
Risk Management in Dynamic Role Based Access Control Systems

J. Ma†, K. Adi†, L. Logrippo†, Serge Mankovski‡,

† Department of Computer Science and Engineering
Universit́e du Qúebec en Outaouais

Québec, Canada.
‡ CA Labs, 125 Commerce Valley DR W, Thornhill ON, Canada.

Email: {ji.ma, kamel.adi,luigi}@uqo.ca, Serge.Mankovskii@ca.com

Abstract—We present a risk management framework
which allows to reason about and manage risk for role
based access control systems. The framework expresses
essential characteristics of risk management in dynamic
environments, and can be used for assessing risk and
decision making; it is flexible, and able to handle
different access control requirements. This framework
provides a basis for designing and implementation of
access control systems.

Keywords: Risk management, dynamic, RBAC, access
control, framework.

I. I NTRODUCTION

Access control systems are entrusted with the task
of determining whether specific requests to access data
or resources should be permitted. Normally such deci-
sions are taken with consideration of risks involved.
It is often considered risky to allow data access to
untrusted parties, and so access may be denied to them.
In role based access control systems, access decisions
especially depend on the roles of individual users. For
example, a user with role “accountant” normally has
different access rights than a user with role “manager”.
The process of assigning roles is usually based on a
thorough analysis of risks. Further, as risk perceptions
change in time, access control policies may also change
dynamically. In this paper, we intend to investigate risk
management methods and techniques for role based
access control systems in dynamic environments.

Current research considers many approaches for the
specification and verification of risk management sys-
tems. Some related research can be seen on Fault Tree
Analysis (FTA) [16], Event Tree analysis (ETA) [10],

Probabilistic Risk Assessment (PRA) [15], Failure
Mode and Effects Analysis (FMEA) [9] etc. However,
since these approaches generally restrict the notion
of risk management to static environments, there is
a need for building trustworthy systems in dynamic
environments. This is also a motivation of our work in
this paper.

Trust is an important issue for role based access
control systems, and it changes dynamically. However,
there are only few papers that discuss the dynamics of
trust. Jonker and Treur [11] proposed two functions,
trust evolution functionand trust update function.
Dimmock et al. [7] discussed how to extend existing
access control architectures to incorporate trust-based
evaluation and reasoning. Bhargavaet al. [2] proposed
an approach enhancing role-based access control with
trust ratings. Asnaret al. [1] proposed an approach to
assess risk on the basis of trust relations among actors.
Based on the method proposed in [13], if we formalise
polices to establish a theory for a given RBAC system,
then this theory can be used for the system in access
decision making.

Access control models need to handle many different
scenarios in many different systems, where security
requirements, contexts and environments can be highly
dynamic. Therefore, systems that rely on a large
amount of assumed knowledge or pre-configuration are
unnecessary and inflexible. Generic methods and tech-
niques for handling various access control scenarios are
highly desirable. In RBAC systems, users hold certain
roles, and may or may not be allowed to access the
objects requested and take actions on these objects.
For any access request, the access control system must
know: which object is requested and what action may

be applied by the user on the object. In our method,
an access permission is defined as a pair consisting
of an action and an object; a role is assigned a set
of permissions. The first contribution of this paper
is to provide a formalisation of RBAC systems. This
formalisation allows us to reason about RBAC systems.

The second contribution of this paper is to provide a
risk management framework for RBAC systems. This
framework includes: decision and enforcement func-
tions, and policy revision in dynamic environments.
We also discuss the correctness of the framework.

The rest of this paper is organized as follows.
Section 2 discusses dynamic role based access control
model. Section 3 proposes a risk management frame-
work for dynamic access control systems. Section 4
discusses policy management and, especially, presents
a policy revision example. Section 5 concludes this
paper and discusses further works.

II. ROLE BASED ACCESSCONTROL MODEL

Mandatory access control(MAC) and discretionary
access control(DAC) are traditional techniques for re-
stricting system access to authorised users. Nowadays a
new alternative approach to access control, calledrole
based access control(RBAC), is widely discussed and
applied to computer security.

Definition 1 (RBAC Model). A Role Based Access
Control(RBAC) system is a 6-tuple,

M = 〈U ,R,O,A,P,AR〉,

where

- U : a set of subjects or users,
- R: a set of roles,
- O: a set of objects,
- A: a set of actions,
- P: a set of permissions,P ⊆ A×O, and
- AR: assignment relations.

The set of assignment relations,AR, includes the
following relations:

- RA: role assignment relation,RA ⊆ U ×R, and
- PA: permission assignment relation,PA ⊆ R×
P.

With the definition above, in the RBAC system a user
may hold one or more roles and a role may possess
one or more permissions.

With RBAC systems, as we said before, for security
considerations the system may not trust anyone, but it
trusts:

• those facts that come from system configuration
(i.e., role assignment, permission assignment, etc.
in our model), and

• access control policies, which are precisely spec-
ified and verified.

The basic aim of our approach is to establish a theory.
The system can then reason with this theory for de-
cision making. Since the system changes dynamically,
the theory may also need to be revised when the system
changes.

We will see that our model is appropriate for the for-
malisation of policies. It can also help system designers
to capture the requirements for a given access control
systems at the implementation stage. In the following
we present the method for formalizing access control
policies through an example.

Definition 2 (Access State). An access state for a given
RBAC system is a particular assignment of the model.

As an example, with a financial system, we assume
that, at the initial state, denotedS0, the formal assign-
ment of the model is given as follow:

U = {bob, lisa, tom},
R = {manager, admin, clerk},
O = {records, loans, . . .},
A = {read, modify, approve, . . .},
P = {(read, records), (modify, records), . . .},
AR = {RA, PA},

where

RA =







(bob, manager),
(lisa, admin),
(tom, clerk)







PA =















(manager, (read, records)),
(admin, (modify, records)),
(manager, (approve, loans)),
(clerk, (read, records))















In order to specify the access control system, we
define the following basic predicates:

• holds(U, R): UserU holds roleR,
• possesses(R, A, O): Role R possesses permis-

sion (A, O).
• permitted(U, A, O): UserU is permitted to per-

form actionA on objectO.

• can access(U, O): UserU can access objectO.
• is user(X): X is a user.

The first and second predicates correspond to the
assignment relationsRA and PA, respectively, in
the model. In fact, we can directly define the two
predicates as:holds(U, R) iff (U, R) ∈ RA and
possesses(R, A, O) iff (R, (A, O)) ∈ PA. The pred-
icate can access is like the predicatepermitted,
except that actions involved are not considered.

In our discussion, we also need several auxiliary
predicates given as follows:

• is in(U, Dept): User U is in the department
Dept.

• can modify(U, O): User U can modify object
O.

• can approve(U, P): UserU can approveP .
• can delegate(U1, U2, A, O): User U1 can dele-

gate userU2 to performA on O.
• can co approve(U1, U2, P): User U1 and user

U2 can co-approveP .

Note that the second and third predicates are only
specific cases of predicatepermitted(U, A, O). We
define:

can modify(U, O) ≡ permitted(U, modify, O),
can approve(U, P) ≡ permitted(U, approve, P).

In the initial access state (S0) defined above, the
following facts hold:

F1. holds(bob, manager).
F2. holds(lisa, admin).
F3. holds(tom, clerk).
F4. possesses(manager, approve, loans).
F5. possesses(admin, modify, records).
F6. possesses(manager, read, records).

In other words, at the access stateS0, F1 - F6 are all
true. We denote this set of facts byF :

F = {F1, F2, F3, F4, F5, F6}.

Thus, these facts will be trusted by the system unless
the state changes.

Definition 3 (Access Policy). An access policy is in
the following form:

permitted(U, A, O) ↔ C1 ∧ . . . ∧ Cn,

whereU ∈ U and (A, O) ∈ P. It is read as “UserU
is permitted to perform actionA on objectO if and
only if conditionsC1 throughCn hold”.

Definition 4 (Policy Set). A Policy Set for a given
system is the formal representation of the access con-
trol mechanisms of the system, where each policy is
formally represented with a logical formula as shown
in Definition 3.

For the financial system, we consider the following
policies:

Policy 1 (Access). Object “records” can be accessed
only by users with associated roles.

The access policy can be formalised as:

P1. holds(U, R) ∧ possesses(R, A, records)
↔ can access(U, records).

Policy 2 (Modification). The financial system allows
administrators only to modify “records”.

The modification policy can be formalised as:

P2. holds(U, admin) ↔ can modify(U, record).

Policy 3 (Loan). The financial system allows only
managers to approve loans.

The loan policy can be formalised as:

P3. holds(U, manager) ↔ can approve(U, loan).

Policy 4 (Delegation). A user can delegate an autho-
rization to another user if and only if the user is permit-
ted to perform the action on the object corresponding
to the delegation.

The delegation policy can be formalised as:

P4. is user(U1) ∧ is user(U2) ∧ possesses(U1, A, O)
↔ can delegate(U1, U2, A, O).

Policy 5 (Co-approval). A “contract” must be ap-
proved by two users coming from different departments.

The co-approval policy can be formalised as:

P5. is in(U1, D1) ∧ is in(U2, D2) ∧ D1 6= D2

↔ can co approve(U1, U2, contract).

Thus, we have established a policy set for the
financial system that includes five policies.

PS = {P1, P2, P3, P4, P5}.

The policy set provides a foundation for reasoning
about the security properties of the system. For exam-
ple, based onPS with the facts inF , we can prove that
“Lisa can modify the records′′. The logical proof
outline is given as follows:

Example 1 (Policy Proof).

(1) holds(lisa, admin). (F2)
(2) holds(X, admin) ↔ can modify(X, record). (P2)
(3) holds(lisa, admin) ↔ can modify(lisa, record).

(from (1),(2), by Variable instantiation)
(4) can modify(lisa, record).

(from (1), (3), by↔ elimination)
2

III. R ISK MANAGEMENT FRAMEWORK

The purpose of managing risks is to minimise,
monitor, and control the probability of unfortunate
events. Risk for a system may come from a variety
of reasons. However, for RBAC systems, two major
aspects that may cause risks are:

• Access control policies are not correctly imple-
mented, and

• Policies are not updated in time when access state
is changed.

In the following, we discuss risk management, focusing
on the methods and techniques applied for policy
implementation and revision.

Figure 1 presents a generic risk management frame-
work for access control systems. There are six compo-
nents that are usually involved in a given request:

- User: in access control systems, a user needs a
permission to access a resource.

- Object: an accessible resource.
- Access control enforcement point: controls

access based on decision function.
- Access control decision point: makes decisions

based on policies and risk analysis.
- Policy set: specifies access control mechanisms.
- Database: provides information for risk analysis.

Definition 5 (Risk Management Framework). The Risk
Management Framework for a given RBAC system is
a six tuple:

〈U ,O,PS,DF , EF ,D〉,

whereU is a set of users,O is a set of objects,PS is
a set of access control policies of the system,DF is a

Decision

Policy Enforcement Point

Policy Decision Point

User Object

Policy Set Database

Request

Figure 1. Generic risk management framework

set of access decision functions,EF is a set of policy
enforcement functions,D is a database that contains
necessary information for decision making.

We call 〈U ,O,PS,DF , EF ,D〉 a dynamic risk
management framework, since the access control pol-
icy set as well as other components of the framework
may change over time. It manages RBAC systems, for
which the access state changes dynamically.

Within this framework, we have to mention the
following aspects:

(1) A useru ∈ U could be a single user or a group
of users acting as a single user.

(2) For any object o ∈ O, there is a set
of services servo = {servo

1, . . . , serv
o
n} that

it provides. For example, an ATM machine
provides a set of services:servATM =
{balance checking, deposit, withdraw}.

(3) A request is in the form:(u, servo
i), and for any

access request(u, servo
i), there is a data setdo ∈

D used for decision making that relates to object
o. For example, for a home loan approval, a bank
may consider the applicant’s occupation, annual
income, and the amount he wants to borrow, all
these factors form a data set for risk analysis.

(4) for any request(u, servo
i), there is a policypo ∈

PS that relates to objecto.
(5) for any request(u, servo

i), there is a decision
function dfo ∈ DF that relates to objecto,

(6) for any request(u, servo
i), there is a policy en-

forcement functionefo ∈ EF that relates to object
o.

Definition 6 (Risk Analysis Data Set). For any access
request, there is a data set that is used for risk analysis.

do = {do
1, . . . , d

o
n}.

Definition 7 (Access Decision Function). Given an
objecto ∈ O, let servo be the set of all services that
object o provides. Then, the access control decision
function related to objecto, denoted bydfo, is a
mapping of the form:

dfo : U × Servo
po(do)
−→ D,

where U × servo is the request set, any pair
(u, servo

i) ∈ U × servo is a request.po and do are
the access control policy and risk analysis data set,
respectively, related to objecto. D = {permit, deny}
is called thedecision set.

We assume that, ifdfo(u, servo
i) = 1, then the

request(u, servo
i) is accepted, otherwise it is refused.

dfo(u, servo
i) =

{

0, if c1 ∧ ... ∧ cn = ⊥.

1, if c1 ∧ ... ∧ cn = ⊤.

Herec1, ..., cn are conditions of the policy that relates
to the request(u, servo

i).

Definition 8 (Policy Enforcement Function). Given an
objecto ∈ O, the enforcement function associated with
o, denoted byefo, is a mapping of the form:

efo : U × Servo
dfo

−→ D → E ,

wheredfo is the decision function,D is the decision
set defined as above, andE is the execution set, which
consists of all actions that the system may take.

After the decision is taken, an executione will start,
e consist of a sequence of activities that the system
will take, that is,e = {a1, . . . , ai}, (1 ≤ i ≤ n).

Suppose that for loan approval, the system con-
siders three factors: the applicant’s identity, the ap-
plicant’s reputation, and the amount he wants to
borrow. The risk analysis data set isdloan =
(identity, reputation, amount). We assumeidentity

has two possible states,verified(1) andunverified(0);
reputation has two states,satisfied(1), andunsatisfied
(0); andamount has two states,satisfied(1) andexcess
(0). For example, if Alice wants to borrow$10, 000,
her identity is verified, her reputation is satisfied, but
the amount is excess.

In this case, the policy decision function returns a
false value:

dfloan(Alice, loan$10, 000) = 0.

And the policy enforcement functionefloan starts
the sequence of activities corresponding to the deny
decision:
efloan(Alice, loan$10, 000) =

{deny notification, record, termination}.

IV. POLICY MANAGEMENT

Blaze et al. [3] first identified the system manage-
ment problem as a distinct and important component
of agent systems. Further discussion of system man-
agement engines, including PolicyMaker and KeyNote,
has appeared in their continuing work [4], [5].

We consider policy management as the basis of
access control management. The security of the system
is based on how the policies work in real situations.
Systems usually operate in dynamic environments.
Policies need to be timely updated.

Considering policy management, we need to note
the following points:

• Access control systems change dynamically. A
state changeof the system causes a transition
from the current access stateS to the new state
(next) S′. A state change could be related to
components of the system model, such as “adding
a user”, “deleting a user”, “designing a new role”
etc.

• Corresponding to a state change, there could be
a policy change. For example, when the system
adds a new role, it should have a new policy or
modify an existing policy for the new role.

• A policy changewill cause a corresponding tran-
sition from the current policy setPS to a new
policy setPS ′.

In the following, we use an example to show how to
revise the policy set when the access state of a RBAC
system changes.

Example 2 (Policy Revision). Recall the financial
system. Assume that a new employee, Emma, arrives.
Currently the system only allows administrators to
modify financial records. Suppose that, after Emma
arrives, the system adds a new role “adminassist”
(administrator assistant), and Emma is assigned this
role. The system also allows administrator assistants to
modify financial records. Then, we have the new access
stateS′, where the state changes are underlined.

U = {bob, lisa, tom, emma},
R = {manager, admin, clerk, admin assist},

O = {records, loans, ...},
A = {create, read, write, delete, ...},
P = {(read, records), (modify, records), . . .},
AR = {RA, PA},

where

RA =















(bob, manager),
(lisa, admin),
(tom, clerk),
(emma, admin assist)















PA =























(manager, (read, records)),
(admin, (modify, records)),
(admin assist, (modify, records)),

(manager, (approve, loans)),
(clerk, (read, records))























Within the new access state of the financial system, we
have the following new facts:

F7.holds(emma, admin assist).
F8.possesses(emma, modify, records).

Thus, we have:

F ′ = {F1, F2, F3, F4, F5, F6, R7, F8}.

Based on the state change, we need to modify the
policy P2:

P2′.holds(U, admin) ∨ holds(U, admin assist)
↔ can modify(U, record).

A policy changeto a given policy setPS can be
viewed as consisting of one of the following two types
of activities:

• adding a policy toPS, and
• retracting a policy fromPS.

With this view, in the above example we first retract
the policy P2 fromPS, then add the policy P2′ to the
policy set and obtain the new policy setPS ′.

Using the notation proposed in [13] for theory
revision, we define apolicy change as a sequence
of formulas with the signs⊕ or ⊖, regarded as the
operationsaddition and retraction, respectively. Thus,
if ⊕pi is in the sequence, then the change contains the
activity of addingpi to PS (i.e.,PS∪{pi}); and if⊖pi

is in the sequence, then the change contains the activity
of retractingpi from PS, (i.e.,PS \ {pi}). Formally,
we have

Definition 9. A policy change, ∆, to a given policy
setPS is a sequence having the following form:

∆ = 〈∗1p1, . . . , ∗npn〉

where each∗i is ⊕ or ⊖, p1, . . . , pn are formulas
representing single policies. If∗i is ⊖, thenpi ∈ PS;
and if ∗1 is ⊕, thenpi 6∈ PS.

With policy revision, we do as follows: letp be a
policy andPS be a policy set, then

• WhenPS 6⊢ p, i.e., p does not belong toPS, we
may addp to PS to obtain a new policy setPS ′,
such thatPS ′ = PS ⊕ p andPS ′ ⊢ p.

• WhenPS ⊢ p, i.e., the policyp is in PS, we may
retractp from PS to form a new policy setPS ′,
such thatPS ′ = PS ⊖ p andPS ′ 6⊢ p.

Thus, let∆ = 〈∗1p1, . . . , ∗npn〉 be a policy change to
the policy setPS, then the new policy setPS ′ can be
expressed with the following formula:

PS ′ = PS ∗1 p1, . . . , ∗npn.

In our example, the policy change is〈⊖P2,⊕P2′〉.
Therefore,PS ′ = PS \ P2 ∪ P2′. That is, we have

PS ′ = {P1, P2′, P3, P4, P5}.

The new policy setPS ′ is obtained from the new
access stateS′.

In the process of forming or revising the policy
set for a given RBAC system, it is important to
guarantee (1) policy consistency, i.e., a new rule must
be consistent with those policies that are already in the
policy set; and (2) policy completeness, i.e., a required
policy can be derived from the policy set for any access
request. Formally, we say that:

• Policy setPS is consistent if PS 6|= ⊥, that is,
there is no contradiction derived fromPS.

• Policy setPS is complete if any policyp required
for the system is included inPS, i.e., we have
PS ⊢ p.

Another important issue is the correctness of policy
implementation, which is based on the risk manage-
ment framework. We have

Definition 10. Let Γ = 〈U ,O,PS,DF , EF ,D〉 be a
risk management framework for a given RBAC system.
We say that the policy implementation of the system
based on the framework is correct, if for anyu ∈ U
and anyo ∈ O, we have

Γ |= permitted(u, so
i) ↔ C1 ∧ . . . ∧ Cn,

where so
i is a service that objecto provides, and

C1, . . . , Cn are the conditions in the policy rule
permitted(u, so

i) ↔ C1 ∧ . . . ∧ Cn.

In the risk management framework, for access de-
cision function, for anyo ∈ O, there is a set,so,
that contains all serviceso can provide. Further, for
any serviceso

i there is a policypo expressed as
permitted(u, so

i) ↔ C1 ∧ . . . ∧ Cn. For any access
request, there is a data set,do = (do

1, . . . , d
o
n), that

must be considered when making decisions for access
requests.

dfo(u, so
i)(vo) =

{

deny : iff c1 ∧ ... ∧ cn = ⊥.

permit : iff c1 ∧ ... ∧ cn = ⊤.

Based on this definition, ifC1 ∧ . . . ∧ Cn = ⊥, the
decision isdeny. If C1 ∧ . . .∧Cn = ⊤, the decision is
permit.

Similarly, the access enforcement function is defined
as:

efo(u, so
i)(dfo) =

{

ed : iff dfo = deny.

ep : iff dfo = permit.

Here ed is the execution set corre-
sponding to the deny decision, such as
{deny notification, record, termination}. And
ep is the execution set corresponding to the permit
decision, such as{permit notification, ...}.

Based on the definition of decision and enforcement
functions, the risk management satisfies the correctness
of policy implementation.

V. CONCLUSION

In this paper, we have presented a dynamic risk
management framework (DRMF) for access control
systems. It expresses the essential characteristics of
access control systems. This framework is highly desir-
able for handling access control scenarios in dynamic
environments.

There are no existing general and systematic tech-
niques or tools for risk analysis in access control
policies. Therefore the methods and techniques pro-
posed in this paper have potential to be applicable in
many diverse applications, such as E-commerce, web
services, and service oriented systems.

Future work includes the implementation of dynamic
management of access control systems. It is important
to investigate the associated security mechanisms to
achieve the required security goals. The threats and at-
tacks to access control systems will also be considered.

There are several methods and techniques for belief
revision that could be helpful for policy revision.

We plan to investigate a variety of belief revision
techniques [6], [12], [14] that can be applied for
the revision of trust theories. The controlled revision
approach of Gabbay et al. [8] may be particularly
useful for practical applications.

ACKNOWLEDGEMENT

This research has been funded in part by grants
from PROMPT Qúebec and from CA Labs, Canada.
The authors would like to thank Dr. Hemanth Khamb-
hammettu and Dr. Riaz Ahmed Shaikh for their useful
comments and suggestions.

REFERENCES

[1] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone.
From trust to dependability through risk analysis. In
ARES, pages 19–26, 2007.

[2] B. K. Bhargava and L. Lilien. Vulnerabilities and
threats in distributed systems. InICDCIT, pages 146–
157, 2004.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. InProceedings of the 1996 IEEE
Computer Society Symposium on research in Security
and Privacy, pages 164–173, 1996.

[4] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance
checking in the policymaker trust management system.
In Financial Cryptography, pages 254–274, 1998.

[5] M. Blaze, J. Ioannidis, and A. D. Keromytis. Ex-
perience with the keynote trust management system:
Applications and future directions. IniTrust, pages
284–300, 2003.

[6] M. R. Cravo and J. P. Martins. A practical system for
defeasible reasoning and belief revision. InECSQARU,
pages 65–72, 1993.

[7] N. Dimmock, A. Belokosztolszki, D. M. Eyers, J. Ba-
con, and K. Moody. Using trust and risk in role-based
access control policies. InSACMAT, pages 156–162,
2004.

[8] D. Gabbay, G. Pigozzi, and J. Woods. Controlled
revision - an algorithmic approach for belief revision.
Journal of Logic and Computation, 13(1):3–22, 2003.

[9] L. Grunske, R. Colvin, and K. Winter. Probabilistic
model-checking support for FMEA. InQEST, pages
119–128, 2007.

[10] D. Huang, T. Chen, and M. J. Wang. A fuzzy set
approach for event tree analysis.Fuzzy Sets and
Systems, 118(1):153–165, 2001.

[11] C. M. Jonker and J. Treur. Formal analysis of models
for the dynamics of trust based on experiences. In
Proceedings of Multi-Agent System Engineering’99,
volume 1647 ofLNAI, pages 221–231. Springer, 1999.

[12] V. Kessler and H. Neumann. A sound logic for
analysing electronic commerce protocols. InProceed-
ings of the ESORICS’98, pages 345–360, 1998.

[13] J. Ma and M. A. Orgun. Trust management and trust
theory revision. IEEE Transactions on Systems, Man
and Cybernetics, Part A, 36(3):451–460, 2006.

[14] M. Mazzieri and A. F. Dragoni. Ontology revision as
non-prioritized belief revision. InESOE, pages 58–69,
2007.

[15] H. Nejad, D. Zhu, and A. Mosleh. Hierarchical plan-
ning and multi-level scheduling for simulation-based
probabilistic risk assessment. InWinter Simulation
Conference, pages 1189–1197, 2007.

[16] H. Sun, M. Hauptman, and R. R. Lutz. Integrating
product-line fault tree analysis into aadl models. In
HASE, pages 15–22, 2007.

