 !

B
Nurse2Wkstn
[SallyPulse, Stat2}

{SamPress BobPulse SallyPulse} {SamPress BobPulse, SallyPulse Stat1,Stat2}

i ‘\R‘- = / i
Doc1Wkstn oo Doc2Wksin

{SamPress, BobPulse, Stat1} (4) {SallyPulse,Stat2}

'App Router

G K
[ReanimationWkstn [ChiefMedicWksin]

B
Ward2DB

ry
Ward1DB
n {SallyPulse Stat2}

{SamPress BobPulse Stat1}
BfiveEs. Bobbule. !

2
zm;\
/ Cloud Router
‘T

)

Access point

~ .

3
ReanimationDB
{SamPress BobPulse, SallyPulse),
U

K

AdminDB

{SamPress BobPulse,SallyPulse, Stat1, Stat2}.
e O, O e, A

J
PulseDetect
€w}

I
PulseDetect

H
PressDetect

Fig. 10 The implementation configuration for the case study

contents of the routing tables, the data flows between enti-
ties are the same. This means that the initially given poli-
cies of secrecy and integrity, as well as conflicts, are prop-
erly implemented. Clearly, this example can be scaled up by
introducing many more sensors, many more wards, many

Entity Holds

H H

I 1

J J

Entity Holds

B’],B,D, B’
A HLACA
G’ LLHGG
K’ All

Entity Holds

G G

D],B,D,B

B],B,D,B

C HILACA
A HLACA
K All

Fig. 11 Labeling table for the study case

more workstations, etc. In order to make this possible, the
entities would have to be parameterized or indexed, such
as PulseDetectl, PulseDetect2, etc. The method will remain
the same, but the diagrams might be too large to be shown on
a page. Evidently, practical implementations of our method
will not be able to be shown in graphic format, except per-
haps for some high-level representations.

To summarize our implementation method, we propose
Algorithm]1 that highlights how we go from the initial sys-
tem architecture that can be considered as a logical topology
into an actual physical one that can be configured and imple-
mented in a real context.

7 Network transformations: creating, removing and
moving entities

As all networks, IoT networks are subject to transforma-
tions, which correspond to changes in secrecy levels and

changes in channel configurations. Concepts for network trans-

formations are presented in [31]. For completeness, let us
review some notions here.

Transformations can occur for many reasons, notably by
intervention of a system administrator, or automatically by
effect of policies. For example, in many systems there are
transformations that are determined by policies expressed in
terms of time, such as that at certain times, certain entities
may change their permissions (i.e. labels), or disappear al-
together, while others may be created. In our partial order
model, the transformations that matter are the changes in
the domination relation, because they are the ones that can
change the data flows. Transformations that do not change
data flows are adding or removing channels that are implied
by transitivity. We consider three types of transformations:
introduction or removal of entities, or label changes.

Algorithm 1 Implementation algorithm

Require: Logical topology (graph that describes the data flow among
entities, see Fig. 6)
Ensure: Physical topology (topology that shows how the system can
be configured in a real context, see Fig. 10)
for all the workstations of the network do
Create an equivalent storage entity.
end for
for all entities E in the Input do
for all E that are not sensors do
if £ does not have a bidirectional connection with any stor-
age entity then
add a bidirectional connection between E and it equiva-
lent stroge entity .
end if
end for
for all sensors do
remove all connections between the sensors and entity E.
add a connection from the sensor into storage entity equiva-
lentto E.
end for
save the new topology as Input.
for all entities X in the Input do
add the same entity X in the Outputrouter.
end for
for all the entities X in the Output do
if entity X is a sensor then
Place X in the sensing layer.
else
if entity X is a storage device then
Place X in the cloud.
end if
Place X in the application layer.
end if
end for
end for
create a cloud router R1 and app router R2 and an access point AP.
add a connection from the access point AP into the cloud router R1.
add a bidirectional connection between all the remaining routers
(R1 and R2).
for all the entities C in the cloud do
add a bidirectional connection between C and a cloud router R1.
end for
for all the entities A in the application layer do
add a bidirectional connection from A to app router R2.
end for
for all the entities B in the sensing layer do
add a connection from B to the access point AP.
end for
Return Output

The following sections will explain in detail the sev-
eral types of transformations that can occur. We assume that
transformations can be treated one at the time.

For implementation efficiency, it should be considered
that each network will have different update needs. For ex-
ample, some networks may have very frequent label changes,
but much less frequent additions or removals: in this case,
the algorithms and data structures will have to be optimized
for performing quick label changes, and it may not matter
if they perform less well for the other operations. Adding
backward links in the labeling tables will help speed up cer-

11

tain searches, but will also increase the amount of mem-
ory required for the tables. Further, the labeling tables may
have to be kept sorted according to some criteria, to speed
up searches. Such implementation decisions should be left
to the designers of specific systems. Standard data struc-
ture theory proposes methods that can be used for optimiz-
ing the basic methods we propose below, and we leave this
to further research. For the purpose of this paper, we do
not assume any specific organisation of the labeling tables
and we note that all the operations mentioned below can be
performed by using simple searches, sorts, insertions and
substitutions. Efficiency and scalability will be discussed in
Section 10.

In each of the cases below, we distinguish between the
changes that occur in the implementation configuration and
changes that occur in the labeling table. As mentioned, the
two are not related in obvious ways, in fact the implementa-
tion configuration changes only in the cases of entity addi-
tion or removal.

7.1 Addition of new entities

Three types of entities can be introduced: sensors, storage
entities and application entities. In each case, we assume
that the new entity comes with a label, assigned by users
or administrators, that implicitly specifies the intended con-
tents of the entity and the position of the new entity in the
network.

Adding a sensor : sensor’s labels contain only the names
of the sensors themselves, along with the names of other
equivalent sensors, if any. In the implementation configu-
ration, the new sensor must be attached to the appropriate
access point. In the labeling tables, a line must be added for
the new entity, containing in the Holds column the name of
the equivalent sensors. Further, the name of the new sensor
must be added to the Holds lists of all entities that should
receive data from it.

Adding a storage entity (server or database) : if it is
decided to add a new storage entity into the cloud layer, the
change to the implementation configuration is the appear-
ance of this entity attached to the cloud router. Concerning
the labeling table, this new entity will have to belong to one
of the already existing equivalence classes. This one already
must have at least one storage entity (otherwise it will be dis-
connected from all other entities). Then the new entity must
be added to the labeling table with the same Holds list as
the other entities in its equivalence class; it must also be in-
cluded in the Holds lists of all the entities in its equivalence
class.

Adding an application entity: two main cases arise,
according to whether the new entity belongs to an exist-
ing equivalence class or whether instead it will be in a new

equivalence class (in other words, whether it has an existing
label or a new one).

a) The first case is easily treated. For the implementa-
tion configuration, the new entity will be connected to App
router. The new entity will access the same data entities as
the other entities of its equivalence class. For the labeling ta-
ble, a new entry must be created for the new entity, its name
must be added to the Holds lists of all entities in its equiva-
lence class, and the Holds list of the new entity must be the
same as the Holds lists of these entities. The name of the
new entity should be added to the Holds lists of all entities
that dominate it in the partial order (that should receive data
from it).

b) The second case is the case of addition of an applica-
tion entity with a new label, that creates a new equivalence
class. In this scenario we must add at least one correspond-
ing storage entity for this new entity, with the same label.
For the implementation configuration, the new entity must
be connected to App router and the new storage entity must
be connected to the Cloud Router. For the labeling tables,
new entries must be created for each of the two new enti-
ties. The Holds lists of these two entities must be identical,
and must contain the names of all entities from which they
should receive data. The names of these two entities must
be added to the Holds lists of the entities where they should
send data.

Example for case a): adding a new entity SpecialistDocWk-
stn, this specialist can be consulted by Doctor 2 in the case
of an emergency, meaning that the new entity will access the
data of doc2Wkstn through the existing storage entity named
Ward2DB. The label of this entity will be SallyPulse,Stat2.
Example for case b): suppose that we have the partial or-
der presented in Figure 12(a), its implementation configu-
ration is shown in Figure 12(b) and the labeling tables con-
tained in the routers are shown in Figure 12(c). Entities A
and B are sensors, entities D’, C’ and E’ are storage enti-
ties (databases) and the rest are workstations. Now, we add
a new independent entity F into the application layer with
its associated storage entity F’ . This new entity will receive
data from sensor A, process them and send the results to en-
tity E. This addition will affect both labeling tables, some
lines are added to both tables in order to include the new
entities. The changes are shown in Figure 13.

7.2 Entity removal and entity failure

This will change the implementation configuration, since the
removed entity will not be included in the new implementa-
tion configuration. As in the case of addition, we have three
cases: removing a sensor, removing a storage entity, and re-
moving a workstation. In the two latter cases, it should be
kept in mind that removal of an entity does not make it

(a) (b)

Lee |

oo]
A

[ell [al

()

Sensor's Labeling table
Entif | Holds ‘

A A
B [B
Labeling table of the cloud router
| Entity | Holds]
c ACC
o [B,D, D’ |
E" All
Entity Holds
< lacc |
| D _B.D.D _
E [l |

Fig. 12 (a) Partial order of the example. (b) Corresponding implemen-
tation configuration. (c) The labeling table of the two routers

(@) (b)

[l i il

= A oo

EF i o s =
A
;

E}n—_“ i;- ‘“{'IEI
U_DifﬂJ U%CLU - r/':mf ;:e'

FF .
%)
DB A Access point
\E

(@)

Sensor’s Labeling table

[Entity Holds
A A
B
Labeling table of the cloud router
Entity Holds
Lc ACC
D B,D, D'
E Al
LF AFEF
| Entity Holds
Cc AcCC
| D B.D.D
E All
LE AEF

Fig. 13 (a) The new partial order for the example of Fig.10. (b) its
new corresponding implementation configuration. (c) The new labeling
table of the two routers

necessary to find alternate paths in a network, since label-
ing tables contain the IPADs of all potential receivers of a
data item. In fact, the system will keep working properly
even if nothing is done in the case of entity removal: simply,
data may continue to be sent to a non-existent entity. In this
sense, we claim that our system is tolerant to entity failure,
an important property in the [oT.

Removing a sensor: the sensor must be removed from
the implementation configuration. All occurrences of the name
of the sensor must be removed from the labeling tables.

Removing a storage entity: the fact that every equiv-
alence class of entities must have a storage entity implies
that a storage entity can be removed if and only if the there
remains at least one storage entity in its equivalence class.
The name of the storage entity must be removed from the
labeling tables, however these tables should already contain
references to other equivalent entities, so nothing else needs
to be changed. In practice, the different storage entities in
an equivalence class may have different contents, and if so
some contents may have to be copied, but we leave this as
an implementation issue.

Removing an application entity : in our example this
would be removing a workstation. In this scenario, we need
also to check the equivalence classes. We have two cases:

a) If the equivalence class that contains the entity to re-
move has at least another application entity in it, we only
remove the intended entity and we leave the corresponding
storage entities for the other application entities. The name
of the removed entity must be removed from the labeling
tables.

b) Otherwise, we remove the intended entity and all the
equivalent storage entities since none of them is required any
more. The names of all such entities must be removed from
the labeling tables.

7.3 Label changes

Changing the label of an entity is equivalent to removing the
entity and then adding it with the new label, and so it can be
done by combining the two procedures. This change does
not need to have an effect onthe implementation configura-
tion, since the entity can remain in its place. The labeling
tables will have to correspond to the new labels.

Label changes may be requested by administrators or
may occur by the effect of policies in order to create or re-
move data transfer channels or increase or decrease the se-
crecy or integrity of entities; these changes normally lead to
new partial orders. Here is a simple example. Suppose that
entity A has label A and entity B has label B. Neither of
them dominates the other in the partial order, and so there is
no data flow between A and B; both A and B have maximum
secrecy and integrity. An administrator may decide to create

13

a flow from A to B and to do so it can change the label of B
to A,B. This simultaneously decreases the integrity of B and
the secrecy of A, while the secrecy of B and the integrity of
A remain unchanged. In the initial labeling table, each of A
and B will contain only its name in the Holds column; in the
final labeling table, the Holds of A will be unchanged, while
A is added to the Holds of B.

So security concerns have to be taken care of in trans-
formations, because these can lead to violations of security
constraints, possibly by indirect data transfers through en-
tities that may change labels while keeping previously ac-
quired data. This problem was mentioned in [31] and a sys-

We say that the example of Sect. 6 deals with Consul-
tation data that flow from patients towards the medical staff
as we have seen. We add to this Diagnostic data that trav-
els in the opposite direction and has its own requirements in
term of secrecy, which leads to a different partial order. The
network with the representation of the two different flows is
shown in Figure 16. We have now two sets of labels, one
with the flow identifier Consultation, the other with the flow
identifier Diagnostic. There are also some new added en-
tites: BobWkstn, SamWkstn, and SallyWkstn respectively L,
F, and E which represent the patient applications that will al-
low them to consult the Diagnostic data flow. So some enti-

tematic study of it belongs to other work. Certain labels may
have to remain forbidden through transformations. Reme-
dial action, such as data purging, may have to be imposed.

ties will have two labels. For example, the labels of ChiefMedicWk-
stn is as follows: Consultation(Sam Press,BobPulse,SallyPulse,
Statl,Stat2), Diagnostic(Sam Diagnos,SallyDiagnos, BobDiagnos).

In our example, the security requirements mentioned at the
beginning of Sect. 6 must be kept invariant through trans-
formations (until these are revised, of course). If entity B’s
label is changed to include SamPress together with Sally-
Pulse, then Sam’s pressure can flow to entity B which is in
Ward?2, violating policy Conflicts a). This can be prevented
by allowing labels including SamPress,SallyPulse only in
the equivalence classes of entities ChiefMedic Wkstn and Re-
animationWkstn. If a workstation in one ward is relabeled to
be moved to another ward, then all data that has so far flown
to the workstation and should not flow to the second ward
must be purged from the workstation. Sensors will have to
keep maximum integrity and so normally their Holds lists
will contain only their name, together with the names of
other equivalent sensors if they exist. How exactly to im-
plement all this can vary from an organization to another.

8 Networks with multiple flows

In the example of Sect. 6, we have only considered the exis-
tence of a single data flow in the network. Usually however,
several separate data flows are present in a network. Each
one of these flows will have different security requirements
and will need to be controlled separately, hence it will have
its own partial order. In [32] we have shown an e-commerce
example where there are two data flows, one to carry orders
and another in the opposite direction to carry billing data.
We modify our hospital example to add a downward flow
that we call Diagnostic, from the Chief of medicine towards
the patients. For this new flow, the secrecy-integrity require-
ments are reversed, and labels containing combinations of
patient’s diagnostic data are allowed only for certain equiv-
alence classes of entities, as shown in Figure 14. Note that,
for consistency with Figure 17, in this figure we show the
least secret entity at the top.

We continue to deal with a centralized network. Hence,
storage entities must be added to the network. This will re-
sult in the network of Figure 15.

This means that Chief MedicWkstn participates in the two
flows, and that for each flow, ChiefMedicWkstn has access
to data of the corresponding labels.

This example shows the usefulness of the concept of
trusted entities that can access data belonging to different
flows but are trusted to deliver the right data to the rightful
entities only. One such entity is the ChiefMedicWkstn. This
entity knows both Sam’s and Bob’s data and sends data to
both but should not send Sam’s data to Bob or vice-versa.
The concept of trusted entity is well established in security
theory and is present in the Bell-La Padula model [7], where
trusted subjects are defined to be “guaranteed not to con-
summate a security-breaching information transfer even if
it is possible”. Trusted entities can be thought of as split in
different parts, one for each flow to which they belong, with
controlled internal communication between the parts. Each
part will be governed by the label associated with its flow.
A classical example is found in combat situations, where
commanders receive data from the field and send orders in
the opposite direction; they are trusted to keep the two data
flows separate, namely not to send any sensitive field infor-
mation together with the orders.

In order to implement this model, we need again to cre-
ate a network where all the data is saved in the Cloud. For
this purpose, we add storage entities for the newly created
entities for the patients. These can be small storage spaces
allocated through the patient’s account created during the
registration on the hospital servers.

Figure 17 represents the resulting network. We have two
sets of labels, one set for each flow, respectively named Con-
sultation and Diagnostic. For each flow, the labels associ-
ated with that flow are used.

The main difference with respect to the one-flow exam-
ple is that the controller will have a forwarding table for each
data flow. In the case of Consultation data flow, the labelling
tables for the two routers will be the same as the one for the
one-flow example. To understand the labeling table for the
new Diagnostic flow, it is useful to see its partial order, this is

K
ChiefMedic\Wkstn
{SamDiagnos,BobDiagnos, SallyDiagnos}

D
Doc2Wksin
{SallyDiagnos}

Doc1Wkstn
{SamDiagnos,BobDiagnos}

B
Nurse2Wkstn
{SallyDiagnos}

F
SamWhksin
E
SallyWhkstn

{SamDiagnos}
MNurse1Wkstn

{SamDiagnos,BobDiagnos}
{SallyDiagnos}

L
BobWkstn
{BobDiagnos}

Fig. 14 The Diagnostic flow

K
ChiefMedicVWkstn
{Consultation{SamPress BobPulse. SallyPulse. Statl, Stat2).
Diagnostic(SamDiagnos. SallyDiagnos.BobDiagnos)}

K

AdminDB
{Consuitstion{SamPress, BobPulse, SallyPulse, Stat1,5tat2),
Diagnostic{SamDiagnos, SallyDiagnos, B agnos})
Doc2Wistn
lyPulse, Stai2),

SallyDiagnos)}

C

Doc1Wkstn
(Consuitation{SamPress,BobPulse, Stail), .
Diagno. Diagnos.BobDiagnos)} - .
Ward20B

{Consultation{SallyPulse Stat2).
Diagnoatic{SallyDiagnos)}

| Consuktation{SamPress BobPulse, Stat1)

o0 - ¢] 1
. J H i
" ;o :
J ' i
A ; ! |
Murse1Wkstn K b &
Consultation{SamPress,BobPulse, Stat1), /‘ ! '
/ ¢ H
. . '
i |
= ; ¥

Disgnostic{SamDiagnos, BobDiagnos))

E

SallyDB
{Diagnostic(SallyDiagnos))

F

SamDB

SamWikstn
{Diagnostic(SamDiagnos))

{Disgnostic(SamDiagnes))

SallyWkstn

L
BobWkstn -

{Diagnostic(SallyDiagnos])}

{Disgnostic{BobDiagnos)}

L
BobDE
{Diagnostic{BobDiagnos)}

Fig. 15 The network of the Diagnostic flow
shown in Figure 18 (contrary to Figure 9, but in agreement The main difference with respect to the one-flow exam-
with previous similar figures, here we have put the most se- ple is that the controller will have a forwarding table for each
cret entities at the top). The labeling table is given in Figure data flow. In the case of Consultation data flow, the labelling
tables for the two routers will be the same as the one for the
one-flow example. To understand the labeling table for the
new Diagnostic flow, it is useful to see its partial order, this is
shown in Figure 18 (contrary to Figure 9, but in agreement

19.
with previous similar figures, here we have put the most se-

The new implementation configuration is presented in
Figure 20. As earlier, we have two routers that interconnect
the network entities: one to interconnect the storage entities

and one to connect the workstations.

15

———» Consultation data Flow
__________ » Diagnostic data Flow

K
ChiefMedicWkstn
{Consuitation(SamPress, BobPulse SallyPulse, Stat1_ Stat2),
Diagnostic (SamDiagnos, BobDiasgnos, SallyDiagnos)}

o= T Seup
D
DociWkstn G
{Consultation(SamPress. BobPulse, Statd), Doc2Wistn

ReanimationWkstn A Consuitation(SallyPulse, Stat2),
{Consuitation{SamPress BobPulse, SallyPulse)} P Diagnostic{SallyDiagnos)}

Diagnostic(Sam Dmﬂnus BobDiagnos)}

\ B

1 Ll
i A 1 5
: b MNurse1Wkstn H
: : {Consuitation{SamPress, BobPulse, Stat1), {Conwnam(gimg&e S '
Diagnostic(SamDiagnos, BobDiagnos)} Dfagnosn'c{SaIyDiagr{ns)} ! 1
x ¥
E
SamW'k‘s?n SallyWkstn
{Dvagnostic(SamDiagnos)} {Diagnostic(SallyDiagnos)}
¥
L
BobWihstn
{Dragriostic(BobDiagnos))
H I J
PressDetect PulseDetect PulseDetect

{Consultation{SamPress)} {Consultation(BobPulse)} {Consuitation{SallyPulse)}

Fig. 16 Two-flow network for the hospital example

K
< ChiefMedic\Wistn
AdminDB [Consultation|SamPress, SobPuise. SailyPulse. Stat1 Stat2),
{c SamPress BobPuise SallyPuise Stat Stae2), [€TTTTTmemmmmems

Diagnostic(SamDiagnos. SallyDiagnes SobDiagnos])
Diagnostic{SamDiagnos. SallyDiagnes, BobDiagnos)}

[
Doc1Wicstn
Consultation(SamPress BobPulse Statl),
Diagnestic{SamDiagnos BebDiagnos))

\ G
3 FeanimatoniWksin
{Consultation{SamPress BobPuise SallyPulse)}

A -

Consultation(SamPress.BobPulse. Stat1)|

G Ward208 s,
'.' Diagnostic{SamDiagnos.BobDiagnos)} ReanimationDE {Consukation(SallyPuise. Stat2). "._
Consulason{SamPrass BobPulse. SallyPulse) DisgnosticiSaliyDiagnos))

MNurse 1Wicstn
Consutation{SamPress BobPulse. Stat1),
Diagnostic{SamDiagnos, BobDiagnos))

F
SamlWestn
{DisgnosticSamDiagnos)}

——p Consulfation dsta Fiow
_________ » Diagnostic data Flow

Fig. 17 Centralized two-flow network

EE FF LU

D,B’,B C,A A

\/

KK

Fig. 18 Partial order for the Diagnostic data flow

Labeling table of the cloud router

Holds

K KK

B’ K.B,D,B.K

A KACAK

E K.D,B,EE K,B
F

L

K CAFF, KA

] K.CALL,K, A
Holds
K, K
KACK, A
K.CALA
K,B,B,D,D’
K.D,B,B K
K.D,B,E.EK,B
KCAFEKA
KCAL,LK,A

5

iR g e R

Fig. 19 Partial order for the Diagnostic data flow

cret entities at the top). The labeling table is given in Figure
19.

9 Simulation and implementation of the controller

The SDN implementation of our hospital case study has
been tested by using the Mininet network emulator. Mininet
is a network emulator that runs a collection of end-hosts,
switches, routers, and links on a single Linux kernel. It uses
virtualization to make the system look like a complete net-

work, running the same kernel, system, and user code. Mininet

hosts behaves just like real machines that can run arbitrary
programs. The programs can send packets through what ap-
pears to be a real Ethernet interface, with a given link speed
and delay. Packets get processed by what looks like real
Ethernet switches or routers as in our case. In summary,
Mininet’s virtual component (hosts, switches, links, and con-
trollers) are created using software rather than hardware, and
their overall behavior mimics to the one of discrete hardware
elements. It is usually possible to create a Mininet network
that resembles a hardware network, or a hardware network
that resembles a Mininet network, and to run the same bi-

R A

{Co e,
D

05, BobDiagnos])

st Digne
o
N ;\‘
- / Cloug Router

Access point

Fig. 20 Implementation configuration for the two-flow network.

nary code and applications on either platform. Mininet is
particularly adapted to simulate SDN networks, also is effi-
cient and easy to use.

For the choice of controller, several reasons led us to use
the Ryu controller of Saleh et al. [40]. First, we considered
the comparison study documented by Ola et al.[34]. Sec-
ond, there is the fact that Ryu provides software components
with well defined APIs that make it easy for developers to
create new network management and control applications.
Third, Ryu is the most suitable controller to use in a Mininet
environment since it supports OpenFlow 1.0, 1.2, 1.3, 1.4.
Fourth, because of the fact that Ryu is is Python-based, it is
easier in Ryu to develop new network management and con-
trol applications in comparison with other controllers. And
finally, Saleh et al. [40] and Islam and Refat [25] have re-
ported on testing the performance of the Ryu controller in
many simulation scenarios and have concluded that the con-
troller is very suitable for prototyping and experimentation
for research, experimentation, and demonstrations.

To create our implementation configuration, we have used
the Python API to write a configuration Python script. First,
we had to create an empty network and add nodes or entities
into it. To create this empty network, we manually created
a default controller called Controller c0. This default con-
troller was replaced later with our Ryu controller.

The simulations that were done aimed to test the in-
tegrity and secrecy requirements, in other words it was tested

17

that by using our labeling tables and derived routing tables,
data flows would only arrive to authorized entities. Param-
eters such as performance of the controller, scalability, etc.
have been tested in other SDN-related work already men-
tioned, see Saleh et al.[40], Islam, Refat [25].

The two-flow configuration of Figure 20 was tested as
well.

10 Efficiency and scalability

For efficiency and scalability evaluation, it is important to
note that the overhead imposed by our method will occur
only when the routing tables have to be updated, this means
at network initialisation and whenever events such as admin-
istrative decisions or event-driven policies cause network re-
configurations; otherwise, for normal operation, the network
will run at SDN speed. We have mentioned in Sect. 7 and in
[31] some of the factors that should be considered when es-
timating the time taken by the reconfiguration process, and
that detailed estimates would require consideration of the
characteristics and optimizations possible for specific net-
works. We have mentioned that the operations involved are
simple searches, additions, deletions and sorts.

In our small examples we have assumed that the labels
of the entities were known, but it practice this may not be the
case; labels may have to be calculated from the channel con-
figuration, this means from capability lists or access control
matrices. In [45] we have presented a method for finding the
labels based on such information. It was shown there that a
worst-case estimate of label calculation time is for an algo-
rithmic complexity that is cubic on the number of entities in
the network (thus excluding exponential complexity). MAT-
LAB simulations yielding estimates were also given in that
paper. It was shown in those simulations that for a network
of 10,000 entities the partial order can be found and the la-
bels calculated in about 1.5 minutes, raising to about 10 min-
utes for 20,000 entities and after that rising rapidly to 1,75
hours for 100,000 entities. These times can significantly im-
prove with more efficient programs and faster computers.
Research on efficient graph computations is continuously
progressing. Consider also that many IoT networks can be
partitioned in partially independent slices as they are called
in 5G (Zhang [51]), or domains (Flauzac et al. [16][17][18]).
In practice, many slices or domains can be smaller than the
mentioned 10,000 entities and for many transformations it
might be sufficient to reconfigure only one of them. Finally
and most important, in many practical cases, policies and
configurations are set up in such a way that global recalcula-
tions are unnecessary since only limited and already planned
local changes will occur, with minimal overheads. Due to
the many different contexts in which our method can be
used, more detailed efficiency considerations, as well as the

adaptation of the method to each context, are left to future
research.

In our networks, if data are sent autonomously by the
entities, an entity can receive a data item several times from
different sources. This is normal in multicasting and stan-
dard mechanisms exist to address it.

11 Conclusion

We have shown the feasibility of using SDN in IoT contexts
for implementing data security requirements of data secrecy
(or confidentiality), integrity and conflicts. In the implemen-
tation method we propose, data will be forwarded only to
entities meant to receive them, and it can be ensured that
this property remains true through network transformations.

In previous publications [45][31][32], we have shown
how Denning’s and Sandhu’s lattice model for data security
can be generalized to a multi-level partial order model that
can be found in any data network that can be represented as
a directed graph. The data flows are determined by the la-
bels of the entities, which can be given (by users or admin-
istrators, as in our example), or can be efficiently calculated
from capability lists or access control lists. The data flows
are from entities of low secrecy and high integrity towards
entities of high secrecy and low integrity.

In this paper, we have shown how the labels can be used
to construct forwarding tables for SDN routers that will con-
trol data transfers accordingly, thus ensuring data security.
We have used a network organization based on cloud con-
cepts with application entities and data entities (or servers,
databases). We have also described methods to take care of
the transformations of the networks, as required by admin-
istrative action or policies. We have noted in Sect. 7.2 that
our networks are tolerant to entity failure. We have demon-
strated our method in detail by using a simple ‘hospital” ex-
ample, which was simulated by using the Mininet and Ryu
platforms. We have shown that the method can be used also
in the case of multiple coexisting data flows. Efficiency and
scalability issues were mentioned. Our solutions for trans-
formations and multiple flows show the flexibility of our
approach, as well as of the SDN architecture. Our method
is centralised, in the sense that there is only one controller.
Decentralization is left to future research.

As documented in Section 3, although the literature on
security with SDN is plentiful, no other methods have been
proposed to use SDN for data security in the way we have
described, supported by partial order theory and by efficient
algorithms.

Of course, we have provided a generic method only, we
have shown how the general data flows could be maintained.
In order for the proposed method to become practical, it will
require the creation of a suitable administrative model. As

18

well, methods to construct complex label systems, appropri-
ate for security applications involving many label types, will
have to be developed. IoT networks are very complex and
their design has to take into consideration many different re-
quirements, not only data security-related ones. Our method
intends to provide one element of solution and will have
to be combined with other methods; this will be the sub-
ject of future research. Among others, although our method
does not require encryption in principle, encryption will be
needed, at least to take care of errors in the execution of the
routing mechanisms, possibly caused by attacks on the rout-
ing tables or the by the insertion of hidden channels.
Further details on this work can be found in [44].

12 Acknowledgment

We thank Dr. Ahmed Karmouch for introducing us to the
possibilities of SDN for network security and Yvon Andri-
anirina for technical information on SDN tools. This work
was partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

13 Compliance with ethical standards

This research was funded exclusively by Discovery Grants
of the Natural Sciences and Engineering Research Council
of Canada (NSERC) awarded for long-term research to co-
author Luigi Logrippo. Authors Abdelouadoud Stambouli
and Luigi Logrippo declare that they have no conflicts of in-
terest. Ethical approval: This article does not contain any
studies with human participants or animals performed by
any of the authors.

References

1. https://www.lifewire.com/how-many-devices-can-share-
a-wifi-network-818298. (Consulted on April 28, 2021).

2. J. H. Abawajy, M. M. Hassan. Federated Internet of
Things and Cloud Computing Pervasive Patient Health
Monitoring System. IEEE Comm. Magazine, 55(1), 48-
53, Jan. 2017.

3. C. Aggarwal and K. Srivastava. Securing IOT devices us-
ing SDN and edge compu-ting. 2nd International Con-
ference on Next Generation Computing Technologies
(NGCT 2016), 877-882.

4. M. Ahmad Khan. A survey of security issues for cloud
computing. Journal of Net-work and Computer Applica-
tions.71 (2016), 11-29.

5. FA. Alaba, M. Othman, [.A.T. Hashem, F. Alotaibi. In-
ternet of things security: A survey. Journ. Network and
Computer Applications, 88 (2017), 10-28.

6. A. Al-Haj, B. Aziz. Enforcing Multilevel Security Poli-
cies in Database-Defined Networks using Row-Level Se-
curity. International Conference on Networked Systems
(NetSys 2019), 1-6.

7. D.E. Bell, L. La Padula. Secure computer system : uni-
fied exposition and Multics interpretation. Mitre Corp.
Report MTR-2997 Rev. 1, March 1976.

8. M. Bishop. Computer security, Art and science. 2nd ed.,
Addison-Wesley, 2019.

9. S. Chakrabarty, D.W. Engels, S. Thathapudi. Black SDN
for the Internet of Things. 2015 IEEE 12th Intern. Conf.
on Mobile Ad Hoc and Sensor Systems.

10. S.Christos, P. Kostas, K. B.Gyu, B. Gupta. Secure Inte-
gration of Internet-of-Things and Cloud Computing. Fu-
ture Generation Computer Systems , 2013.

11. D. Denning. A lattice model of secure information flow.
Commun. ACM 1(5) (1976), 236-243.

12. M. Dias de Assungdo, R. Carpa, L. Lefevre, et al.
Designing and building SDN testbeds for energy-aware
traffic engineering services. Photon Netw Commun 34
(2017).396-410 .

13. R. Djouani, K. Djouani, F. Boutekkouk, R. Sahbi .A Se-
curity Proposal for IoT inte-grated with SDN and Cloud.
6th International Conference on Wireless Networks and
Mobile Communications (WINCOM 2018),1-5.

14. L. El-Garoui, S. Pierre, S. Chamberland. A New SDN-
Based Routing Protocol for Improving Delay in Smart
City Environments. Smart Cities. 3(3) (2020), 1004-
1021.

15. S. Etalle, T.L. Hinrichs, A.J. Lee, D. Trivellato, N. Zan-
none. Policy Administration in Tag-Based Authorization.
In: Proc. 9th Intern, Symp. On Foundations and Practice
of Security. FPS 2012. Springer LNCS, vol 7743.

16. O. Flauzac, C. Gonzalez, A. Hachani, F. Nolot .SDN
Based Architecture for 10T and Improvement of the Se-
curity. IEEE 29th Int’l. Conf. Advanced Information Net-
working and Applications Workshops (WAINA) (2015),
688-693.

17. O. Flauzac, C. Gonzalez, F. Nolot. New Security Archi-
tecture for IoT Network. Pro-cedia Computer Science. 52
(2015), 1028-1033.

18. C.Gonzalez, S.Charfadine, O.Flauzac, F.Nolot. SDN-
based security framework for the IoT in distributed grid.
International Multidisciplinary Conference on Com-
puter and Energy Science (SpliTech 2016).

19. A. Hakiri, P. Berthou, A. Gokhale, S. Abdellatif.
Publish/subscribe-enabled soft-ware defined networking
for efficient and scalable IoT communications. IEEE
Communications Mag 53 (9) (2015), 48-54.

20. Z. Han, X. Li, K. Huang, Z. Feng. A Software De-
fined Network-Based Security As-sessment Framework
for Cloud IoT. IEEE Internet of Things Journal, 5 (3)
(2018),1424-1434.

19

21. A.Hany, W. Gary.Intersections between IoT and dis-
tributed ledger. Advances in Computers. Role of
Blockchain Technology in IoT Applications (3) (2019).

22. J.Hou, L. Qu, W. Shi. A survey on internet of things se-
curity from data perspec-tives. Computer Networks 148
(2019), 295-306.

23. V.C. Hu, D.F. Ferraiolo, R. Chandramouli, D.R. Kuhn.
Attribute-Based Access Con-trol. Artech House, 2018.
24. D. Huang, A. Chowdhary, S. Pisharody. Software-
Defined networking and securi-ty. From theory to prac-

tice. CRC Press, 2019.

25. M. Islam, M. Refat. Node to Node Performance Evalua-
tion through RYU SDN Con-troller. Wireless Pers Com-
mun 112 (2020), 555-570.

26. K. Kalkan, S. Zeadally. Securing Internet of things with
software defined network-ing. IEEE Comm. Magazine,
Sept. 2018, 186-192.

27. K. Karmakar, V. Varadharajan, S. Nepal, U. Tupakula.
SDN Enabled Secure IoT Ar-chitecture. IFIP/IEEE Sym-
posium on Integrated Network and Service Manage-ment
(IM), Arlington, VA, USA (2019), 581-585.

28. R. Kubo, T. Fujita, Y. Agawa, H. Suzuki. Ryu SDN
Framework— Open-source SDN Platform Software.
NTT Technical Review,12 (8) (2014) .

29. C. E. Landwehr. Privacy research directions. Comm.
ACM 59(2) (2016) 29-31.

30. Y. Liu, Y. Kuang, Y. Xiao and G. Xu, SDN-Based Data
Transfer Security for Internet of Things. In IEEE Internet
of Things Journal, 5(1), 257-268 (2018).

31. L. Logrippo. Multi-level models for data security in net-
works and in the Internet of things. Journal of Informa-
tion Security and Applications 58 (2021).

32. L. Logrippo, A.Stambouli. Configuring data flows in
the Internet of Things for se-curity and privacy require-
ments. Presented at the 11th International Symposium
on Foundations and Practice of Security. Montreal, 2018.
Springer LNCS 11358,115-130.

33. A. Mamdouh, K. Almustafa, K. Amjad Meerja. Cloud
based SDN and NFV architec-tures for IoT infrastruc-
ture. Egyptian Informatics Journal 20 (2019), 1-10.

34. S. Ola, E. Imad, K. Ayman, C.Ali. SDN controllers: A
comparative study. 18th Medi-terranean Electrotechnical
Conference (MELECON 2016), 1-6.

35. K. Prabhakar, N. Jisha, A. Krishnashree. SDN Frame-
work for Securing IoT Net-works. Ubiquitous Commu-
nications and Network Computing (2017), 116-129.

36. C. Qiang, G. Quan, B.Yu, L. Yang. Research on security
issues of the Internet of Things. International Journal of
Future Communication and Networking, 6 (6) (2013), 1-
10.

37. Z. Qin, G. Denker, C. Giannelli, P. Bellavista and N.
Venkatasubramanian. A Soft-ware Defined Networking

architecture for the Internet-of-Things. IEEE Network
Operations and Management Symposium (NOMS 2014).

38. B. Quinn, F. Mehmeti, R. George; K. Ostrowski, T.
Jaeger, T. La Porta, P. McDaniel. Enforcing Multilevel
Security Policies in Unstable Networks. IEEE Transac-
tions on Network and Service Management (2022).

39. W.Roy, S. Bill, J. Scott. Enabling the Internet of Things.
Computer (48) (2014), 28-35.

40. A. Saleh, G. Bhargavi, S. Mohammed. Ryu controller’s
scalability experiment on software defined networks,
IEEE International Conference on Current Trends in Ad-
vanced Computing (ICCTAC 2018),1-5.

41. R.S. Sandhu. Lattice-based access control models.
IEEE Computer 26(11), 1993, 9-19.

42. J. Singh, T. Pasquier, and J. Bacon. Securing Tags to
Control Information Flows within the Internet of Things.
in International Conference on Recent Advances in Inter-
net of Things (RIoT’15), 2015.

43. B. Smriti, R. S. Sandhu. ABAC-CC: Attribute-Based
Access Control and Communi-cation Control for Internet
of Things. ACM Symposium on Access Control Models
and Technologies (SACMAT) (2020), 203-212.

44. A. Stambouli. Data Security In Organizational Net-
works And The Internet of Things, Using a Partial Order
Model. PhD thesis, Université du Québec en Outaouais,
fall 2021.

45. A. Stambouli, L.Logrippo. Data flow analysis from ca-
pability lists, with applica-tion to RBAC. Information
Processing Letters (Elsevier) 141 (2019) 30—40.

46. H. Suo, J. Wan, C. Zuo, J. Liu. Security in the Internet
of things: a review. 2012 In-tern. Conf. on Computer Sc.
and Electr. Engg., IEEE, 648-51.

47. Wang, X. Mei, J. Croft, M. Caesar, B. Godfrey. Ravel:
A database-defined network, Proceedings of the Sympo-
sium on SDN Research (2016), 1-7.

48. D. Wu, D. 1. Arkhipov, E. Asmare, Z. Qin, J. A.
Mccann.UbiFlow: Mobility manage-ment in urban-scale
software defined 1oT. IEEE Conference on Computer
Com-munications (INFOCOM 2015).

49. R. Xie, H. Li, G.Shi ,Y.Guo B.Niu, M.Su .Provenance-
based data flow control mecha-nism for Internet of
things. Transactions on Emerging Telecommunications
Technologies (2020).

50. M. Yassein, S. Aljawarneh, M. Al-Rousan, W. Mar-
dini ,W. Al-Rashdan, Combined software-defined net-
work (SDN) and Internet of Things (IoT), International
Conference on Electrical and Computing Technologies
and Applications (ICECTA 2017), 1-6.

51. S. Zhang. An Overview of Network Slicing for
5G.IEEE Wireless Communications, 26(3), 111-117,
2019.

	Introduction
	SDN: Software defined networking
	Related work
	Preliminaries
	Our implementation method
	Example
	Network transformations: creating, removing and moving entities
	Networks with multiple flows
	Simulation and implementation of the controller
	Efficiency and scalability
	Conclusion
	Acknowledgment
	Compliance with ethical standards

