
Typing for Conflict Detection in Access Control
Policies

Kamel Adi1, Yacine Bouzida1, Ikhlass Hattak1, Luigi Logrippo1 and Serge
Mankovskii2

1 Security Research Laboratory
Computer Science and Engineering Department

Université du Québec en Outaouais, Québec, Canada
2 CA Labs

125 Commerce Valley DR W
Thornill ON, L3T 7W4, Canada

Abstract. In this paper we present an access control model that con-
siders both abstract and concrete access control policies specifications.
Permissions and prohibitions are expressed within this model with con-
textual conditions. This situation may lead to conflicts. We propose a
type system that is applied to the different rules in order to check for
inconsistencies. If a resource is well typed, it is guaranteed that access
rules to the resource contain no conflicts.

1 Introduction

Most current access control models use authorizations to express the ability of a
subject to perform an action on an object. In their basic form, authorizations are
expressed with sets of triples, called rules, of the form 〈subject, action, object〉
meaning that a certain subject (user, process) is permitted to perform an action
(an available operation) over an object (a resource in the target system). Such
rules are grouped to form policies. Additional flexibility can be obtained by com-
bining prohibitions (negative authorizations) with permissions. Also, in addition
to concrete rules involving specific subjects, actions, and objects, it should be
possible to specify abstract rules defined on classes of such entities. Flexibility
can be further increased by making the application of rules conditional to pred-
icates on contextual information (e.g. a rule is active at certain times only). The
Security Officers (SOs) can then express general positive contextual authoriza-
tions and then add prohibitions to express exceptions. For instance, nurses can
be authorized to consult medical records except those corresponding to emer-
gency situations. We note that some access control models, such as RBAC [16],
can express only positive authorizations while others, such as OrBAC [1], can
express both positive and negative authorizations.

Complex sets of security policies can contain conflicts, since such sets can
consist of thousands of rules that SOs can change over time. Conflicts can result
in situations where a rule allows access, while another rule denies it. Sets of
policies can contain conflict resolution strategies, on which there is considerable



2 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

research [4, 5, 8, 12]. However, such strategies are not guaranteed to capture
the intentions of the SO. Consider the following scenario: in a hospital, “deny
override” is the default conflict resolution strategy for the access control system.
At the beginning, the SO introduces a rule by which a doctor cannot read the
medical record of patients that are not in the doctor’s ward. One year later, the
SO introduces a rule that allows access of doctors on night duty to the medical
records of all patients in the hospital, but she forgets to amend the earlier rule.
Because of “deny override”, the later permission will be ignored by the system.

This example shows the need for “Policy Assistants” that interact with the
SO when the policy set is modified. The Assistant would detect and signal in-
consistencies at the time they are being created, and would prompt the Security
Officer for manual resolution according to her intentions. In our example, an
obvious resolution is the removal of the earlier rule. Work in this paper is meant
to be a contribution towards the creation of such assistants.

Techniques for conflict detection have been less studied than techniques for
conflict resolution. In [14] a graph-based approach has been used to resolve con-
flicts in context-aware access control policies. In [13], authors specify polycies in
a graph-based specification formalism and use formal properties of graph trans-
formations to detect inconsistencies between access control rules. Furthermore,
interesting methods and principles have been used for conflicts detection in fire-
wall rules [2, 3, 6, 7, 10, 15].

We investigate the conflict detection problem in a fairly general model taking
into account different access control specification properties including abstract
rules, and positive and negative authorizations as well as context expressions.
We define a type system that enables us to check the specified access control
rules for consistency.

The remaining of the paper is organized as follows. Section 2 describes a
model for access control policies at different levels of abstraction specified with
context expressions. A first order logic is used to express the security policy of
the model, which handles abstract and concrete access control policies. Section
3 presents a method to generate dynamic groups according to the specified con-
texts. The dynamic groups are used as input to a typing system for conflict
detection. Further, a typing system is presented, that is capable of detecting all
conflicts. Section 4 presents concrete examples that consider policy specifications
within the healthcare sector. Finally, Section 5 concludes the paper and provides
suggestions for further work.

2 Access control policies with contexts

The main goal of access control policies consists in specifying the authoriza-
tions (permissions and prohibitions) that regulate the different actions that may
be performed by subjects on objects. These authorizations may be expressed
using first-order logic formulas. For instance, the predicate permission(s, a, o)
(resp. prohibition(s, a, o)) expresses a fact meaning that a subject s is per-
mitted (resp. prohibited) to perform action a on object o, while predicate



Typing for Conflict Detection in Access Control Policies 3

permission(doctor, read,medical record) means that any doctor may read any
medical record. The need for additional expressiveness, as discussed in the in-
troduction, leads to a rule-based language such as the one that was proposed in
[9, 11, 12], where each authorization may be expressed as follows:

∀s ∈ S,∀a ∈ A,∀o ∈ O, (Condition)→ authorization(s, a, o)

where authorization may be a permission (resp. prohibition), S is a set of sub-
jects, A a set of actions and O a set of objects. We note that we consider a
positive or a negative authorization as a authorization in our specification.

The above rule means that for any subject s, action a and object o, if the
provided condition is satisfied, then subject s is permitted (resp. prohibited) to
perform action a on object o. Notice that prohibition is the negation of permis-
sion; i.e. ¬permission(s, a, o) def= prohibition(s, a, o) meaning that the fact that
a subject s is not permitted to perform action a on object o is equivalent to the
fact that subject s is prohibited to perfom action a on object o.

We can have different types of constraints, since they can involve subjects,
actions, objects and various combinations of them. These constraints should be
satisfied for applying the authorization. Each constraint is expressed as a logical
expression. For instance, the following rule:

R : doctor(s) ∧medical record(o) ∧ identity patient(o, p)∧
different ward(s, p)→ prohibition(s, read, o)

states that a doctor is not allowed to read a medical record of a patient if
she/he is not in the same ward. In this example, we have (1) a subject con-
straint corresponding to the predicate doctor(s), meaning that subject s is a doc-
tor, (2) an object constraint corresponding to the predicate medical record(o)
meaning that object o is a medical record and (3) a subject-action-object con-
straint defined as follows: identity patient(o, p) ∧ different ward(s, p), where
(a) identity patient(o, p) is an application dependent predicate saying that ob-
ject o is a medical record corresponding to patient p and (b) different ward(s, p)
is an application dependent predicate stating that subject s and patient p are
located in different wards.

While there are different models to express policies such as RBAC [16], Or-
BAC [1] etc., we focus our work on a new model that we call CA-BAC (Concrete
and Abstract Based Access Control). This model specifies access control policies
by considering two levels and is thus more expressive than others in common
use. The first level is abstract and the second is concrete. In addition to this, we
introduce within our model the notion of dynamic user groups, which make the
specification more flexible for expressing high level access control policies. In the
following, we briefly discuss the proposed CA-BAC model.

2.1 Expressing high level access control rules

Constraints over subjects, actions and objects are specified by means of the
following predicates:



4 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

− U group is a predicate defined over the domains S ×UG, where S is a set
of subjects and UG a set of user groups. If s is a subject and ug a user group,
then U group(s, ug) means that subject s is assigned to user group ug.

− A group is a predicate defined over domains A × AG, where A is a set
of actions and AG a set of activity groups. If a is an action and ag an activ-
ity group, then A group(a, ag) means that action a is assigned to activity group
ag.

− V group is a predicate defined over domains O × V G, where O is a set of
objects and V G a set of view groups. If o is an object and vg a view group, then
V group(o, vg) means that object o is assigned to view group vg.

Constraints that combine subjects, actions, and objects are modeled using
the notion of context. We note that our definition of the context is quite similar
to that of the OrBAC model [1]. From now on, the context will be specified using
the predicate Occurs that is defined as follows:

− Occurs is a predicate that is defined over S × A × O × C, where C is a
set of contexts. If s is a subject, a an action, o an object and c a context then
Occurs(s, a, o, c) specifies that context c is satisfied for subject s, action a and
object o.

The conditions that should be satisfied in order to relate a context to a
subject, action and object are expressed using logical rules. Section 2.3 presents
different examples for such rules. For instance, a default context is defined when
no condition should be satified to grant the corresponding authorization. This
may be defined as follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O,Occurs(s, a, o, default).

As another example, patient doctor is a context that may be defined as follows1:

∀s ∈ S, ∀a ∈ A,∀o ∈ O,Occurs(s, a, o, patient doctor)← patient(s, o)

The above specification means that context patient doctor is satisfied between
subject s, action a and object o if o is a patient of doctor s.

Policy rules definition As presented in Section 2, each rule is expressed as
follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O, ((Condition)→ authorization(s, a, o))

Using the above expression, Condition corresponds now to the following expres-
sion:
1 Following [12] and the subsequent litterature, we write B ← A to mean that from
A one can infer B.



Typing for Conflict Detection in Access Control Policies 5

U group(s, ug) ∧A group(a, ag) ∧ V group(o, vg) ∧Occurs(s, a, o, context)

As an example, we can specify that “a doctor can prescribe medicine to his pa-
tients” as follows:

U group(s, doctor) ∧A group(a, prescribe) ∧ V group(o, patient)
∧Occurs(s, a, o, patient doctor)→ permitted(s, a, o)

However, we do not express authorizations directly on concrete subjects, ob-
jects and actions for specifying high level access control rules. In fact, we
first specify a authorization (positive or negative authorization) between user
groups, activity groups, view groups and contexts. This high level authorization
is a relation that is defined over domains UG × AG × V G × C. For instance,
Permission(ug, ag, vg, c) means that user group ug is granted the permission to
perform activity group ag on view group vg within context c. For convenience
and for differentiating between high level and concrete level authorizations, we
use the relation Permission for expressing high level permission and permitted
for expressing permission at the concrete level. The same relations are defined
for negative authorizations (using the relation Prohibition).

Using these high level authorizations such as permission (resp. prohibition),
the concrete level authorization permitted (resp. prohibited) is derived from the
permission (resp. prohibition) assigned to user groups, activity groups and view
groups by the relation permission (resp. prohibition). Now, we can specify such
permission2 policies as follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀ug ∈ UG,∀ag ∈ AG,∀vg ∈ V G, ∀c ∈ C
Permission(ug, ag, vg, c) ∧ U group(s, ug) ∧A group(a, ag)∧
V group(o, vg) ∧Occurs(s, a, o, c)
→ permitted(s, a, o)

meaning that subject s is permitted to perform action a over object o if in
context c (1) user group ug is granted the permission to perform activity ag on
view vg, (2) s is assigned to user group ug, (3) a is assigned to activity group
ag, (4) o is assigned to view group vg and (5) context c occurs between s, a and
o.

Dynamic user, activity and view groups When specifying high level poli-
cies, subjects are statically assigned to the predefined user groups. While this is
useful to define static roles as in RBAC [16] or OrBAC [1], some other groups
may be defined dynamically according to specific contexts. For instance, we may
want to specify a rule policy that says that all subjects in the emergency ward
can read all medical records and cannot prescribe medicine to patients. If we
use the above high level security policy specifications, then we have to write as
many high level policies as the number of predefined user groups. A dynamic
2 with the same syntax we derive cocrete prohibitions (denoted by relation prohibited).



6 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

user group is not defined statically but is dynamically activated using a context
defined over the subject. Once the dynamic group is activated, subjects satisfy-
ing the corresponding context are automatically assigned to it. This is modeled
using the predefined predicate Occurs dynamic ugroup.

− Occurs dynamic ugroup is a predicate that is defined over domains S×SC
(where SC is a set of contexts that are defined over domain S). If s is a subject
and sc a context for subject s then Occurs dynamic ugroup(s, sc) specifies that
context sc is satisfied over subject s.

Then the corresponding subject s is implicitly assigned to dynamic user group
dugsc as follows:

U group(s, dugsc)← Occurs dynamic ugroup(s, sc)

We also define two other predicates Occurs dynamic agroup (resp. Occurs
dynamic vgroup) for dynamically activating activity groups (resp. view groups):

− Occurs dynamic agroup is a predicate that is defined over domains A×AC
(where AC is a set of contexts that are defined over domain A). If a is an action
and ac a context over action a then Occurs dynamic agroup(a, ac) specifies that
context ac is satisfied over action a.

The corresponding action a is implicitly assigned to dynamic activity group
dagac as follows:

A group(a, dagac)← Occurs dynamic agroup(a, ac)

−Occurs dynamic vgroup is a predicate that is defined over domainsO×V C
(where OC is a set of contexts that are defined over domain O). If o is an object
and oc a context over object o then Occurs dynamic vgroup(o, oc) specifies that
context oc is satisfied over object o.
The corresponding object o is implicitly assigned to dynamic view group dvgoc

as follows:

V group(o, dvgoc)← Occurs dynamic vgroup(o, oc)

Notice that DUG ⊆ UG (resp. DAG ⊆ AG, DVG ⊆ V G) where DUG is the
set of activated dynamic user groups (resp. DAG is the set of activated dynamic
activity groups, DVG is the set of activated dynamic view groups) and UG the
set of all user groups (i.e. activated dynamic user groups and statically defined
user groups) (resp. AG the set of all activity groups and V G the set of all view
groups).

2.2 Expressing low level access control rules

Low level policies should be defined when there are authorizations that apply
directly to subjects, actions and objects within a context. Of course, it is possible
to define a user group (singleton user group) for which we assign only one subject.



Typing for Conflict Detection in Access Control Policies 7

This solution is not interesting since it renders the model complex with useless
subjects-user groups assignments (resp. actions-activity groups and objects-view
groups). Our model proposes defining low level policies in addition to the high
level ones specified above. Each access control policy rule is expressed as follows:

∀s ∈ S,∀a ∈ A,∀o ∈ O,∀c ∈ C,
Permission(s, a, o, c) ∧Occurs(s, a, o, c)
→ permitted(s, a, o)

2.3 Expressing contexts

The different authorizations apply when the corresponding constraints are sat-
isfied. As we have seen in the previous section, the first three constraints cor-
respond to separate conditions over subject, action and object. However, the
last constraint in the condition part of the rule is expressed as a constraint over
subject, action and object. This constraint corresponds to a set of elementary
contexts that must be satisfied for applying the authorization. Each elementary
context is defined over a subject, action and object. Our model allows specify-
ing different types of contexts such as temporal, spatial, knowledge based and
historical contexts.

− Temporal context that specifies the time constraint that must be sat-
isfied for the subject to be granted with the requested access. To gain access,
the current time should satisfy the temporal context. We consider that we have
a trusted “Clock” that provides us with the accurate time. This clock may be
requested at any time to provide the current time in order to assess the temporal
context of the access control request. Other time values may be obtained from
“Clock”: Time, Weekday, Monthday, Month, Monthweek, Yearweek. Two other
basic functions, over the time set T , are used to express the temporal context:
start time(t) and end time(t) where:

∀s ∈ S,∀a ∈ A,∀o ∈ O
∀t, t′ ∈ T,Occurs(s, a, o, start time(t))← Time(Clock, t′) ∧ t′ ≥ t

∀s ∈ S,∀a ∈ A,∀o ∈ O
∀t, t′ ∈ T,Occurs(s, a, o, end time(t))← Time(Clock, t′) ∧ t′ ≤ t

Using the above defined basic temporal contexts, we can define composed
contexts that can be expressed by using different logical operators. For instance,
let us consider the “visitinghours” context defined in the following security policy
rule. Receptionists can locate patients during visiting hours where the visiting
hours temporal context corresponds to the morning hours from 11h00 to 12h00
and only on the first two Mondays of the month. visitinghours temporal context
is expressed as follows:



8 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

start time(11h00) ∧ end time(12h00)∧
on weekday(monday) ∧ (on monthweek(1) ∨ on monthweek(2))

− Spatial context corresponds to the spatial location constraints of the
subject and object. This context defines the constraint, which depends on the
subject and/or object location, that should be satisfied in order to grant the
access authorization to the requested action. We assume that we have a trusted
GPS system (or an access control system to the building and different places
within the building) that indicates the effective place of the subject or the object.
Many spatial contexts may be defined. For instance, we may define a country,
continent, town, street address, emergency ward of a hospital, etc. as a spatial
context. We use different attributes for this context such as country, town, ward,
street, etc. To specify that a subject s (or object o) is located in emergency ward,
we use the predicate is located to get this information from the GPS object.

A relation that is very useful in a hospital context is the relation specifying
that the doctor and the patient are in the same ward. For example this context
may be used to allow doctors prescribe medication to patients if they are in the
same ward. In this example, are in same ward might be defined as follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O
Occurs(s, a, o, are in same ward)
← in ward(s, w) ∧ in ward(o, w)

where

{
in ward(s, w)← is located(GPS, s, w)
in ward(o, w)← is located(GPS, o, w)

− Knowledge based context that depends on information that may be
provided by the information system. In some circumstances, a request is granted
according to some information stored in the information system database. For
instance, a doctor can operate a patient only if he has at least 19 years of expe-
rience. The corresponding context has 19 years experience may be expressed
as follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O
Occurs(s, a, o, hasmorethan 19 years experience)
← experience(s, years) ∧ years ≥ 19

where experience(s, years) is a basic function that retrieves from the information
system database the number of practice years of subject s.
− Historical context depends on the actions that are already performed.

Some access requests could not be granted unless some actions are performed
before the request is presented. A database logging the different actions (with
the corresponding subjects, objects and timestamps) is used for this goal. For
instance, a doctor cannot operate a patient unless he has already diagnosed him.
The corresponding context has diagnosed may be expressed as follows:



Typing for Conflict Detection in Access Control Policies 9

∀s ∈ S, ∀a ∈ A,∀o ∈ O
Occurs(s, a, o, has diagnosed)
← log(s, diagnose, o)

where log(s, diagnose, o) is a dependent predicate that says that action diagnose
has already been performed by s over o. The different actions that are performed
are stored in an event log database.

Notice that the context types are not limited to the above defined contexts.
Others may be used including the different weather states (hot, cold, tempera-
ture, cloudy, windy, etc.), urgent cases when dealing with accidents in hospitals
or threat context when dealing with intrusions in information systems, etc. Our
objective is not to enumerate all possible contexts but to give an idea of contexts
and how they are expressed for the goal of conflict detection.

2.4 User group, activity group and view group hierarchies

We denote the hierarchy between user groups by using the following predicate
usergroup membership(ug1, ug2) meaning that usergroup ug1 is a sub usergroup
of ug2. Therefore, we get the following authorization inheritance according to the
user group hierarchy:

∀ug ∈ UG,∀ag ∈ AG,∀vg ∈ V G,
usergroup membership(ug1, ug2) ∧ authorization(ug2, ag, vg))
→ authorization(ug1, ag, vg))

Accordingly, we respectively define the activity group and the view group hierar-
chies. The activity group hierarchy is defined using the predicate activitygroup
membership(ag1, ag2) meaning that activity group ag1 is a sub activity of ag2.
The view group hierarchy is defined by using the predicate viewgroup member−
ship(vg1, vg2) meaning that view group vg1 is a sub viewgroup of vg2. The au-
thorization inheritance according to the activity group and view group hierarchy
are as follows:

∀ug ∈ UG,∀ag ∈ AG,∀vg ∈ V G,
activitygroup membership(ag1, ag2) ∧ authorization(ug, ag2, vg))
→ authorization(ug, ag1, vg))

∀ug ∈ UG,∀ag ∈ AG,∀vg ∈ V G,
viewgroup membership(vg1, vg2) ∧ authorization(ug, ag, vg2))
→ authorization(ug, ag, vg1))



10 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

3 Conflict Verification by typing

Access control rules can be checked for several security properties such as con-
sistency, completeness, redundancy, determinism, etc. In the following, we focus
on the consistency property. A set of rules is consistent if no active entity (users
or group of users) has both positive and negative authorizations to access a re-
source. An active entity can receive authorizations explicitly from a rule or from
rules that grant authorizations to a group to which this active entity belongs.
To test this condition, a typing system is introduced which checks that there are
no conflicting rules for any given entity. Our typing system manipulates judg-
ments of the form Γ `UG RG : τ which can be read: in the environment Γ , the
resource group RG has a type τ for the user group UG. The type τ is ok if there
is no conflict for the user group UG in accessing RG, otherwise it is fail.

3.1 Dynamic Groups

In order to conduct our analysis, we first extrapolate the context from access
rules by generating as many access rules as there are context combinations.
This manipulation introduces the notion of dynamic groups (users, activities
and views). Hence, we identify for each rule the different user groups (resp.
activity groups and view groups) that satisfy the conditions for granting the
corresponding rules authorizations. This is performed by instantiating contexts
within the rules. For each context c we consider the two cases when it is satisfied
or not (c and c). For instance, let us consider the following rule: “doctors in
emergency ward are allowed to read all medical records”. However according to
other rules, not all doctors are allowed to read all medical records but only those
that are in the emergency ward. Thus, we identify two groups of doctors under
the “emergency” context.

For generating the dynamic groups, we choose to annotate groups with their
context’s instantiation. For instance, let us consider the following rule: “doctors
may prescribe medication to their patients”, which is expressed as follows:

Permission(doctor, prescribe, patient, patient doctor)

We split the user group doctor into doctorpatient doctor and doctorpatient doctor.
For each access control rule, each group is likely to be split into two dynamic
groups representing those for which the context is satisfied and those for which
it is not satisfied.

3.2 Typing system

The main purpose of our typing system is to verify that two user groups that
have common elements should not have different access rights. If such a sit-
uation occurs, then it is possible that elements belonging to both groups are
simultaneously permitted and prohibited to access a given resource, leading to
a conflict.



Typing for Conflict Detection in Access Control Policies 11

3.3 Examples

Let us consider the example of rules in a hospital. We consider three different
user groups, namely doctor, nurse and chief.

Assume chief user group is composed of two sub groups; (1) head doctor and
(2) head nurse. Also assume that the following access control rules are part of
the internal security policy of the hospital:

– (1) Doctors are not authorized to locate patients
– (2) Head doctors can locate patients

In our access control model, these two rules are expressed as follows:

– (1) prohibition(doctor, locate, patient, default)
– (2) permission(head doctor, locate, patient, default)

Notice that user group head doctor is a sub user group of doctor. In our model,
this is represented using hierarchy (Section 2.4), as follows:

usergroup membership(head doctor, doctor)

meaning that user group head doctor inherits all authorizations of user group
doctor. From the first rule, we infer that head doctors are not authorized to
locate patients since they inherit the prohibition assigned to doctors. Therefore,
the head doctors are both allowed and denied to locate patients.

Other rules state that:

– Doctors can consult any patient’s medical record
– Nurses can’t consult a patient’s medical record if they are not assigned to the

patient’s room

These authorizations are expressed in our model as follows:

– (1) permission(doctor, consult,medical record, default)
– (2) prohibition(nurse, consult,medical record, are in same ward)

At a first glance, these two rules could not be in conflict because the corre-
sponding user groups (doctor and nurse) are disjoint. However, this is not always
the case since in some hospitals, there are some doctors that may play the role
nurses meaning that they are assigned to nurse and doctor user groups.

We present in the following sections the typing system that is used for de-
tecting the different conflicts. This typing system checks that non disjoint user
groups do not have both permission and prohibition authorization over a com-
mon object.



12 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

�
φ`� Empty environment

Γ`� a6∈dom(Γ )
Γ∪{(a,τ)}`� Add action

�
φ`UGRG:ok

Default judgment

Γ `UG RG : ok < UG
′
, RG

′
, τ, a >

UG
′
∩ UG 6= φ RG ∩RG

′
6= φ a 6∈ dom(Γ )

Γ∪{(a,τ)}`
UG

′∩UG
RG∩RG′ :ok

Acquisition 1

Γ `UG RG : ok < UG
′
, RG

′
, τ, a >

UG
′
∩ UG 6= φ RG ∩RG

′
6= φ (a, τ) ∈ Γ

Γ`
UG

′∩UG
RG∩RG′ :ok

Acquisition 2

Γ `UG RG : ok < UG
′
, RG

′
, τ, a >

UG
′
∩ UG 6= φ RG ∩RG

′
6= φ

(a, τ) ∈ Γ
Γ∪{(a,τ)}`

UG
′∩UG

RG∩RG′ :fail
Conflict 1

Γ `UG RG : ok Γ
′
`UG′ RG

′
: ok

UG
′
∩ UG 6= φ RG ∩RG

′
6= φ ∃a : Γ (a) 6= Γ

′
(a)

Γ`
UG

′∩UG
RG∩RG′ :fail

Conflict 2

Table 1. Typing rules

3.4 Typing judgements and Typing rules

We use the typing relations `UG for groups of users UG. Each resource is typed
for all user groups. The typing environment containing actions and their corre-
sponding authorizations. For instance {(read, deny), (write, permit)} represents
an environment.

We define two kinds of typing judgements Γ ` � denoting a well typed
environment and Γ `UG RG : τ denoting the type of the resources RG w.r.t
group UG. This type may be either “ok” (no conflict) or “fail” (when conflict
is present).

The typing rules are shown in Table 1. At the beginning of the verification,
all resource groups are of type “ok” as a default judgment for all user groups.
The Acquisition 1 and Acquisition 2 rules translate control rules into judgments.
Rules Conflict 1 and Conflict 2 capture conflict situations: an action cannot take
two contradictory types permit and deny for a user and a given resource. Rule
Conflict 2 is used to ensure compositionality of the typing system.



Typing for Conflict Detection in Access Control Policies 13

4 Example

To illustrate our method, we consider a set of policy rules deployed in a hospital
where four distinct user groups are defined, namely doctor, nurse and chief.
According to the security policy of the hospital, doctor and nurse groups are
disjoint. However, chief and nurse groups are not disjoint. Furthermore, access
control rules of the hospital are as follows:

– R1: Doctors have read/write access to their patient’s medical record
– R2: Doctors in the same ward as Patients has read access to the patient’s

medical records
– R3: Chiefs have read access to all medical records
– R4: Nurses cannot read the patient’s medical record if they are not assigned

to the patient’s ward

At the beginning, we extrapolate the context from rules R1, R2 and R4 as
follows:

– R1: Doctors have read/write access to their patient’s medical record

The context c1 of the original rule R1 is defined as c1 = patient doctor. As
a consequence, by instantiating this context we generate two dynamic groups
doctorc1 and doctorc1. Similarly, we generate two dynamic resource groups
medical recordc1 and medical recordc1.

– R2: patient’s ward doctor has read access to the patient’s medical record

The corresponding context of this rule is c2 = are in same ward (see Section
2.3 on how to specify these contexts). The user group doctor depends on con-
texts c1 and c2. We generate four dynamic user groups doctorc1,c2, doctorc1,c2,
doctorc1,c2 and doctorc1,c2. Again, we generates four different dynamic re-
source group medical recordc1,c2, medical recordc1,c2, medical recordc1,c2

and medical recordc1,c2.

– R4: Nurses can’t read a patient’s medical record if they are not assigned to
the patient’s ward. We generate from user group nurse two dynamic groups
nursec2 and nursec2 and two dynamic resource groups medical recordc2 and
medical recordc2.

The result of this extrapolation process is the following six rules:

– R11: doctorc1,c2 has read/write access to medical recordc1,c2

– R12: doctorc1,c2 has read/write access to medical recordc1,c2

– R21: doctorc1,c2 has read access to medical recordc1,c2

– R22: doctorc1,c2 has read access to medical recordc1,c2

– R31: Chief has read access to all medical records
– R41: nursec2 can’t read medical recordc2.



14 K. Adi, Y. Bouzida, I. Hattak, L . Logrippo and S. Mankovskii

By applying our typing system, we find an inconsistency in this access con-
trol example, which arises if there are nurses that are also chiefs. The proof is
presented in Table 2.

�
φ`chief medical record: ok

(Default judgement)

< chief,medical record, permit, read >
read 6∈ dom(∅) write 6∈ dom(∅)

{(read,permit)}`chiefmedical record:OK
(Acquisition 1)

< Nursec2,medical recordc2, deny, read >
Nursec2 ∩ Chief 6= φ medical recordc2 ∩medical record 6= ∅

{(read,permit),(read,deny)}`Chief∩Nurse
c2
medical record∩medical recordc2:fail

(Conflict 1)

Table 2. Tree Proof

5 Conclusion

In the first part of this paper, we have presented a model that can be used in
order to specify access control policies both at the abstract and at the concrete
levels, by considering contexts. This is an innovation with respect to existing
access control models, where complete flexibility of expressing all elements of
policies (subject, action and object) at different levels of abstraction does not
exist. As in every access control system, conflicts between rules are possible.
Such conflicts can be unintentionally introduced by security officers when they
update policies. In order to detect them, we propose a typing system that is
applied to the set of rules, and will yield a verdict of “conflict” or “no conflict”.
To our knowledge, no similar typing system, that considers contexts, is available
in the literature.

In this paper, we only consider positive and negative authorizations. In our
future work, we will consider other decisions such as obligations for which some
actions should be launched once certain conditions are satisfied. Such decisions
will lead to more complex conflict situations. The other issue we are starting to
investigate is delegation that may generate conflicts with other rules.

Acknowledgments

This research has been funded in part by grants from the Natural Sciences and
Engineering Research Council of Canada and from CA Labs. The authors wish
to thank Nadera Slimani for many research discussions.



Typing for Conflict Detection in Access Control Policies 15

References

1. A. AbouElKalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin. Organization Based Access Control. In Pro-
ceedings of IEEE 4th International Workshop on Policies for Distributed Systems
and Networks (POLICY 2003), pages 120–134, Lake Come, Italy, June 2003.

2. K. Adi, A. Elkabbal, and M. Mejri. Un Système de Types pour l’Analyse des Pare-
feux. In Proccedings of the 4th Conference on Security and Network Architectures
(SAR’2005), pages 227–236, 2005.

3. E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classification and
analysis of distributed firewall policies. IEEE Journal on Selected Areas in Com-
munications, 23(10):2069–2084, 2005.

4. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for rea-
soning about access control models. ACM Trans. Inf. Syst. Secur., 6(1), 2003.

5. E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access Control
Policies in Database Systems. In IEEE Symposium on Security and Privacy, pages
94–107, 1996.

6. Y. Bouzida. Managing security rules conflicts. European Patent Number EP 2 023
567 A1, August 2007.

7. Y. Bouzida. Online security rules conflict management. European Patent Number
EP 2 023 566 A1, August 2007.

8. F. Cuppens, N. Cuppens-Boulahia, and M. BenGhorbel. High Level Conflict Man-
agement Strategies in Advanced Access Control Models. Electr. Notes Theor.
Comput. Sci., 186:3–26, 2007.

9. F. Cuppens and A. Miège. Modelling contexts in the Or-BAC model. In Proceedings
of the 19th Annual Computer Security Applications Conference (ACSAC 2003),
pages 416–427, Las Vegas, Nevada, USA, December 2003.

10. M. G. Gouda and A. X. Liu. Firewall Design: Consistency, Completeness, and
Compactness. In ICDCS 2004, pages 320–327, 2004.

11. V. Weissman J. Y. Halpern. Using First-Order Logic to Reason about Policies. In
16th IEEE Computer Security Foundations Workshop (CSFW2003), 2003.

12. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing
authorizations. In IEEE Symposium on Security and Privacy, pages 31–42, 1997.

13. M. Koch, L. Mancini, and F. Parisi-Presicce. Conflict detection and resolution
in access control policy specifications. In FoSSaCS ’02: Proceedings of the 5th
International Conference on Foundations of Software Science and Computation
Structures, pages 223–237. Springer-Verlag, 2002.

14. A. Masoumzadeh, M.Amini, and R. Jalili. Conflict detection and resolution in
context-aware authorization. In AINAW ’07: Proceedings of the 21st International
Conference on Advanced Information Networking and Applications Workshops,
pages 505–511. IEEE Computer Society, 2007.

15. L. Pene and K. Adi. Calculus for Distributed Firewall Specification and Verifica-
tion. In Proccedings of 5th International Conference on Software Methodologies,
Tools and Techniques, IOS Press., pages 301–315, 2006.

16. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, February 1996.


