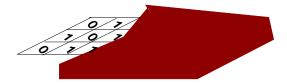
Covering Arrays and Generalizations

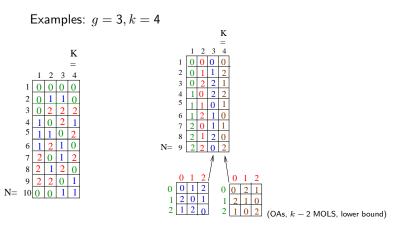
Lucia Moura School of Information Technology and Engineering University of Ottawa lucia@site.uottawa.ca

UPC Seminar, November 2006



Covering array examples

array on alphabet $\{0, \ldots, g-1\}$; k columns; find covering array with minimum n.



Covering array definition

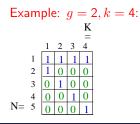
Definition: Covering Array

A covering array with k factors, g levels for each factor and size n, denoted by CA(n; k, g), is an $n \times k$ array with symbols from [0, g - 1] such that for every pair of columns, every ordered pair in $[0, g - 1]^2$ is covered at least once.

Objective: given k and g find a covering array with mininum size n.

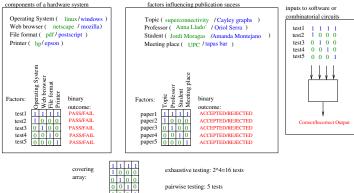
$$CAN(k,g) = \min\{n : there \ exists \ a \ CA(n;k,g)\}.$$

Is this optimal?



Application: component interaction testing

Testing pairwise interaction of factors.



Assumption: failures come from the interaction of 2 or less factors.

All 2-way interactions are covered.

May not detect bad 3-way interactions - example: . Oriol Serra Jordi Moragas tapas bar

- 4 同 6 4 日 6 4 日 6

Advertisement: buy covering arrays!

- AETG (Telcordia): http://aetgweb.argreenhouse.com/ (web service) price per year: US\$6,000 - US\$16,000
- TestCover.com: http://www.testcover.com/ (web service) license price per year: US\$1,200
- CaseMaker: http://www.casemakerinternational.com/ (GUI software) price not in their web page
- Pro-test (SigmaZone):

http://www.sigmazone.com/protest.htm (GUI software) license: US\$399

 Other tools: IBM Intelligent Test Case Handler, CATS, OATS, IPO, TConfig, TCG (NASA), AllPairs, Jenny, ReduceArray2, DDA, Test Vector Generator, OA1, CTE-XL, PICT (Microsoft), rdExpert.

 mixed alphabet sizes: factors may have different number of possible values
 example: 2 OSs, 3 browses, 4 file formats, 10 printers.

- mixed alphabet sizes: factors may have different number of possible values
 example: 2 OSs, 3 browses, 4 file formats, 10 printers.
- forbiden configurations: some combinations may be forbidden (not supported)
 example: (linux,internet explorer) not allowed.

- mixed alphabet sizes: factors may have different number of possible values
 example: 2 OSs, 3 browses, 4 file formats, 10 printers.
- forbiden configurations: some combinations may be forbidden (not supported)
 example: (linux,internet explorer) not allowed.
- higher strength: want to test 3-way interaction of factors example: failures may occur due to bad 3-way combinations (Oriol, Jordi, Tapas bar)

- mixed alphabet sizes: factors may have different number of possible values
 example: 2 OSs, 3 browses, 4 file formats, 10 printers.
- forbiden configurations: some combinations may be forbidden (not supported) example: (linux,internet explorer) not allowed.
- higher strength: want to test 3-way interaction of factors example: failures may occur due to bad 3-way combinations (Oriol, Jordi, Tapas bar)
- **mixed strength:** certain factors need higher srength example: all pairwise + (student,professor,meeting place)

- mixed alphabet sizes: factors may have different number of possible values
 example: 2 OSs, 3 browses, 4 file formats, 10 printers.
- forbiden configurations: some combinations may be forbidden (not supported)
 example: (linux,internet explorer) not allowed.
- higher strength: want to test 3-way interaction of factors example: failures may occur due to bad 3-way combinations (Oriol, Jordi, Tapas bar)
- mixed strength: certain factors need higher srength example: all pairwise + (student,professor,meeting place)
- covering arrays on graphs: certain combinations don't need interactions tested example: all pairwise interactions except (topic, professor), (meeting place, student)

• general lower bound: $CAN(k,g) \ge g^2$

• general lower bound: $CAN(k,g) \ge g^2$

CAN(k,g) = g² iff ∃OA(k,g, λ = 1) iff ∃(k - 2) MOLS of order g. Only possible for k ≤ g + 1.

- general lower bound: $CAN(k,g) \ge g^2$
- CAN(k,g) = g² iff ∃OA(k,g, λ = 1) iff ∃(k 2) MOLS of order g. Only possible for k ≤ g + 1.
- $CAN(k,g) \leq CAN(k+1,g)$

- general lower bound: $CAN(k,g) \ge g^2$
- CAN(k,g) = g² iff ∃OA(k,g, λ = 1) iff ∃(k 2) MOLS of order g. Only possible for k ≤ g + 1.
- $CAN(k,g) \leq CAN(k+1,g)$

•
$$CAN(k,g) \leq CAN(k,g+1)$$

- general lower bound: $CAN(k,g) \ge g^2$
- CAN(k,g) = g² iff ∃OA(k,g, λ = 1) iff ∃(k 2) MOLS of order g. Only possible for k ≤ g + 1.
- $CAN(k,g) \leq CAN(k+1,g)$
- $CAN(k,g) \leq CAN(k,g+1)$
- CAN(k, g = 2) has been solved.

- general lower bound: $CAN(k,g) \ge g^2$
- CAN(k,g) = g² iff ∃OA(k,g, λ = 1) iff ∃(k 2) MOLS of order g. Only possible for k ≤ g + 1.
- $CAN(k,g) \leq CAN(k+1,g)$
- $CAN(k,g) \leq CAN(k,g+1)$
- CAN(k, g = 2) has been solved.
- For general g: direct and recursive constructions.

- general lower bound: $CAN(k,g) \ge g^2$
- CAN(k,g) = g² iff ∃OA(k,g, λ = 1) iff ∃(k 2) MOLS of order g. Only possible for k ≤ g + 1.
- $CAN(k,g) \leq CAN(k+1,g)$
- $CAN(k,g) \leq CAN(k,g+1)$
- CAN(k, g = 2) has been solved.
- For general g: direct and recursive constructions.
- Non-constructive asymptotic result known for fixed g:

$$CAN(k,g) \sim rac{g}{2} \log k, \quad ext{as } k
ightarrow \infty$$

Covering array optimization questions

Fix g.

Minimizing n for fixed k (number of tests)

 $CAN(k,g) = \min\{n : there \ exists \ a \ CA(n;k,g)\}.$

Maximizing k for fixed n (number of factors)

$$CAK(n,g) = \max\{k : there \ exists \ a \ CA(n;k,g)\}.$$

Relationship between min-max problems

$$CAN(k,g) = \min\{n : CAK(n,g) \ge k\}.$$

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor, denoted by OA(k,g), is an $g^2 \times k$ array with symbols from a [0, g-1]G such that for every pair of columns, every ordered pair in $[0, g-1]^2$ is **appears at exactly once**.

• For g a prime power, there exists g mutually orthogonal Latin squares which gives an OA(g+1,g) orthogonal array. (equivalent to the existence of a projective plane of order g). Construction uses finite fields.

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor, denoted by OA(k,g), is an $g^2 \times k$ array with symbols from a [0, g-1]G such that for every pair of columns, every ordered pair in $[0, g-1]^2$ is **appears at exactly once**.

• For g a prime power, there exists g mutually orthogonal Latin squares which gives an OA(g + 1, g) orthogonal array. (equivalent to the existence of a projective plane of order g). Construction uses finite fields.

• For g prime power, $CAN(k,g) = g^2$ for all $k \le g+1$.

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor, denoted by OA(k,g), is an $g^2 \times k$ array with symbols from a [0, g-1]G such that for every pair of columns, every ordered pair in $[0, g-1]^2$ is **appears at exactly once**.

• For g a prime power, there exists g mutually orthogonal Latin squares which gives an OA(g+1,g) orthogonal array. (equivalent to the existence of a projective plane of order g). Construction uses finite fields.

• For g prime power, $CAN(k,g) = g^2$ for all $k \le g+1$.

• For g not a prime power, use the larger knwon number of MOLS:

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor, denoted by OA(k,g), is an $g^2 \times k$ array with symbols from a [0, g-1]G such that for every pair of columns, every ordered pair in $[0, g-1]^2$ is **appears at exactly once**.

• For g a prime power, there exists g mutually orthogonal Latin squares which gives an OA(g + 1, g) orthogonal array. (equivalent to the existence of a projective plane of order g). Construction uses finite fields.

• For g prime power, $CAN(k,g) = g^2$ for all $k \le g+1$.

- For g not a prime power, use the larger knwon number of MOLS:
 - CAN(k, 6) = 36 for k = 1, 2, 3, but CAN(4, 6) > 36.

イロン 不聞 とくほとう ほどう

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor, denoted by OA(k,g), is an $g^2 \times k$ array with symbols from a [0, g-1]G such that for every pair of columns, every ordered pair in $[0, g-1]^2$ is **appears at exactly once**.

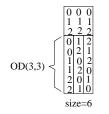
• For g a prime power, there exists g mutually orthogonal Latin squares which gives an OA(g+1,g) orthogonal array. (equivalent to the existence of a projective plane of order g). Construction uses finite fields.

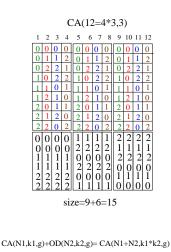
• For g prime power, $CAN(k,g) = g^2$ for all $k \le g+1$.

- For g not a prime power, use the larger knwon number of MOLS:
 - CAN(k, 6) = 36 for k = 1, 2, 3, but CAN(4, 6) > 36.
 - CAN(k, 10) = 100 for k = 1, 2, 3, 4, but CAN(5, 10)? = 100.

Recursive construction: Blocksize recursive construction

CA(3,3) with 3 disjoint rows:





< □ > < 同 >

A B + A B +

-

Algorithmic construction: Greedy method

Greedy method used in the AETG system (D. Cohen, Dalal, Fredman and Patton (1997)):

"Choose one test at a time. At each stage select a test that covers the maximum number of uncovered pairs."

- Good news: for fixed g, CA size is proportional to $\log k$.
- Bad news: to pick a test covering the maximum number of uncovered tests is NP-complete, so the authors use a heuristic for test selection which does not guarantee the logarithmic growth.

The DDA (determinisitc density algorithm) by M. Cohen, Colbourn and Turban (2004):

- greedy method that runs in polynomial time;
- for fixed g, CA size is proportional to log k; this is based on a guarantee that each selected test cover the *average* number of uncovered tests.

CAs with g=2 are extremal set systems

set system S		complement:
column1 column2 column3	{1,2}	{3,4,5}
column2	{1,3}	{2,4,5}
column3	{1,4}	{2,3,5}
column4	{1,5}	{2,3,4}

base set = $\{1, 2, 3, 4, 5\}$

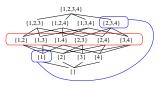
- S must be pairwise intersecting: pair (1,1) is covered.
- C must be pairwise intersecting: pair (0,0) is covered.
- each of S and C must have the Sperner property: pairs (0,1) and (1,0) covered.

0 | 0

C

Sperner theorem for set systems

A system of subsets of an *n*-set has the *Sperner property* if no two subsets in the system are comparable.



Sperner's Theorem (1928)

If \mathcal{A} has the Sperner property, then $|\mathcal{A}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

The upper bound is only acchieved by the set of all $(\lfloor \frac{n}{2} \rfloor)$ -subsets of the *n*-set, or by its (subsetwise) complement.

Erdos-Ko-Rado theorem for set systems

A system of subsets of an *n*-set is (pairwise) *intersecting* if every two subsets in the system have nonempty intersection. Examples:

 $\begin{array}{ll} (n=5) & \mathcal{A}=\{\{1,2,3\},\{1,4,5\},\{2,3,4\},\{2,4,5\},\{3,4,5\}\}\\ (n=6) & \mathcal{B}=\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\\ & \{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\}\} \end{array}$

Erdos-Ko-Rado Theorem (1961)

Let \mathcal{A} be an intersecting system of subsets of an *n*-set, such that each subset has cardinality at most k. If $n \geq 2k$, then $|\mathcal{A}| \leq {n-1 \choose k-1}$.

Moreover, if n > 2k, then equality holds if and only if A is a k-uniform trivially intersecting system.

Optimal construction for binary alphabet

Pick all $\lfloor n/2 \rfloor$ -subsets of $\lfloor 1, n \rfloor$ that contain a common element.

	n even:
	123456
	111000
n odd:	$1\ 1\ 0\ 1\ 0\ 0$
1 2 3 4 5	110010
1 1 0 0 0	$1\ 1\ 0\ 0\ 1\ 1$
10100	101100
10010	$1 \ 0 \ 1 \ 0 \ 1 \ 0$
10001	$1 \ 0 \ 1 \ 0 \ 1$
	100110
	$1 \ 0 \ 0 \ 1 \ 0 \ 1$
	$1 \ 0 \ 0 \ 0 \ 1 \ 1$
Note: the arrays are transposed here $(k \times n)$.	
Both A and \overline{A} are intersecting and Sperner.	

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

Proof: Let \mathcal{A} be the set system corresponding to a CA.

• (Case 1) n even.

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

- (Case 1) n even.
- $\mathcal{A}^* = \{A, \overline{A} : A \in \mathcal{A}\}$ is Sperner.

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

- (Case 1) n even.
- $\mathcal{A}^* = \{A, \overline{A} : A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $|\mathcal{A}^*| \leq {n \choose n/2}$.

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

- (Case 1) n even.
- $\mathcal{A}^* = \{A, \overline{A} : A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $|\mathcal{A}^*| \leq {n \choose n/2}$.
- $|\mathcal{A}| \leq \frac{1}{2} |\mathcal{A}^*| \leq \frac{1}{2} {n \choose n/2} = {n-1 \choose n/2-1}.$

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

- (Case 1) n even.
- $\mathcal{A}^* = \{A, \overline{A} : A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $|\mathcal{A}^*| \leq {n \choose n/2}$.
- $|\mathcal{A}| \leq \frac{1}{2}|\mathcal{A}^*| \leq \frac{1}{2}\binom{n}{n/2} = \binom{n-1}{n/2-1}.$
- (Case 2) n odd.

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

- (Case 1) n even.
- $\mathcal{A}^* = \{A, \overline{A} : A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $|\mathcal{A}^*| \leq {n \choose n/2}$.
- $|\mathcal{A}| \leq \frac{1}{2}|\mathcal{A}^*| \leq \frac{1}{2}\binom{n}{n/2} = \binom{n-1}{n/2-1}.$
- (Case 2) n odd.
- Wlog assume $|A| \leq \lfloor n/2 \rfloor$, for all $A \in \mathcal{A}$.

Theorem (Katona 1973, Kleitman and Spencer 1973)

 $CAK(n, t = 2, g = 2) = \binom{n-1}{\lfloor n/2 \rfloor - 1}$. Moreover, this bound is attained by a $\lfloor n/2 \rfloor$ -uniform trivially 1-intersecting set system.

- (Case 1) n even.
- $\mathcal{A}^* = \{A, \overline{A} : A \in \mathcal{A}\}$ is Sperner.
- Sperner's theorem implies $|\mathcal{A}^*| \leq {n \choose n/2}$.
- $|\mathcal{A}| \leq \frac{1}{2}|\mathcal{A}^*| \leq \frac{1}{2}\binom{n}{n/2} = \binom{n-1}{n/2-1}.$
- (Case 2) n odd.
- Wlog assume $|A| \leq \lfloor n/2 \rfloor$, for all $A \in \mathcal{A}$.
- \mathcal{A} is 1-intersecting, so by the EKR theorem, $|\mathcal{A}| \leq {n-1 \choose \lfloor n/2 \rfloor 1}$.

Covering arrays are systems of set partitions

• A covering array (strength 2) is a system of set-partitions:

	1	2	3	4	5	6	7	8	9	10
column 1	0	0	0	1	1	1	2	2	2	0
column 2	0	1	2	0	1	2	0	1	2	0
column 3	0	1	2	2	0	1	1	2	0	1
column 4	0	0	2	1	2	0	2	0	1	1

{1,2,3,10}	<i>{</i> 4,5,6 <i>}</i>	{7,8,9 }
{1,4,7,10}	{2,5,8}	{3,6,9}
{1,5,9}	{2,6,7,10}	{3,4,8}
{1,2,6,8}	{4,9,10}	{3,5,7}

Covering arrays are systems of set partitions

• A covering array (strength 2) is a system of set-partitions:

	1	2	3	4	5	6	7	8	9	10
column 1	0	0	0	1	1	1	2	2	2	0
column 2	0	1	2	0	1	2	0	1	2	0
column 3	0	1	2	2	0	1	1	2	0	1
column 4	0	0	2	1	2	0	2	0	1	1

{1,2,3,10}	<i>{</i> 4,5,6 <i>}</i>	{7,8,9}
{1,4,7,10}	{2,5,8}	{3,6,9}
<i>{1,5,9}</i>	{2,6,7,10}	{3,4,8}
{1,2,6,8}	{4,9,10}	{3,5,7}

• Maximization problem:

Given N, find a set partition system \mathcal{P} with maximum $|\mathcal{P}|$ that is **(pairwise) strongly intersecting**: For all $P, Q \in \mathcal{P}$ we have

for all
$$P_i \in P, Q_j \in Q, \quad P_i \cap Q_j \neq \emptyset.$$

Strongly intersecting condition: upper bound via 2-parts

Theorem (Stevens, Moura and Mendelsohn 1998)

$$CAK(n,2,g) \leq \frac{1}{2} {\lfloor \frac{2n}{g} \rfloor \choose \lfloor \frac{n}{g} \rfloor}.$$

This theorem only uses the two smallest parts of each partition, and the following fact:

Consider a pair of set systems, A_1, A_2, \ldots, A_k and B_1, B_2, \ldots, B_k , with $|A_i| + |B_i| \le c$ and $|A_i| \le a \le c/2$, and such that $A_i \cap B_i = \emptyset$, and all other sets intersect. Then, $k \le \frac{1}{2} \binom{c}{a}$. It is possible to relabel symbols of the covering array so that $|P_{1j}| \le \lfloor \frac{n}{g} \rfloor$ and $|P_{1j}| + |P_{2j}| \le \lfloor \frac{2n}{g} \rfloor$

Stronly intersecting versus Sperner formulation

Strongly intersecting formulation:

Partitions P and Q corresponding to two columns of a covering array must satisfy:

for all
$$P_i \in P, Q_j \in Q, \quad P_i \cap Q_j \neq \emptyset.$$

Strongly Sperner formulation:

Partitions P and Q corresponding to two columns of a covering array must satisfy:

for all
$$P_i \in P, Q_j \in Q, \quad P_i
ot\subseteq \overline{Q}_j$$
 and $P_i
ot\subseteq Q_j$

Sperner's theorem for set-partition systems

largest cardinality k of a system \mathcal{P} of g-partitions of [1, n] such that for all $\mathcal{P}_i, \mathcal{P}_j \in \mathcal{P}$:

 $\forall P \in \mathcal{P}_i, \forall P' \in \mathcal{P}_j(P \not\subseteq P' \text{ and } P' \not\subseteq P).$ (Weakly) Sperner

Theorem (Meagher, Moura and Stevens 2005)

Let g, n such that n = cg + r and $0 \le r < g$. Then,

$$N_n(orall,orall) \leq rac{1}{(g-r)+rac{r(c+1)}{n-1}} inom{n}{c}.$$

Theorem (Meagher, Moura and Stevens 2005)

Let g, n such that g|n. Then, $N_n(\forall, \forall) = \binom{n-1}{\frac{n}{g}-1}$. Moreover, this bound is met if and only if the g-partitions are uniform (all parts with cardinality $\frac{n}{g}$).

Example: weakly Sperner property

n=2g

{1,2,3},{4,5,6} {1,2,4},{3,5,6}

{1,2,5},{3,4,6}

{1,2,6},{3,4,5}

{1,3,4},{2,5,6}

{1,3,5},{2,4,6}

{1,3,6},{2,4,5}

{1,4,5},{2,3,6} {1,4,6},{2,3,5}

{1,5,6},{2,3,4}

n=3g

{1,2,3},{4,5,6},{7,8,9} {1,2,4},.... {1,2,5},... {1.2.6}....

{1,7,8},... {1,8,9},{2,3,4}, <mark>{5,6,7}</mark>

(日)

-

Comparison of two bounds obtained

Theorem (Stevens, Moura and Mendelsohn 1998)

 $CAK(n,2,g) \leq \frac{1}{2} {\binom{\lfloor \frac{2n}{g} \rfloor}{\lfloor \frac{n}{g} \rfloor}}.$

Theorem (Meagher, Moura and Stevens 2005) If g|n, then $CAK(n, 2, g) \leq {\binom{n-1}{\frac{n}{2}-1}}$.

if g > 2, g|n, then

$$\frac{1}{2} \binom{\frac{2n}{g}}{\frac{n}{g}} < \binom{n-1}{\frac{n}{g}-1}$$

Erdos-Ko-Rado theorem for set-partition systems

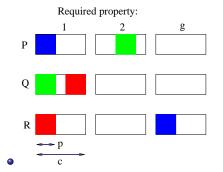
We are interested on a maximal partition system $\ensuremath{\mathcal{P}}$ such that:

- each partition of [1, n] have g parts of size $\frac{n}{a}$;
- two partitions $P, Q \in \mathcal{P}$ are such that there exists $P_i \in P$ and $Q_j \in Q$ such that $|P_i \cap Q_j| \le p$.

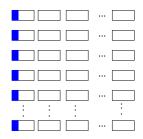
Useful for bounds on "anti-covering-arrays" for certain uniform cases. Ex: $n=g^2,\ p=2$

Conjecture

Suppose g|n, and let c = n/g be the size of each part of the (uniform) partition system. $|\mathcal{P}| = \binom{n-p}{c-p}U(n-c,g-1)$.



Conjecture:



Covering Arrays and Generalizations

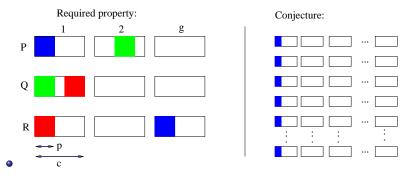
Lucia Moura

з

< ≣⇒

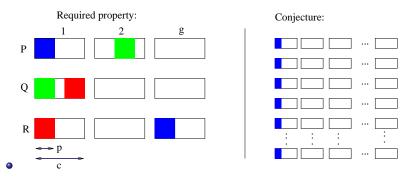
< ≣ >

< 17 ▶



• Conjecture has been proven for p = c:

⊒ ▶



• Conjecture has been proven for p = c:

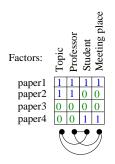
Theorem (Meagher and Moura 2005)

Let $n \ge g \ge 1$ and let $\mathcal{P} \subseteq U_g^n$ be a maximal partition system in which every two partitions share at least one class. Let c = n/g. Then, $|\mathcal{P}| = U(n - c, g - 1)$

Covering array on graphs

factors influencing publication sucess with knwon SAFE INTERACTIONS:

Topic (superconnectivity / Cayley graphs) Professor (Anna Llado' / Oriol Serra) Student (Jordi Moragas /Amanda Montejano) Meeting place (UPC / tapas bar)



for complete graph $\min N = 5$

For this graph $\min N = 4$

Covering array on graphs: definition

Definition: Covering Array

A covering array on a graph G with alphabet size g and size n, denoted by CA(n; G, g), is an $n \times k = |V(G)|$ array with symbols from [0, g - 1] such that for every pair of columns corresponding to an edge of G, every ordered pair in $[0, g - 1]^2$ is covered at least once.

Objective: given G and g find a covering array with mininum size n.

$$CAN(G,g) = \min\{n : there \ exists \ a \ CA(n;G,g)\}.$$

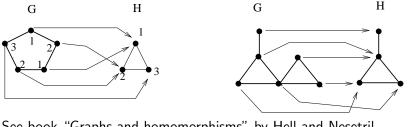
Determining CAN(G, 2) is NP-complete (Serousi and Bshouty) reduction to 3-COLOUR.

Graph homomorphisms

Definition: graph homomorphism

A graph homomorphism from graph G to graph H, denoted $G \to H$ is a mapping from V(G) to V(H) that takes edges to edges.

Vertex colouring = homomorphism to the complete graph with numberOfColours vertices.



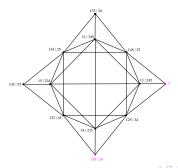
See book "Graphs and homomorphisms" by Hell and Nesetril, 2004.

Covering Arrays and Generalizations

Qualitative independence graph

The qualitative independence graph QI(n, g) has:

- Vertex Set: all g-partitions of [1, n] that have every class of size at least g.
- Edges: two vertices are connected if their partitions are qualitatively independent (P, Q are qualitatively independent if $P_i \cap Q_j \neq \emptyset$ for all i, j.)



Why QI(n,g) are interesting?

Results by Meagher and Stevens (2005):

- A k-clique in QI(n,g) corresponds to a CA(n,k,g);
- A CA(n,G,g) exists if and only if there exists a graph homomorphism G → QI(n,g);
- $CAN(G,g) = \min\{n : G \to QI(n,g)\}.$

Clique and chromatic bounds

Corollary (Meagher and Stevens 2005): If there exists a homomorphism $G \to H$, then $CAN(G,g) \leq CAN(H,g)$.

It is well-known that there exists homomorphisms: $K_{\omega(G)} \to G \to K_{\chi(G)}.$

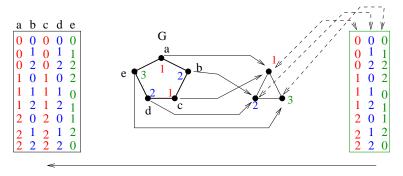
Therefore: $CAN(\omega(G), g) \leq CAN(G, g) \leq CAN(\chi(G), g)$.

This gives the "colouring construction":

- k-colour the vertices of G.
- build a CA(n, k, g).
- pull back a CA(n, G, g).

Colouring construction

- k-colour the vertices of G.
- build a CA(n, k, g).
- pull back a CA(n, G, g).



• $\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor}$ (Kleitman and Spencer, Katona 1973).

- $\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor}$ (Kleitman and Spencer, Katona 1973).
- $\chi(QI(n,2)) = \lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \rceil$ (Meagher and Stevens 2005)

- $\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor}$ (Kleitman and Spencer, Katona 1973).
- $\chi(QI(n,2)) = \lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \rceil$ (Meagher and Stevens 2005)
- If $CAN(G, 2) \le n$, then there exists a CAN(n, G, 2) with $\lceil \frac{n}{2} \rceil$ 0's per row (nearly balanced). (Meagher and Stevens 2005)

- $\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor}$ (Kleitman and Spencer, Katona 1973).
- $\chi(QI(n,2)) = \lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \rceil$ (Meagher and Stevens 2005)
- If $CAN(G, 2) \le n$, then there exists a CAN(n, G, 2) with $\lceil \frac{n}{2} \rceil$ 0's per row (nearly balanced). (Meagher and Stevens 2005)

- $\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor}$ (Kleitman and Spencer, Katona 1973).
- $\chi(QI(n,2)) = \lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \rceil$ (Meagher and Stevens 2005)
- If $CAN(G, 2) \le n$, then there exists a CAN(n, G, 2) with $\lceil \frac{n}{2} \rceil$ 0's per row (nearly balanced). (Meagher and Stevens 2005)

Conjecture for general g (Meagher)

If $CAN(G,g) \leq n$, then there exists a CAN(n,G,g) that is nearly balanced (each symbol appears either $\lceil \frac{n}{q} \rceil$ or $\lfloor \frac{n}{q} \rfloor$ times).

- $\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor}$ (Kleitman and Spencer, Katona 1973).
- $\chi(QI(n,2)) = \lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \rceil$ (Meagher and Stevens 2005)
- If $CAN(G, 2) \le n$, then there exists a CAN(n, G, 2) with $\lceil \frac{n}{2} \rceil$ 0's per row (nearly balanced). (Meagher and Stevens 2005)

Conjecture for general g (Meagher)

If $CAN(G,g) \le n$, then there exists a CAN(n,G,g) that is nearly balanced (each symbol appears either $\lceil \frac{n}{q} \rceil$ or $\lfloor \frac{n}{q} \rfloor$ times).

• If true, we can concentrate on AUQI(n,g) (almost uniform qualitative independence graphs)!

Mixed covering arrays

Different factors/parameters can have different alphabet sizes.

References:

- Moura, Stardom, Stevens and Williams, "Mixed covering arrays" (2003)
- Colbourn, Martirosian, Mullen, Shasha, Sherwood and Yucas, "Pruducts of mixed covering arrays of strength two" (2006)
- Sherwood, "A column expansion construction for optimal and near-optimal mixed covering arrays" (preprint).

Mixed covering arrays on graphs

Combine covering array on graphs with mixed alphabet sizes. Reference:

- Meagher, Moura, Zekaoui, 'Mixed covering arrays on graphs",(to appear): generalize graph homomorphism results; give optimal constructions for special classes of graphs.
- Cheng, "The Test Suite Generation Problem: Optimal Instances and Their Implications", preprint.
 Give optimal constructions for special classes of graphs and for hypertrees.

Higher strength ($t \geq 3$)

t=3 k=5 g=2

References:

- Chateauneuf and Kreher, "On the state of covering arrays of strength three ", 2002.
- Colbourn, Martirosyan, Trung, and Walker, "Roux-type Constructions for Covering Arrays of Strengths Three and Four" (2006).

• etc.

Locating arrays

We not only want to detect that an error exists, but we want to know which t-interaction caused the error.

Related to design of experiments and combinatorial group testing.

```
mixed covering array 2*3*3*3*3*3
```

d=1 t=2

Reference:

• Colbourn and McClary, "Locating and detecting arrays: existence and minimization", preprint.

Work in progress by myself with Martinez, Panario and Stevens on the adaptive problem.

References

- R. AHLSWEDE, N. CAI AND Z. ZHANG. Higher level extremal problems. J. Combin. Inform. System Sci., 21:185–210, 1996.
- M. CHATEAUNEUF AND D. L. KREHER. On the state of strength-three covering arrays J. Combin. Des., 10:217-238, 2002.
- C. CHENG. The Test Suite Generation Problem: Optimal Instances and Their Implications, preprint.
- C.J. COLBOURN, M.B. COHEN, AND R.C. TURBAN. A Deterministic Density Algorithm for Pairwise Interaction Coverage. Proceedings of the International Conference on Software Engineering (SE 2004), Innsbruck, Austria, pp. 245-252, February 2004.
- 5 D.M. COHEN, S.R. DALAL, M.L. FREDMAN AND G.C.PATTON. The AETG system: an approach to testing based on combinatorial design. *IEEE Trans. Soft. Engin.*, 23:437-444, 1997.
- C.J. COLBOURN, S.S. MARTIROSYAN, G.L. MULLEN, D.E. SHASHA, G.B. SHERWOOD, AND J.L. YUCAS. Products of Mixed Covering Arrays of Strength Two. J. Combin. Des., 14:124–138, 2006.
- C.J. COLBOURN, S.S. MARTIROSYAN, TRAN VAN TRUNG, AND R.A. WALKER II. Roux-type Constructions for Covering Arrays of Strengths Three and Four. Designs, Codes and Cryptography, 41:33–57, 2006.
- B. ERDOS, C. KO AND R. RADO. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. 12:313-320, 1961.
- G. KATONA. Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. Hungar., 3:19–26, 1973.
- 10 D.J. KLEITMAN AND J. SPENCER. Families of k-independent sets. Discrete Math., 6:255-262, 1973.
- K. MEAGHER. Covering arrays on graphs: qualitative independence graphs and extremal set-partition theory. *Ph.D. thesis*, University of Ottawa, 177 pages, Sept. 2005.
- K. MEAGHER AND L. MOURA. Erdos-Ko-Rado theorems for uniform set-partition systems. Electr. J. Combin. 12, R40, 12 pages, 2005.
- K. MEAGHER, L. MOURA AND B. STEVENS. A Sperner-type theorem for set-partition systems. *Electr. J. Combin.* 12, N20, 6 pages, 2005.
- K. MEAGHER AND B. STEVENS. Covering arrays on graphs. Journal of Combinatorial Theory B, 95(1):134–151, 2005.

References continued

- L. MOURA, J. STARDOM, B. STEVENS AND A. WILLIAMS. Covering arrays with mixed alphabet sizes. Journal of Combinatorial Designs, 11:413–432, 2003. (2003)
- IG. SHERWOOD,. A column expansion construction for optimal and near-optimal mixed covering arrays. preprint.
- 😰 N. SLOANE. Covering arrays and intersection codes. Journal of Combinatorial Designs, 1:51–63, 1993.
- 13 E. Sperner. Ein Satz uber Untermengen einer endlichen Menge. Math. Z., 27:544-548, 1928.
- B. STEVENS, L. MOURA AND E. MENDELSOHN. Lower bounds for transversal covers. Des., Codes and Cryptogr., 15:279-299, 1998.

- ∢ ≣ ▶