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Covering array examples

array on alphabet {0, . . . , g − 1}; k columns;
find covering array with minimum n.

Examples: g = 3, k = 4
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Covering array definition

Definition: Covering Array

A covering array with k factors, g levels for each factor and size n,
denoted by CA(n; k, g), is an n× k array with symbols from
[0, g − 1] such that for every pair of columns, every ordered pair in
[0, g − 1]2 is covered at least once.

Objective: given k and g find a covering array with mininum size n.

CAN(k, g) = min{n : there exists a CA(n; k, g)}.

Example: g = 2, k = 4:
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Application: component interaction testing

Testing pairwise interaction of factors.
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Advertisement: buy covering arrays!

AETG (Telcordia): http://aetgweb.argreenhouse.com/
(web service) price per year: US$6,000 - US$16,000

TestCover.com: http://www.testcover.com/
(web service) license price per year: US$1,200

CaseMaker: http://www.casemakerinternational.com/
(GUI software) price not in their web page

Pro-test (SigmaZone):
http://www.sigmazone.com/protest.htm
(GUI software) license: US$399

Other tools: IBM Intelligent Test Case Handler, CATS,
OATS, IPO, TConfig, TCG (NASA), AllPairs, Jenny,
ReduceArray2, DDA, Test Vector Generator, OA1, CTE-XL,
PICT (Microsoft), rdExpert.
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Covering array generalizations important for applications

mixed alphabet sizes: factors may have different number of
possible values
example: 2 OSs, 3 browses, 4 file formats, 10 printers.

forbiden configurations: some combinations may be
forbidden (not supported)
example: (linux,internet explorer) not allowed.

higher strength: want to test 3-way interaction of factors
example: failures may occur due to bad 3-way combinations (Oriol,

Jordi, Tapas bar)

mixed strength: certain factors need higher srength
example: all pairwise + (student,professor,meeting place)

covering arrays on graphs: certain combinations don’t need
interactions tested example: all pairwise interactions except

(topic, professor), (meeting place, student)
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Covering array: summary of results

general lower bound: CAN(k, g) ≥ g2

CAN(k, g) = g2 iff ∃OA(k, g, λ = 1) iff ∃(k − 2) MOLS of
order g. Only possible for k ≤ g + 1.

CAN(k, g) ≤ CAN(k + 1, g)

CAN(k, g) ≤ CAN(k, g + 1)

CAN(k, g = 2) has been solved.

For general g: direct and recursive constructions.

Non-constructive asymptotic result known for fixed g:

CAN(k, g) ∼ g

2
log k, as k →∞
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Covering array optimization questions

Fix g.

Minimizing n for fixed k (number of tests)

CAN(k, g) = min{n : there exists a CA(n; k, g)}.

Maximizing k for fixed n (number of factors)

CAK(n, g) = max{k : there exists a CA(n; k, g)}.

Relationship between min-max problems

CAN(k, g) = min{n : CAK(n, g) ≥ k}.
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Direct construction via Orthogonal arrays

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor,
denoted by OA(k, g), is an g2 × k array with symbols from a
[0, g − 1]G such that for every pair of columns, every ordered pair
in [0, g − 1]2 is appears at exactly once.

For g a prime power, there exists g mutually orthogonal Latin
squares which gives an OA(g + 1, g) orthogonal array.
(equivalent to the existence of a projective plane of order g).
Construction uses finite fields.

For g prime power, CAN(k, g) = g2 for all k ≤ g + 1.

For g not a prime power, use the larger knwon number of
MOLS:

CAN(k, 6) = 36 for k = 1, 2, 3, but CAN(4, 6) > 36.
CAN(k, 10) = 100 for k = 1, 2, 3, 4, but CAN(5, 10)? = 100.
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Recursive construction: Blocksize recursive construction
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Algorithmic construction: Greedy method

Greedy method used in the AETG system (D. Cohen, Dalal,
Fredman and Patton (1997)):
“Choose one test at a time. At each stage select a test that covers
the maximum number of uncovered pairs.”

Good news: for fixed g, CA size is proportional to log k.

Bad news: to pick a test covering the maximum number of
uncovered tests is NP-complete, so the authors use a heuristic
for test selection which does not guarantee the logarithmic
growth.

The DDA (determinisitc density algorithm) by M. Cohen, Colbourn
and Turban (2004):

greedy method that runs in polynomial time;

for fixed g, CA size is proportional to log k; this is based on a
guarantee that each selected test cover the average number of
uncovered tests.

Covering Arrays and Generalizations Lucia Moura
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CAs with g=2 are extremal set systems

1 1 1 1
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5 column4

column3

column2

column1

complement:

{1,2}

{1,3}

{1,4}

{1,5}

{3,4,5}

{2,4,5}

{2,3,5}

{2,3,4}

base set = {1,2,3,4,5}

set system S C

S must be pairwise intersecting: pair (1, 1) is covered.

C must be pairwise intersecting: pair (0, 0) is covered.

each of S and C must have the Sperner property: pairs (0, 1)
and (1, 0) covered.
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Sperner theorem for set systems

A system of subsets of an n-set has the Sperner property if no two
subsets in the system are comparable.

{2} {3} {4}

 {}

{1}

{1,3} {1,4} {2,3} {2,4}{1,2}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{3,4}

Sperner’s Theorem (1928)

If A has the Sperner property, then |A| ≤
(

n
bn

2
c
)
.

The upper bound is only acchieved by the set of all (bn
2 c)-subsets

of the n-set, or by its (subsetwise) complement.
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Erdos-Ko-Rado theorem for set systems

A system of subsets of an n-set is (pairwise) intersecting if every
two subsets in the system have nonempty intersection.
Examples:
(n = 5) A = {{1, 2, 3}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}
(n = 6) B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4},

{1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}}

Erdos-Ko-Rado Theorem (1961)

Let A be an intersecting system of subsets of an n-set, such that
each subset has cardinality at most k.
If n ≥ 2k, then |A| ≤

(
n−1
k−1

)
.

Moreover, if n > 2k, then equality holds if and only if A is a
k-uniform trivially intersecting system.
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Optimal construction for binary alphabet

Pick all bn/2c-subsets of [1, n] that contain a common element.

n odd:
1 2 3 4 5
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

n even:
1 2 3 4 5 6
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
1 0 0 0 1 1

Note: the arrays are transposed here (k × n).
Both A and A are intersecting and Sperner.
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The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n, t = 2, g = 2) =
(

n−1
bn/2c−1

)
. Moreover, this bound is

attained by a bn/2c-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to a CA.

(Case 1) n even.

A∗ = {A,A : A ∈ A} is Sperner.

Sperner’s theorem implies |A∗| ≤
(

n
n/2

)
.

|A| ≤ 1
2 |A

∗| ≤ 1
2

(
n

n/2

)
=

(
n−1

n/2−1

)
. �

(Case 2) n odd.

Wlog assume |A| ≤ bn/2c, for all A ∈ A.

A is 1-intersecting, so by the EKR theorem, |A| ≤
(

n−1
bn/2c−1

)
.
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Covering arrays are systems of set partitions

A covering array (strength 2) is a system of set-partitions:

0 0 0 1 1 1 2 2 2

0 0 01 1 12 2 2

0 0 01 1 12 2 2

0 2 01 2 12 00

1

0

0

1 2 3 4 5 6 7 8 9

1

10

column 1

column 4

column 3

column 2

{1,2,3,10}

{1,4,7,10}

{1,5,9}

{1,2,6,8} {4,9,10}

{2,6,7,10}
{2,5,8}
{4,5,6}

{3,6,9}
{7,8,9}

{3,4,8}
{3,5,7}

Maximization problem:
Given N , find a set partition system P with maximum |P|
that is (pairwise) strongly intersecting:
For all P,Q ∈ P we have

for all Pi ∈ P,Qj ∈ Q, Pi ∩Qj 6= ∅.
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Strongly intersecting condition: upper bound via 2-parts

Theorem (Stevens, Moura and Mendelsohn 1998)

CAK(n, 2, g) ≤ 1
2

(b 2n
g
c

bn
g
c

)
.

This theorem only uses the two smallest parts of each partition,
and the following fact:
Consider a pair of set systems, A1, A2, . . . , Ak and B1, B2, . . . , Bk,
with |Ai|+ |Bi| ≤ c and |Ai| ≤ a ≤ c/2, and such that
Ai ∩Bi = ∅, and all other sets intersect. Then, k ≤ 1

2

(
c
a

)
.

It is possible to relabel symbols of the covering array so that
|P1j | ≤ bn

g c and |P1j |+ |P2j | ≤ b2n
g c
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Stronly intersecting versus Sperner formulation

Strongly intersecting formulation:
Partitions P and Q corresponding to two columns of a covering
array must satisfy:

for all Pi ∈ P,Qj ∈ Q, Pi ∩Qj 6= ∅.

Strongly Sperner formulation:
Partitions P and Q corresponding to two columns of a covering
array must satisfy:

for all Pi ∈ P,Qj ∈ Q, Pi 6⊆ Qj and Pi 6⊆ Qj
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Sperner’s theorem for set-partition systems

largest cardinality k of a system P of g-partitions of [1, n] such that for
all Pi,Pj ∈ P:

∀P ∈ Pi,∀P ′ ∈ Pj(P 6⊆P ′andP ′ 6⊆P ). (Weakly) Sperner

Theorem (Meagher, Moura and Stevens 2005)

Let g, n such that n = cg + r and 0 ≤ r < g. Then,

Nn(∀,∀) ≤ 1

(g − r) + r(c+1)
n−1

(
n

c

)
.

Theorem (Meagher, Moura and Stevens 2005)

Let g, n such that g|n. Then, Nn(∀,∀) =
(

n−1
n
g
−1

)
. Moreover, this

bound is met if and only if the g-partitions are uniform (all parts
with cardinality n

g ).
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Example: weakly Sperner property

{1,2,3},{4,5,6}
{1,2,4},{3,5,6}
{1,2,5},{3,4,6}
{1,2,6},{3,4,5}
{1,3,4},{2,5,6}
{1,3,5},{2,4,6}
{1,3,6},{2,4,5}
{1,4,5},{2,3,6}
{1,4,6},{2,3,5}
{1,5,6},{2,3,4}

n=2g n=3g

{1,2,4},....

{1,2,6},...

{1,2,3},{4,5,6},{7,8,9}

{1,2,5},...

{1,8,9},{2,3,4}, {5,6,7}

.

.

.

.
{1,7,8},...
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Comparison of two bounds obtained

Theorem (Stevens, Moura and Mendelsohn 1998)

CAK(n, 2, g) ≤ 1
2

(b 2n
g
c

bn
g
c

)
.

Theorem (Meagher, Moura and Stevens 2005)

If g|n, then CAK(n, 2, g) ≤
(

n−1
n
g
−1

)
.

if g > 2, g|n, then

1

2

(2n
g
n
g

)
<

(
n− 1
n
g − 1

)
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Erdos-Ko-Rado theorem for set-partition systems

We are interested on a maximal partition system P such that:

each partition of [1, n] have g parts of size n
g ;

two partitions P,Q ∈ P are such that there exists Pi ∈ P and
Qj ∈ Q such that |Pi ∩Qj | ≤ p.

Useful for bounds on “anti-covering-arrays” for certain uniform
cases. Ex: n = g2, p = 2

Conjecture

Suppose g|n, and let c = n/g be the size of each part of the
(uniform) partition system. |P| =

(
n−p
c−p

)
U(n− c, g − 1).
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...

...

...

...

...

...

..

.
..
.

..

.
..
.

P

Q

R

p

c

Required property: Conjecture:
1 2 g

Conjecture has been proven for p = c:

Theorem (Meagher and Moura 2005)

Let n ≥ g ≥ 1 and let P ⊆ Un
g be a maximal partition system in

which every two partitions share at least one class. Let c = n/g.
Then, |P| = U(n− c, g − 1)
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Covering array on graphs

1

1

0
0

1

1

0
0

T
op

ic
Pr

of
es

so
r

St
ud

en
t

M
ee

tin
g 

pl
ac

e

paper1
paper2
paper3
paper4

Topic (
Professor (
Student (
Meeting place (

superconnectivity Cayley graphs
Anna Llado’ Oriol Serra

Jordi Moragas Amanda Montejano

)
)

)

)
/

Factors:

UPC /

/
/

tapas bar

factors influencing publication sucess with knwon SAFE INTERACTIONS:

1
1
0
0

1
1
0
0

for complete graph
min N = 5

For this graph
min N = 4
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Covering array on graphs: definition

Definition: Covering Array

A covering array on a graph G with alphabet size g and size n,
denoted by CA(n;G, g), is an n× k = |V (G)| array with symbols
from [0, g− 1] such that for every pair of columns corresponding to
an edge of G, every ordered pair in [0, g − 1]2 is covered at least
once.

Objective: given G and g find a covering array with mininum size
n.

CAN(G, g) = min{n : there exists a CA(n;G, g)}.

Determining CAN(G, 2) is NP-complete (Serousi and Bshouty)
reduction to 3-COLOUR.
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Graph homomorphisms

Definition: graph homomorphism

A graph homomorphism from graph G to graph H, denoted
G → H is a mapping from V (G) to V (H) that takes edges to
edges.

Vertex colouring = homomorphism to the complete graph with
numberOfColours vertices.

1

2 3
1

2

2

13

HG G H

See book “Graphs and homomorphisms” by Hell and Nesetril,
2004.
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Qualitative independence graph

The qualitative independence graph QI(n, g) has:

Vertex Set: all g-partitions of [1, n] that have every class of
size at least g.

Edges: two vertices are connected if their partitions are
qualitatively independent (P,Q are qualitatively independent
if Pi ∩Qj 6= ∅ for all i, j.)

134 | 25 145 | 23

125 | 34

135 | 24

124 | 35
15 | 234

12 | 345

13 | 245

123 | 45

14 | 235

124 | 35

135 | 24

Covering Arrays and Generalizations Lucia Moura



Introduction Constructions Extremal set systems Extremal set-partition systems Covering array on graphs Other generalizations

Why QI(n, g) are interesting?

Results by Meagher and Stevens (2005):

A k-clique in QI(n, g) corresponds to a CA(n, k, g);

A CA(n, G, g) exists if and only if there exists a graph
homomorphism G → QI(n, g);

CAN(G, g) = min{n : G → QI(n, g)}.
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Clique and chromatic bounds

Corollary (Meagher and Stevens 2005): If there exists a
homomorphism G → H, then CAN(G, g) ≤ CAN(H, g).

It is well-known that there exists homomorphisms:
Kω(G) → G → Kχ(G).

Therefore: CAN(ω(G), g) ≤ CAN(G, g) ≤ CAN(χ(G), g).

This gives the “colouring construction”:

k-colour the vertices of G.

build a CA(n, k, g).

pull back a CA(n, G, g).
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Colouring construction

k-colour the vertices of G.

build a CA(n, k, g).

pull back a CA(n, G, g).

1
1
1

0
0
0

2
2
2

1
1
1

0
0
0

2
2
2

2

2
1
0

1
0
2
1
0

2

2
1
0

1
0
2
1
0

a b c d e

1

2 3
1

2

2

13

G

1
1
1

0
0
0

2
2
2

2

2
1
0

1
0
2
1
0

1

2
1

2

1
0

2
0

a

b

d

e

c
1

2
1

2

1
0

2
0

0 0
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Binary alphabet results

ω(QI(n, 2)) =
(
n−1
bn

2
c
)

(Kleitman and Spencer, Katona 1973).

χ(QI(n, 2)) = d1
2

(
n

dn
2
e
)
e (Meagher and Stevens 2005)

If CAN(G, 2) ≤ n, then there exists a CAN(n, G, 2) with
dn

2 e 0’s per row (nearly balanced). (Meagher and Stevens
2005)

Conjecture for general g (Meagher)

If CAN(G, g) ≤ n, then there exists a CAN(n, G, g) that is
nearly balanced (each symbol appears either dn

g e or bn
g c times).

If true, we can concentrate on AUQI(n, g) (almost uniform
qualitative independence graphs)!
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Mixed covering arrays

Different factors/parameters can have different alphabet sizes.

0
1
1
2
2

1
0
1
0

0

1
0
0

0

0
1
1
0

0
1
1
0
1
0 1 1

1 1

gi =

0
22 2 2

0
3

References:

Moura, Stardom, Stevens and Williams, “Mixed covering
arrays”(2003)

Colbourn, Martirosian, Mullen, Shasha, Sherwood and Yucas,
“Pruducts of mixed covering arrays of strength two”(2006)

Sherwood, “A column expansion construction for optimal and
near-optimal mixed covering arrays” (preprint).

Covering Arrays and Generalizations Lucia Moura



Introduction Constructions Extremal set systems Extremal set-partition systems Covering array on graphs Other generalizations

Mixed covering arrays on graphs

Combine covering array on graphs with mixed alphabet sizes.
Reference:

Meagher, Moura, Zekaoui, ‘Mixed covering arrays on
graphs”,(to appear):
generalize graph homomorphism results; give optimal
constructions for special classes of graphs.

Cheng, “The Test Suite Generation Problem: Optimal
Instances and Their Implications”, preprint.
Give optimal constructions for special classes of graphs and
for hypertrees.
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Higher strength (t ≥ 3)

0

1 1 11 1
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

0 011 1
0 0 0 0

0 1 1 00
1 0 1 0
1 1 0 1 0

0

0 0 1 01

t=3
k=5
g=2

References:

Chateauneuf and Kreher, “On the state of covering arrays of
strength three ”, 2002.

Colbourn, Martirosyan, Trung, and Walker, “Roux-type
Constructions for Covering Arrays of Strengths Three and
Four” (2006).

etc.
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Locating arrays

We not only want to detect that an error exists, but we want to
know which t-interaction caused the error.
Related to design of experiments and combinatorial group testing.

mixed covering array 2*3*3*3*3*3

CT
0 0 0 0 0 1 1 1 1 1 1 11 0 0 0 0 01
0

0
0

0
0

0
0

0
0

0
0

0

0
0 0

0 0
0 0

0

0

0

0

0
0

0

1

1

2
2

1

1
2
2

1

1
2

1

1

2
2

2 1

1

2
2

2

2

1
1 1

1

2

2

1

1

2

2

1
1
2

2

1

1

2

2

1
1
2

2

1
2

2 1
2

2 1
2

2 1

2

2

1

0

2
2

0 1

2
2

1

2

2
0

0

1

2
2 2

2

1

d=1  t=2

Reference:

Colbourn and McClary, “Locating and detecting arrays:
existence and minimization”, preprint.

Work in progress by myself with Martinez, Panario and Stevens on
the adaptive problem.
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