
Branch-and-cut for symmetrical ILPs and
combinatorial designs

Sebastian Raaphorst

A thesis submitted in conformity with the requirements

for the degree of Master’s of Science (Computer Science).

School of Information Technology and Engineering

University of Ottawa

Ottawa, Ontario, Canada

October, 2004

Abstract

Many combinatorial problems can be formulated as a 0-1 integer linear program

(0-1 ILP), which consists of an objective function subject to linear constraints over 0-1

variables. A method called branch-and-cut has been successfully used to attack ILPs,

but ILPs are still difficult to solve in practice.

The problems we investigate demonstrate large numbers of equivalent (isomorphic)

solutions. We are only interested in generating one solution from each equivalence class.

To accomplish this, we study and extend a method by Margot [22] that avoids con-

sidering unnecessary partial solutions by generating an isomorph-free search tree. We

implement a branch-and-cut library, and solve combinatorial design problems involving

t-designs, packings, coverings and intersecting set systems.

We experimentally analyze the strengths and limitations of our algorithms and

determine when it is efficient to use isomorph-free branch-and-cut. Our framework

generates new results and reproduces, in competitive time, existing ones.

Acknowledgments

First and foremost, I would like to extend my deepest gratitude to my supervisor,

Lucia Moura, who not only helped me immeasurably on this thesis, but provided me

with opportunities while I was an undergraduate student that kindled my passion for

teaching and research.

I would also like to thank the other members of my defense committee, Sylvia Boyd

and Brett Stevens, for their feedback and suggestions on this thesis.

Additionally, I cannot thank Daniel Panario, Lucia, and Sylvia enough for happily

going out of their way to write me numerous letters and recommendations for funding

and applications. I’d also like to acknowledge Dr. François Margot for taking the time

to speak with me and help me with this work on many occasions, and, of course, for

his papers and algorithms.

Karen Meagher (the Meagherinator), my sassy office mate, kept things in our cell

lively and never failed to distract us from our work. A huge thank you to her for

helping me stave off insanity for yet another day. Blair Laugher was both a source of

motivation and emotional support; without him, this would not have been possible.

Norma Hannant, my best friend, encouraged me to no end and endured the roller

coaster ride of emotions that was this thesis.

Of course, I would like to thank my parents, Ginette and Peter Raaphorst, for always

standing behind me and offering me constant support, and for taking an interest in

my work. My cat, Fritz, and his insistence on us taking afternoon naps together in

sunbeams for much needed breaks cannot go without thanks as well.

Lastly, I would like to acknowledge my gratitude to my husband, Jeff, for all his

encouragement and companionship. His optimism helped me to persevere when I

thought that I couldn’t possibly manage to type another line of code. Here’s to all the

adventures we’ve shared together thus far, and for many more to come.

2

Contents

1 Introduction 6

1.1 Motivation and thesis overview . 6

1.2 Linear programs and integer linear programs 9

1.3 Group theory, permutation groups, and symmetry groups 10

1.4 Two examples of the effectiveness of isomorph-free branch-and-cut . . 14

2 Combinatorial design problems 21

2.1 t-(v, k, λ) designs, packings, and coverings 21

2.1.1 Block incidence ILP model for designs 23

2.1.2 Incidence matrix ILP model for designs 26

2.2 (v, k, t) intersecting set systems . 30

2.3 Isomorphism, canonical structures, and variable fixings 32

3 ILPs and branch-and-cut 35

3.1 Branch-and-Bound Technique . 35

3.2 Cutting Plane Technique . 38

3.3 Branch-and-Cut Technique . 41

4 Group theory algorithms and isomorph-free branching trees 44

4.1 The Schreier-Sims scheme and related algorithms 45

4.2 Algorithms for building isomorph-free branching trees 55

1

4.3 Variable fixings and the base . 71

4.4 Algorithms for calculating the symmetry group of an ILP 72

4.4.1 Näıve technique . 72

4.4.2 Backtracking / partitioning technique 74

4.4.3 Technique based on coloured graphs 81

4.4.4 Comparison of the three techniques 83

5 Cuts used and our cutting plane implementation 86

5.1 Cutting plane implementation . 86

5.2 Isomorphism cuts . 88

5.3 Clique Inequalities . 92

5.3.1 Generalized clique detection algorithm 94

5.3.2 t-(v, t + 1, 1) packing and design clique inequalities 96

6 Isomorph-free branch-and-cut for optimization and exhaustive gen-

eration 98

6.1 Search for a single optimal solution . 105

6.2 Generation of all optimal solutions . 107

6.3 Generation of all maximal solutions 108

6.4 Generation of all feasible solutions . 112

7 The NIBAC package: overview and user options 116

7.1 Constants and variable parameters . 126

7.1.1 Constants . 126

7.1.2 Variable parameters . 126

8 Experimental results and case studies 131

8.1 Setting up the default NIBAC configuration 134

8.1.1 The effects of varying [vmin, vmax] and [mmin, mmax] 134

2

8.1.2 The effects of different types of cuts 139

8.2 Using node groups versus tree groups 143

8.3 Case studies: solving various problems with NIBAC 146

8.3.1 Block incidence formulation for designs, packings, and coverings 146

8.3.2 Incidence matrix formulation for 2-(v, k, λ) designs 166

8.3.3 Intersecting set systems . 167

9 Conclusion and open questions 169

9.1 Conclusions on the suitability of NIBAC for ILP problems 171

9.2 Suitability of NIBAC to solve combinatorial design problems 174

9.3 Open questions and future work . 175

3

List of Algorithms

3.1.1 branch-and-bound . 37

3.2.1 cutting-plane . 41

3.3.1 branch-and-cut . 42

4.1.1 test . 49

4.1.2 enter . 50

4.1.3 down . 53

4.1.4 reverse-down . 55

4.2.1 0-fixing . 60

4.2.2 orbit-in-stabilizer . 62

4.2.3 orbit-in-stabilizer-aux . 62

4.2.4 first-in-orbit1 . 65

4.2.5 first-in-orbit1-aux . 65

4.2.6 first-in-orbit2 . 69

4.2.7 first-in-orbit2-aux . 69

4.4.1 find-symmetry-group1 . 73

4.4.2 find-symmetry-group2 . 76

4.4.3 find-symmetry-group3 . 83

5.1.1 cutting-plane . 89

5.2.1 isomorphism-cuts . 90

5.2.2 isomorphism-cuts-aux . 91

4

5.3.1 general-clique-detection . 95

5.3.2 specialized-clique-detection . 97

6.0.3 get-next-node . 101

6.0.4 canonicity-test . 103

6.0.5 general-bac . 103

6.1.1 search-for-optimal . 106

6.2.1 generate-optimal . 109

6.3.1 maximality-test . 111

6.3.2 generate-maximal . 113

6.4.1 generate-all . 114

5

Chapter 1

Introduction

1.1 Motivation and thesis overview

In this thesis, we are interested in investigating the efficiency of using isomorph-free

and isomorph-reduced branch-and-cut trees to solve 0-1 integer linear programs that,

structurally, have a large number of symmetries.

In the study of combinatorics, there are many classes of problems that can be

formulated as an objective function that we wish to either maximize or minimize to

give an optimal solution subject to certain linear constraints over a set of variables.

Such a formulation is called an integer linear program (or ILP). If we restrict the values

of the variables to be either 0 or 1, we have a 0-1 integer linear program. Solving general

ILPs is a difficult problem and has been shown to be NP complete. Several techniques

have been established in order to solve ILPs: these include branch-and-bound [21, 40],

cutting-plane methods [13, 36, 40], and the branch-and-cut algorithm [1, 15, 16, 36, 40].

Thorough treatments of theory of ILPs can be found in [38] and [46].

Many combinatorial objects demonstrate a large number of isomorphs, which are

other objects that have the same structure. For a given problem, we can hence divide

the solutions into equivalence classes, or sets of objects with identical structure. In

6

the majority of cases, we are only interested in generating one object from each of

these sets, which we will call a canonical representative of the class. The others are

usually not of importance, and if they are, they may be trivially constructed from the

canonical representative.

These isomorphisms reflect themselves in the ILP formulation for the problem as

permutations over the variables or symmetries. Since the combinatorial questions that

we will be investigating have a large number of symmetries, it is our desire to discover

and exploit these symmetries with the goal of reducing the number of partial solutions

and solutions that we consider; this will allow us to limit our consideration of the

search space dramatically. One possible technique is to reject certain partial solutions

if we can ascertain that they will lead to noncanonical solutions. This is a partial

method that has been used successfully [34, 35]. Another option is to build a search

space that is entirely isomorph-free, i.e. we never consider a partial solution unless

we are guaranteed that it will lead to a canonical solution. Methods for exploring

nonisomorphic branch-and-cut trees have been proposed [22, 23].

It is the goal of this thesis to study and extend the isomorph-free branch-and-

cut framework presented by Margot [22]. We do so through implementing Margot’s

algorithms, and then extend them by adding the option to generate isomorph-reduced

trees and by expanding their applicability to four different types of problems: search

for an optimal solution, generation of all canonical optimal solutions, generation of

all canonical maximal solutions, and generation of all canonical feasible solutions. We

then apply this framework to several areas of interest with regards to combinatorial

designs to seek to gain insight into the capabilities and limitations of these algorithms,

and to attempt to obtain some new results. As a secondary goal, we wish to release an

efficient and flexible isomorph-free branch-and-cut programming library to the public

domain in order to facilitate solving search and generation problems.

The accomplishments of this thesis include a deeper understanding of the techniques

7

used by Margot and extended by us. We were able to highlight strengths and weak-

nesses of this approach, as well as determine what types of ILPs are better suited to

these algorithms. We were able to reproduce, with competitive times, some well-known

results from combinatorial design theory, and generate several new ones.

In the remainder of this chapter, we present some definitions regarding integer linear

programs and group theory that are necessary to the understanding of the framework

and the concept of a symmetry group. We also show examples demonstrating the great

reduction obtained on the search-tree sizes by using isomorph-free trees. Chapter 2 ex-

plores the combinatorial design problems that we are interested in addressing, and

demonstrates possible integer linear programs and their respective symmetry groups

for each problem. In Chapter 3, we provide a more detailed description of integer linear

programs and discuss branch-and-bound, cutting plane methods, and branch-and-cut.

In Chapter 4, we delve into the topic of symmetry groups, their representations as

data structures, the algorithms that exploit these representations in order to generate

isomorph-free or reduced branch-and-cut trees, and techniques for dynamically discov-

ering these groups. Our implementation of the cutting plane, along with the three

cuts that we used (two types of clique cuts, and Margot’s isomorphism cuts [22]) are

presented in Chapter 5. In Chapter 6, we describe algorithms for the four types of prob-

lems that our framework is able to address: search for an optimal solution, generation

of all canonical optimal solutions, generation of all canonical maximal solutions, and

generation of all canonical solutions. In Chapter 7, we explain our specific implemen-

tation. We proceed to use our framework to solve several different families of problems,

and provide our experimental results in Chapter 8. We present a summarized analysis

of these results, and discuss potential questions for future research in Chapter 9.

8

1.2 Linear programs and integer linear programs

There is a large class of optimization problems that can be formulated as a set of

variables and a linear function that we wish to maximize or minimize over the variables

subject to a certain set of linear constraints, or inequalities. While the origins of solving

optimization problems with equalities dates back to Lagrange, linear programming is

largely recognized as having developed in the 1940s to solve planning problems for

war operations. After the second world war had ended, industry became aware of the

power of linear programs, and it rapidly gained widespread acceptance. Both George

B. Dantzig (who introduced the simplex method) and John von Neumann (who derived

the theory of duality) are considered the founders of linear programming. The actual

name “linear programming” was suggested by T. Koopmans in 1948. [8, 10]

Definition 1.2.1. A linear programming problem, or LP, is a mathematical model of

the form:

Maximize cT x

subject to Ax ≤ b

where x is an n-vector of variables, c ∈ R
n, A ∈ R

m×n, and b ∈ R
m. We can similarly

define LPs that minimize the objective function.

Definition 1.2.2. Given a linear programming problem and an n-vector x∗, x∗ is a

feasible solution to the problem if Ax∗ ≤ b. We say that x∗ is an optimal solution if,

for any other feasible solution y∗, cT x∗ ≥ cT y∗.

Definition 1.2.3. An integer linear programming problem, or ILP, consists of an LP

with the added requirement that the variables take integer values. A 0-1 integer linear

programming problem is an ILP such that the values of all the variables are restricted

to either 0 or 1.

There are several techniques for solving linear programs: some of the most common

are the simplex method [8], the ellipsoid method [20], and the interior point method

9

[19].

Solving integer linear programming problems is a harder problem. We investigate

algorithms used to do so in Chapter 3. While the algorithms in that chapter can be

used to solve any ILP, in this thesis, our focus will be specifically on 0-1 ILPs.

1.3 Group theory, permutation groups, and sym-

metry groups

As we rely on permutation groups in our algorithms, we begin by presenting some

history and definitions from group theory. For an introduction to group theory, see

[39].

Group theory is one of the oldest and best studied fields in algebra. The develop-

ment of modern day group theory was largely driven by the work of Evariste Galois in

the early 19th century in his investigations of permutations of the roots of polynomi-

als. Even though prior to the introduction of the concepts of groups in their abstract

form it was common for mathematicians to work with permutation groups, the actual

definition of a group was not proposed until 1854 by Arthur Cayley [39].

Definition 1.3.1. A group is an ordered pair (G, ◦), where G is a set of elements and

◦ is a binary operation ◦ : G × G → G such that the following properties hold:

1. Associativity of ◦: for all a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c

2. Existence of an identity: there exists i ∈ G such that for all a ∈ G, a◦i = i◦a = a

3. Existence of inverses: for all a ∈ G, there exists b ∈ G such that a ◦ b = b ◦ a = i.

A group is finite if the set G contains a finite number of elements.

Definition 1.3.2. A subgroup G′ of a group G is a subset of G that is a group under

the operation of G. We say that G′ ≤ G.

10

When it is unambiguous to do so, we write a ◦ b simply as ab. For a ∈ G, we refer

to its inverse as a−1. If the operator on the group is implied, we omit the ordered-pair

notation and refer to a group simply by its base set G. We denote the identity element

of G as 1 or 1G to be precise if we are dealing with multiple groups.

Definition 1.3.3. A finite group G is said to be generated by a set X = {g0, g1, . . .} ⊆

G if for any g ∈ G,

g = gi0gi1 . . . with gij ∈ X for i = 0, 1, . . .

We then say that X generates G, denoted G = 〈X〉. If, by removing any element

x ∈ X, we have G 6= 〈X \ {x}〉, then we call X a minimal set of generators.

Representing a group by a set of generators is required to store large groups and

may be useful in algorithms involving them, as the ones proposed in Chapter 4.

A group G is said to act on a set X if, for all g ∈ G, we can define a bijection

g : X → X. An example of such groups are the permutation groups.

Definition 1.3.4. Let X be a set with a group G acting on it. For A ⊆ X, we define

the orbit of A in G as follows:

orb(A, G) = {g(A) | g ∈ G}.

We define the stabilizer of A in G as follows:

stab(A, G) = {g ∈ G | g(A) = A}.

If A = {x}, we omit set notation and simply write orb(x, G) and stab(x, G).

Definition 1.3.5. For a group G and a family of subgroups G0, G1, . . . , Gk−1, G is

said to be the direct product of G0, G1, . . . , Gk−1 (written G = G0 �G1 � . . .�Gk−1) if:

1. Gi ∩ Gj = {1G} for all {i, j} ⊆ Zk,

11

2. for all g ∈ G there exists g0 ∈ G0, g1 ∈ G1, . . . , gk−1 ∈ Gk−1 such that:

g = g0g1 . . . gk−1.

When we are discussing permutation groups, we use the term direct composition. If we

can find such a family of subgroups and minimal sets of generators X0, X1, . . . , Xk−1

for each subgroup, then X0 ∪ X1 ∪ . . . ∪ Xk−1 is a minimal set of generators for G.

Definition 1.3.6. Given two groups (not necessarily distinct), (G1, ◦) and (G2, ·), a

homomorphism φ is a mapping φ : G1 → G2 such that the following properties hold:

1. φ(1G1) = 1G2

2. for all a, b ∈ G1, φ(a ◦ b) = φ(a) · φ(b)

An isomorphism is a bijective homomorphism. Two groups are said to be isomorphic

if we can find an isomorphism from one to the other; we then consider them to be

structurally the same group. If G1 and G2 are isomorphic, we write this G1
∼= G2.

The groups that we shall be most interested in will be the groups of permutations

over a base set (for example, in the case of symmetry groups, the set of variables of

our ILP). If our base set is B with |B| = n, we denote the group of all permutations

over the elements of B as S(B). Let Zn denote the integers modulo n. As a matter of

simplicity, we denote the permutation group of Zn simply as Sn (the symmetric group

of order n). By choosing a bijection from B to Zn, we can use this bijection to create

an isomorphism from S(B) to Sn, and hence, we conclude that S(B) ∼= Sn. We will

often refer to permutations over arbitrary sets of size n as elements of Sn.

In this thesis, we will represent permutations interchangeably in two different ways:

the vector and the cycle notation. In the vector notation, if p ∈ Sn, we can identify p

with [a0, a1, . . . , an−1], where p(x) = ax for x ∈ Zn. In the cycle notation, a permutation

is written as a composition of disjoint cycle: a cycle c is a permutation represented by

12

a k-tuple (a0 a1 . . . ak−1) where:

c(x) =

x if x 6∈ {a0, . . . , ak−1},

ai+1 mod k if x = ai.

Any permutation p can be written as a product of disjoint tuples, which represent a

composition of cycles.

Example: Consider the permutation p ∈ S6 that maps 0 → 3, 1 → 1, 2 → 5, 3 → 4,

4 → 0, and 5 → 2. In vector notation, we represent p as [3, 1, 5, 4, 0, 2]. In cycle

notation, this is written (0 3 4)(2 5).

Theorem 1.3.1. The set {(0 1), (0 2), . . . , (0 n − 1)} is a set of minimal generators

of Sn.

If we have a permutation group G over a set S, we can define the action of a

permutation g ∈ G on a subset X ⊆ S as follows:

g(X) = {g(x) | x ∈ X}.

For a permutation group G over the set Zn and any set S, we may extend the action

of G to vectors in Sn. Let g ∈ G and s = (s0, s1, . . . , sn−1) ∈ Sn. Then:

g(s) = (sg−1(0), sg−1(1), . . . , sg−1(n−1))

Example: If we have the permutation g = (01)(245) ∈ S6 and a vector v = (0, 2, 3, 1, 2, 1) ∈

Z
6
4, then g(v) = (2, 0, 1, 1, 3, 2).

We will be interested in one type of permutation group called the symmetry group of

the ILP, which will be the basis for many of the algorithms that we will be examining.

Definition 1.3.7. Consider an ILP:

Maximize cT x

subject to Ax ≤ b

x ∈ {0, 1}n

13

where A ∈ R
m×n, c ∈ R

n, and b ∈ R
m. Let p ∈ Sn and q ∈ Sm, and let A(p, q) be the

matrix A with its columns permuted according to p and its rows permuted according

to q (via the above defined action of permutations on vectors). Define the group:

G = {p ∈ Sn | p(c) = c and there exists q ∈ Sm such that q(b) = b and A(p, q) = A}.

Clearly, G is a subgroup of Sn, and acts on the variables of our ILP. We call G the

symmetry group of the ILP.

1.4 Two examples of the effectiveness of isomorph-

free branch-and-cut

Example: The ILP:

ILP1: Maximize x1 + 2x2 + x3 + 2x4

subject to x1 +x2 = 2,

x1 +x3 = 1,

x2 +x4 = 1,

x3 +x4 = 2,

x ∈ {0, 1}4,

has symmetry group G = {1G, (1 3), (2 4), (1 3)(2 4)}. A standard branch-and-cut tree

with depth-first branching is given in Figure 1.1 and contains 23 nodes. An isomorph-

free branch-and-cut tree is shown in Figure 1.2 and contains only five nodes.

This ILP is small and not indicative of combinatorial problems that arise in the real

world. We present branch-and-cut trees for the generation of all canonical 2-(5, 3, 1)

designs to illustrate how isomorph-free branch-and-cut trees fare in practical problems:

Figures 1.3 and 1.4 show the tree for a standard branch-and-cut, and Figure 1.5 shows

the isomorph-free tree. There is only one unique solution; the full branch-and-cut tree

14

presents all 15 isomorphs in 175 nodes, whereas the isomorph-free tree gives one unique

solution in only seven nodes.

Even this problem is extremely small, having only 10 variables and 10 constraints,

and a symmetry group of size 120. For a larger problem, the 2-(8, 3, 1) packing gen-

eration, we have 56 variables and 28 constraints. Our standard branch-and-cut tree

contains 80063 nodes, whereas the isomorph-free tree contains only 33.

15

Figure 1.1: The standard branch-and-cut tree for the generation of all solutions to

ILP1.
16

x1=0 (−> x3=0)

[]

[1] []

[1,2] [1]

X

X

x1=1

x2=1

x3=x4=0

x2=0

(−> x4=0)

Figure 1.2: The isomorph-free branch-and-cut tree for the generation of all solutions

to ILP1.

17

Figure 1.3: Part 1 of the standard branch-and-cut tree for the generation of all solutions

to the 2-(5, 3, 1) design problem.
18

Figure 1.4: Part 2 of the standard branch-and-cut tree for the generation of all solutions

to the 2-(5, 3, 1) design problem. 19

x2=1

[]

[1] []

[1]

[1]

[1,2]

[1,6]

x1=1 x1=0

x6=0

(−> x9=x10=0)

x2=0

(−> x3=x4=x5=x7=x8=0)

x6=1

Figure 1.5: The isomorph-free branch-and-cut tree for the generation of all solutions

to the 2-(5, 3, 1) design problem.

20

Chapter 2

Combinatorial design problems

We now define the specific combinatorial problems in which we are interested, their

formulation as integer linear programs, their respective symmetry groups, and their

isomorphisms. More information regarding these structures may be found in [28, 33,

43, 44] and their integer programming formulations in [32, 35, 45].

2.1 t-(v, k, λ) designs, packings, and coverings

We are interested in studying the existence, generation, and enumeration of t-(v, k, λ)

designs, packings, and coverings.

Let
(

V

j

)
, where V is a v-set, denote {Q ⊆ V | |Q| = j}.

Definition 2.1.1. A t-(v, k, λ) design is a pair (V,B) in which V is a v-set and B is

a multiset with entries from
(

V

k

)
such that for all T ∈

(
V

t

)
, there exists a maximal

multiset {B0, . . . , Bλ−1} ⊆ B such that T ⊆ Bi for all i ∈ Zλ. We refer to V as the set

of points of the design, B as the set of blocks of the design, and λ as the index of the

design.

Typically, we let V = Zv, so we can simply describe a t-(v, k, λ) design by its list

of k-sets B.

21

Example: Here we demonstrate a 2-(7, 3, 1) design by listing its 3-sets, or triples.

Note that, as per the above definition, every 2-set, or pair, appears in exactly one of

the triples.

{{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

Theorem 2.1.1. A t-(v, k, λ) design contains λ
(v

t)
(k

t)
blocks.

Proof. There are
(

v

t

)
t-sets that must appear, each occurring in exactly λ blocks. Each

block contains
(

k

t

)
distinct t-sets. Hence to cover all λ

(
v

t

)
t-sets, we require λ

(v

t)
(k

t)
blocks.

Definition 2.1.2. A t-(v, k, λ) packing (resp. covering) is a pair (V,B) in which V is

a v-set and B is a multiset with entries from
(

V

k

)
such that for all T ∈

(
V

t

)
, there exists

a maximal (resp. minimal) multiset {B0, . . . , Bj−1} ⊆ B with j ≤ λ (resp. j ≥ λ) such

that T ⊆ Bi for all i ∈ Zj . For fixed t, v, k, λ, we are often interested in packings

(resp. coverings) with a maximum (resp. minimum) number of blocks: when we refer

to packings and coverings henceforth, unless otherwise explicitly stated, it is assumed

that this is what we mean. We call the quantity |B| the packing number (resp. covering

number).

Example: The following is a 2-(6, 3, 1) packing. Some 2-sets appear once (e.g. {1, 5})

and some do not appear at all (e.g. {0, 5}). It is easy to see that this packing is

maximal with respect to set inclusion.

{{0, 1, 2}, {0, 3, 4}, {1, 3, 5}, {2, 4, 5}}

Example: The following is a 3-(6, 4, 2) covering. Note that certain 3-sets appear more

than twice (e.g. {0, 1, 2}), but every 3-set appears in at least two 4-sets.

{{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}, {0, 1, 3, 4},

{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 2, 4, 5}, {0, 3, 4, 5},

{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}

22

There are two bounds, presented in Theorems 2.1.2 and 2.1.3, that we will use in

our branch-and-cut.

Theorem 2.1.2 (First Johnson bound). (Theorem 33.5 of [44].) For a t-(v, k, λ)

packing, the packing number is bounded above by:

⌊
v

k

⌊
v − 1

k − 1
. . .

⌊
λ(v − t + 1)

k − t + 1

⌋⌋⌋

.

Theorem 2.1.3 (Schönheim bound). (Theorem 8.6 of [43].) For a t-(v, k, λ) cov-

ering, the covering number is bounded below by:

⌈
v

k

⌈
v − 1

k − 1
. . .

⌈
λ(v − t + 1)

k − t + 1

⌉⌉⌉

.

2.1.1 Block incidence ILP model for designs

For any t-(v, k, λ) design, packing, or covering (Zv,B), B is a multiset with elements

from
(

V

k

)
. We represent D = (Zv,B) by a

(
v

k

)
λ vector X indexed by a pair (B, i) in

(
V

k

)
× Zλ such that:

x(B,c) =

1 if the c-th copy of B appears in B,

0 otherwise.

In this way, we have λ 0-1 variables corresponding to each of the possible blocks. This

allows a single block to occur up to λ times in a design.

In the case of packings (coverings), we want to maximize (minimize) the number of

blocks in our design, so our objective function becomes:

Maximize (Minimize)
∑

(B,c)∈(V

k)×Zλ

x(B,c).

If we are considering designs, the parameters uniquely determine the number of blocks

in our design (namely λ
(v

t)
(k

t)
) and hence it is a problem of feasibility and the objective

function is irrelevant.

23

The number of occurrences of a t-set T in blocks of the design can be counted by

the expression:
∑

(B,c)∈(V

k)×Zλ:T⊆B

x(B,c).

This gives us the following formulation for t-(v, k, λ) designs:

Find a feasible solution for
∑

(B,c)∈(V

k)×Zλ:T⊆B

x(B,c) = λ, T ∈
(

V

t

)
,

x(B,c) ≥ x(B,d), B ∈
(

V

k

)
, c < d, c, d ∈ Zλ,

x(B,c) ∈ {0, 1}, (B, c) ∈
(

V

k

)
× Zλ.

We obtain this formulation for t-(v, k, λ) packings:

Maximize
∑

(B,c)∈(V

k)×Zλ

x(B,c)

subject to
∑

(B,c)∈(V

k)×Zλ:T⊆B

x(B,c) ≤ λ, T ∈
(

V

t

)
,

x(B,c) ≥ x(B,d), B ∈
(

V

k

)
, c < d, c, d ∈ Zλ,

x(B,c) ∈ {0, 1}, (B, c) ∈
(

V

k

)
× Zλ.

For t-(v, k, λ) coverings, we have:

Minimize
∑

(B,c)∈(V

k)×Zλ

x(B,c)

subject to
∑

(B,c)∈(V

k)×Zλ:T⊆B

x(B,c) ≥ λ, T ∈
(

V

t

)
,

x(B,c) ≥ x(B,d), B ∈
(

V

k

)
, c < d, c, d ∈ Zλ,

x(B,c) ∈ {0, 1}, (B, c) ∈
(

V

k

)
× Zλ.

24

Example: The ILP for a 2-(5, 3, 2) packing is:

Maximize
∑

(B,c)∈(V

k)×Zλ

x(B,c)

subject to x012,0 + x012,1 + x013,0 + x013,1 + x014,0 + x014,1 ≤ 2

x012,0 + x012,1 + x023,0 + x023,1 + x024,0 + x024,1 ≤ 2

x013,0 + x013,1 + x023,0 + x023,1 + x034,0 + x034,1 ≤ 2

x014,0 + x014,1 + x024,0 + x024,1 + x034,0 + x034,1 ≤ 2

x012,0 + x012,1 + x123,0 + x123,1 + x124,0 + x124,1 ≤ 2

x013,0 + x013,1 + x123,0 + x123,1 + x134,0 + x134,1 ≤ 2

x014,0 + x014,1 + x124,0 + x124,1 + x134,0 + x134,1 ≤ 2

x023,0 + x023,1 + x123,0 + x123,1 + x234,0 + x234,1 ≤ 2

x024,0 + x024,1 + x124,0 + x124,1 + x234,0 + x234,1 ≤ 2

x034,0 + x034,1 + x134,0 + x134,1 + x234,0 + x234,1 ≤ 2

x012,0 ≤ x012,1

x013,0 ≤ x013,1

...
...

...

x234,0 ≤ x234,1

x(B,c) ∈ {0, 1}, (B, c) ∈
(

V

k

)
× Zλ .

We now investigate the structure of the symmetry group (say G) of this particular

formulation. We observe that symmetries over blocks consist of point relabelings,

which are simply all the permutations in Sv. For each g ∈ Sv, we have that, for

(B, c) ∈
(

V

k

)
× Zλ, g(x(B,c)) = x(g(B),c). Using this, we can construct an isomorphism

such that Sv
∼= G′ ≤ G. It turns out that these are the only symmetries of our ILP, so

G ∼= Sv. We thus have, by Theorem 1.3.1, that G ∼= 〈(0 1), (0 2), . . . , (0 (v − 1))〉.

Example: We present the symmetry group for the 2-(5, 3, 2) ILP given above by

25

examining the effects of the generators of S5 on the blocks:

(0 1) 7→ (x023,i x123,i)(x024,i x124,i)(x034,i x134,i), i ∈ Zλ

(0 2) 7→ (x013,i x123,i)(x014,i x124,i)(x034,i x234,i), i ∈ Zλ

(0 3) 7→ (x012,i x123,i)(x014,i x134,i)(x024,i x234,i), i ∈ Zλ

(0 4) 7→ (x012,i x124,i)(x013,i x134,i)(x023,i x234,i), i ∈ Zλ.

These 4 permutations generate G, which has size v! = 120.

2.1.2 Incidence matrix ILP model for designs

Here we investigate an ILP for designs based on incidence matrices. We limit our

examination to a specific case, namely 2-(v, k, λ) designs. This ILP formulation is

presented in more detail in [45], with additional notes in [35].

Definition 2.1.3. For a 2-(v, k, λ) design, the incidence matrix representing the design

is a v×b (where b = λ v(v−1)
k(k−1)

) matrix with entries from {0, 1}, such that row i represents

point i ∈ Zv and column j represents Bj, the jth block in B. If we let xi,j represent

the value in row i, column j of our matrix, we have that:

xi,j =

1 if i ∈ Bj

0 otherwise.

Example: If we have the following 2-(7, 3, 1) design:

{{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

we obtain the following incidence matrix representing the design, where the rows rep-

26

resent the point configurations and the columns represent the blocks:

1 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1

0 1 0 1 0 1 0

0 1 0 0 1 0 1

0 0 1 1 0 0 1

0 0 1 0 1 1 0

For a 2-(v, k, λ) design, which is represented by v rows and b = λ v(v−1)
k(k−1)

columns,

we create v · b variables xi,l, with i ∈ Zv, l ∈ Zb. As this is a feasibility problem, we do

not require an objective function. Given that each column represents a block and each

block is a k-set of Zv, we obtain the following b equations, one per block:

∑

i∈Zv

xi,l = k, l ∈ Zb

For a block l, pair {i, j} occurs in block l if and only if xi,l and xj,l are both 1, i.e.

xi,lxj,l = 1. Hence, to force each pair {i, j} to appear exactly λ times, we have the

following equations, one for each pair:

∑

l∈Zb

xi,lxj,l = λ, {i, j} ⊂ Zv

Since these equations are non-linear, we need to linearize them in order to include

them in the ILP. We do so by introducing additional variables: for each block Bl ∈ B

and each pair {i, j} ⊂ Zv, we create a variable yl
i,j, where:

yl
i,j =

1 if {i, j} ∈ Bl,

0 otherwise.

Again, this is equivalent to saying that yl
i,j = 1 if and only if xi,l = 1 and xj,l = 1, so

27

we derive three constraints to ensure that this is the case:

−xi,l + yl
i,j ≤ 0

−xj,l + yl
i,j ≤ 0

xi,l + xj,l − yl
i,j ≤ 1

We can then remove the non-linear pair constraints and replace them with:

∑

l∈Zb

yl
i,j = λ, {i, j} ⊂ Zv

Thus, our incidence matrix ILP formulation for 2-(v, k, λ) designs is as follows:

Maximize
∑

i∈Zv

∑

l∈Zb
xi,l

subject to
∑

i∈Zv
xi,l = k, l ∈ Zb,

∑

l∈Zb
yl

i,j = λ, {i, j} ⊂ Zv,

−xi,l + yl
i,j ≤ 0, l ∈ Zb, {i, j} ⊂ Zv,

−xj,l + yl
i,j ≤ 0, l ∈ Zb, {i, j} ⊂ Zv,

xi,l + xj,l − yl
i,j ≤ 1, l ∈ Zb, {i, j} ⊂ Zv,

xi,l ∈ {0, 1}, l ∈ Zb, i ∈ Zv,

yl
i,j ∈ {0, 1}, l ∈ Zb, {i, j} ⊂ Zv.

We do not provide an example for this formulation; the smallest design of interest

is 2-(7, 3, 1), which has 196 variables, making it infeasible to present here in its entirety.

We now investigate the symmetry group G of this formulation. We can derive two

subgroups of G: Gr, the row permutations of G, and Gc, the column permutations of

G. We then claim that G = Gr �Gc, the direct composition of Gr and Gc. Hence, we

determine minimal sets of generators for each of these subgroups.

We first consider Gr. This subgroup consists of all row permutations of the matrix;

as the rows represent the points of our design, each row permutation is equivalent to a

point permutation, and hence Gr is isomorphic to Sv. Thus, as from Theorem 1.3.1, we

know that Sv = 〈(0 1), (0 2), . . . , (0 v − 1)〉, we need simply examine the corresponding

28

row transpositions. For a generator (0 i) of Sv, we swap rows 0 and i of our incidence

matrix, resulting in the following permutation over the x variables:

(x0,0 xi,0)(x0,1 xi,1) . . . (x0,v−1 xi,v−1)

As the y variables are simply secondary variables and their values are imposed by the

values of the x variables, we do not need to consider the action of our permutations

upon them. We will never consider these variables in the branch-and-cut or in solutions,

so they are unimportant.

We now turn our attention to Gc, the subgroup of column permutations. These are

simply reorderings on the blocks of our design, and hence can be viewed as a subgroup

isomorphic to Sb. From Theorem 1.3.1, we know that Sb = 〈(0 1) . . . (0 b − 1)〉, and

hence, for each generator (0 l) of Sb, it suffices to find the corresponding generator

of Gc. We first investigate the action of (0 l) on the x variables of our ILP; this

simply involves swapping columns 0 and l, which gives us the following composition of

transpositions:

(x0,0 x0,l)(x1,0 x1,l) . . . (xv−1,0 xv−1,l)

Again, as in the case of Gr, we do not need to consider the action of our permutations

upon the y variables and can simply ignore them.

Thus, as G = Gr �Gc, we have that our group G has as a minimal set of generators

the above mentioned permutations and may be represented by (v − 1) + (b − 1) =

v + b − 2 permutations instead of explicitly listing all v!b! permutations in the group.

We note that for 2-(7, 3, 1) designs, |G| = 7!7! = 25401600, whereas our minimal set of

generators is of size 12.

It is possible to add constraints to the ILP that force the blocks of the design to

appear only in lexicographically increasing order. Instead of translating each block

directly into lexicographical number, which would have added a large number of con-

straints to the problem, we assigned a value to each block. We begin by defining a

29

function:

φ :
(

Zv

k

)
→ Z

{v0, . . . , vk−1} 7→ 2v−v0−1 + . . . + 2v−vk−1−1
.

It is then clear that, for two blocks B1 and B2, B1 < B2 if and only if φ(B1) < φ(B2).

On 32 bit architectures, this inherently limits us in that v < 32, but this poses no

constraints for the range of values that we are able to test.

In order to ensure the ordering on the blocks, we can thus add the following family

of v − 1 constraints to the design:

∑

i∈Zv

2v−i−1xi,l −
∑

j∈Zv

2v−j−1xj,l−1 ≥ 0, l ∈ Z v(v−1)
k(k−1)

\ {0}.

This is equivalent to evaluating φ on the block in column l and ensuring that it is

lexicographically greater than the block in column l − 1. This has the advantage of

eliminating the column permutations from the symmetry group, thus shrinking its size

from v!b! to v!; however, experimentally, this was shown to be detrimental to execution

time (Section 8.3.2), so we omit these constraints by default.

2.2 (v, k, t) intersecting set systems

Another family of combinatorial problems that is difficult to solve in practice without

taking isomorphism into account is the problem of intersecting set systems. These have

been investigated in [33].

Definition 2.2.1. A (v, k, t) intersecting set system is a pair (V,B) where V is a v-set

and B ⊆
(

V

k

)
is a set such that for all B1, B2 ∈ B, |B1 ∩ B2| ≥ t. We call V the base

set of the intersecting set system, and B the intersecting sets. We are interested in

maximal intersecting set systems.

As with designs, packings, and coverings, we may take V = Zv. In this case, we

may describe an intersecting set system simply by listing the members of B.

30

Example: Two distinct (6, 4, 3) intersecting set systems:

I1 = {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}}

I2 = {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}, {1, 2, 3, 4}}

We proceed to investigate an ILP formulation for (v, k, t) intersecting set systems.

We represent I = (Zv,B) by a
(

v

k

)
vector x indexed by B ∈

(
V

k

)
such that:

xB =

1 if B ∈ B,

0 otherwise.

As we are interested in finding maximal intersecting set systems, our objective

function becomes:

Maximize
∑

B∈(V

k)

xB

Let I = (Zv,B) be an intersecting set system. By definition, for Bi, Bj ∈
(

V

k

)
, if we

have that |Bi ∩ Bj| < t, then only one of {Bi, Bj} can appear in B, which leads us to

the following constraint:

xBi
+ xBj

≤ 1.

Hence, the ILP formulation for a (v, k, t) intersecting set system is:

Maximize
∑

B∈(Zv
k)

xB

subject to xBi
+ xBj

≤ 1, {Bi, Bj} ⊆
(

Zv

k

)
, |Bi ∩ Bj | < t,

xB ∈ {0, 1}, B ∈
(

Zv

k

)
.

31

Example: Here is the ILP for (5, 3, 2) intersecting set systems:

Maximize
∑

i∈Z10

xi

subject to x012 + x034 ≤ 1

x012 + x134 ≤ 1

x012 + x234 ≤ 1

x013 + x124 ≤ 1

x013 + x234 ≤ 1

x014 + x023 ≤ 1

x014 + x123 ≤ 1

x014 + x234 ≤ 1

x023 + x124 ≤ 1

x023 + x134 ≤ 1

x024 + x123 ≤ 1

x024 + x134 ≤ 1

x034 + x123 ≤ 1

x034 + x124 ≤ 1

xB ∈ {0, 1}, B ∈
(

Zv

k

)
.

The symmetry group for a (v, k, t) intersecting set system is the same as for the

block incidence formulation for designs: namely a group isomorphic to Sv.

2.3 Isomorphism, canonical structures, and vari-

able fixings

Packings, coverings, designs, and intersecting set systems clearly have some common-

alities. This will allow us to generalize and define the concept of isomorphism over

these problems.

32

Definition 2.3.1. Let V be a v-set, and B ⊆ P(V). We call (V,B) a set system.

Definition 2.3.2. Two set systems D1 = (Zv,B1) and D2 = (Zv,B2) are isomorphic

if there exists a permutation g ∈ Sv such that g(B1) = B2. This is denoted D1
∼= D2.

An automorphism of a set system D = (Zv,B) is an isomorphism g from D to itself,

that is, g(B) = B. As Sv is a group, isomorphism is an equivalence relation. We refer

to the equivalence classes of an isomorphism as isomorphism classes.

Using the standard subset lexicographical ordering on subsets of a base set Zn, an

ordering on set systems is well-defined. Let D1 = (Zn,B1) and D2 = (Zn,B2) be two

distinct structures with B1 = {B1,0, B1,1, . . . , B1,m} and B2 = {B2,0, . . . , B2,l}, indexed

by lexicographical ordering on subsets. We say that D1 is lexicographically smaller

than D2, denoted D1 < D2, if there exists i ∈ Zm+1 such that B1,j = B2,j for all 0 ≤ i

and B1,i < B2,i, or if l > m and B1,i = B2,i for all 0 ≤ i ≤ m. If a set system D1

is either lexicographically smaller than or equal to another set system D2, we write

D1 ≤ D2.

Definition 2.3.3. Given an isomorphism class I, if D ∈ I has the property that

D ≤ D′ for all D′ ∈ I, we say that D is canonical (or the canonical representative of

I).

It is then our goal to generate only canonical representatives.

We now determine variables of the ILPs that can be fixed without loss of generality

due to our choice of canonical structures. First, since in all problems considered, the

symmetry groups act transitively on the variables, we can always select the lexicograph-

ically smallest k-set, namely {0, 1, . . . , k − 1}. In the case of t-(v, k, 1) designs, we can

select the k-sets passing through {0, . . . , t−2} as the lexicographically smallest partial

design with k-sets containing {0, . . . , t − 1} and all other elements distinct, namely:

{B0, B1, . . . , B v−(t−1)
k−(t−1)

} with Bi = {0, 1, . . . , t−2, ik−(i−1)(t−1), . . . , (i+1)k−it−1}.

33

Furthermore, we can select the smallest k-set not repeating an already covered t-set,

namely {0, 1, . . . , t − 3, t − 1, k, . . .}.

Example: In the 2-(7, 3, 1) design formulation we know that any optimal canonical

solution contains the blocks {0, 1, 2}, {0, 3, 4}, {0, 5, 6}, and {1, 3, 5}.

34

Chapter 3

ILPs and branch-and-cut

In this chapter, we examine three different techniques that can be used to solve general

ILPs: the branch-and-bound, the cutting plane, and the branch-and-cut algorithms.

3.1 Branch-and-Bound Technique

The idea behind the branch-and-bound technique is that, given an ILP, we will implic-

itly examine all possible integer solutions and find one that is an optimal solution.

Branch-and-bound employs a search tree to examine the solution space of the ILP.

An important aspect of this method involves “bounding”, which, for a maximization

problem, requires finding an upper bound on a subproblem. Then, we can prune

a branch of the search tree whenever the upper bound on this subproblem is small

enough to certify that no optimal solution can be found there. A useful upper bound

is given by the LP relaxation.

Definition 3.1.1. Given an ILP, we may remove the integrality constraints. The

resultant LP is called the LP relaxation of the original ILP. For a 0-1 ILP, we substitute

the integrality constraints xi ∈ {0, 1} by 0 ≤ xi ≤ 1.

35

Theorem 3.1.1. Given a maximization ILP, the optimal solution of the LP relaxation

provides an upper bound on the solution for the ILP.

Proof. Clearly, as all we have done is remove integrality constraints, if x is a solution

to our ILP, then x is a solution to the LP relaxation. Hence, the LP relaxation contains

all the solutions of our original ILP, and may contain real-valued solutions with larger

objective value.

A general branch-and-bound algorithm is given in branch-and-bound (Algorithm

3.1.1). We begin with a root node which represents the original ILP, and a variable,

say opt, which stores the value of the best solution found. The term fathoming is syn-

onymous with the idea of pruning, or removing nodes from our tree without exploring

their associated subtree. This algorithm is presented for maximization problems, but

may be easily altered to solve minimization problems.

There are many possible variations of this algorithm; for instance, we may explore

the tree using a depth-first, breadth-first, or best-first approach. These all present

certain advantages and disadvantages. We will use depth-first search in the algorithms

of Chapter 4, since it is required by some of the algorithms that eliminate isomorphs.

An important concept to note about this algorithm is that, given a node n, the ILPs

represented by the child nodes of n are simply subproblems of the ILP represented by

n. Hence, the solution to the LP relaxation of n serves as an upper bound for the

solutions in the search space of the subtree rooted at n. The consequences of this are

twofold: first, if the upper bound at n is less than the best solution found so far, we

know that we will not find a better solution in the subtree rooted at n, so we may

simply fathom this node; and secondly, if the solution of the LP relaxation at n gives

us an integer solution, then this integer solution is optimal for the problem represented

by n, so for search problems, we may also fathom.

The branch-and-bound technique will always solve an ILP and provide an optimal

solution. However, the number of nodes in the search tree can become quite large

36

Algorithm 3.1.1 branch-and-bound(ILP I)

opt = −∞, values = null

create tree T with root node representing I

while T has unexplored nodes do

get the next unexplored node n of T and its depth i

try to solve the LP relaxation for the ILP associated with n

if the LP relaxation is infeasible then

fathom node n and loop

end if

obtain the objective solution sol with variable value vector v

if sol < opt then

fathom node n and loop

end if

if v is integer then

if sol > opt then

opt = sol

values = v

end if

fathom node n and loop

end if

branch on xi to create subnodes n0 (xi = 0) and n1 (xi = 1)

end while

return (opt, values)

37

even for small problems, thus making them prohibitively difficult to solve using this

technique.

3.2 Cutting Plane Technique

Another technique that may be used to solve an ILP is the cutting plane technique. We

outline the general idea for this method here along with some of the geometry behind

its use; more thorough treatments may be found in [13], [38], and [46].

Suppose that we have an ILP over n variables. We can geometrically think of the

set of solutions to the ILP as a set of points in the space R
n. As we will specifically

be dealing with 0-1 problems, we can think of our solution space as a subset of {0, 1}n

and the space of our LP relaxation as a subset of [0, 1]n, but we examine the cutting

plane method from a general viewpoint. We begin by investigating some definitions.

Definition 3.2.1. Let S ⊆ R
n. Then x ∈ R

n is said to be a convex combination of the

points in S if there exists {x1, . . . , xt} ⊆ S, a finite subset, and λ = (λ1, . . . , λt) ∈ (R+)t

such that:

x =
t∑

i=1

λixi

and

t∑

i=1

λi = 1.

The set of all convex combinations of the points in S is called the convex hull of S and

is denoted conv(S).

We provide, but do not prove the following theorem regarding convex hulls.

Theorem 3.2.1. (From [38].) Let S ⊆ R
n, c ∈ R

n. Then:

max{c · x | x ∈ S} = max{c · x | x ∈ conv(S)}.

38

Definition 3.2.2. A polyhedron P ⊆ R
n is a set of points that satisfy a finite system

of linear inequalities:

P = {x ∈ R
n | Ax ≤ b}

where A is an m × n matrix over R. A polyhedron P is said to be bounded if there

exists a w ∈ R
+ such that:

P ⊆ {x ∈ R
n | − w ≤ xj ≤ w, j = 1, . . . , n}.

A bounded polyhedron is called a polytope. For an example, see Figure 3.1.

� �� �

� �� �

� �� �

� �� �

� �	 	

2

1

3

321

2x + 3x <= 61 2

x − x <= 21

� �

2

Figure 3.1: Example of a polytope

The above diagram shows the polytope for the LP relaxation of the following ILP:

2x1 + 3x2 ≤ 6

x1 − x2 ≤ 2

x1, x2 ≥ 0

x1, x2 ∈ Z

The shaded area with the darkened outline represents the polytope P defined by the set

of solutions to the LP relaxation. The points represent the family of integer solutions

to the problem.

39

Definition 3.2.3. A set {x1, . . . , xt} ⊆ R
n is said to be affinely independent if:

t∑

i=1

λixi = 0 and
t∑

i=1

λi = 0 implies λi = 0.

The maximum number of affinely independent points for the polytope P = {x ∈

R
n | Ax = b} is n + 1 − rank(A). We say that P is of dimension k if the maximum

number of affinely independent points for P is k + 1, and we denote this dim(P) = k.

Definition 3.2.4. An inequality ax ≤ b is said to be valid for a polyhedron P if all

points in P satisfy it, i.e. ax ≤ b for all x ∈ P . If an inequality ax ≤ b is valid, then

the set

F = {x ∈ P | ax = b}

is called a face of P . A face of P is called a facet if dim(F) = dim(P)−1. An inequality

that defines a facet is known as a facet-inducing inequality.

For each facet F of a polytope P , one of the inequalities defining F is necessary for

the modeling of P . In addition, for full-dimensional polytopes, the facet inequalities

are sufficient for describing P .

We now turn our attention specifically to ILPs. If P = {x ∈ (R+)n | Ax ≤ b}

is a polytope, and S = P ∩ Z
n, then either S = ∅ or S contains a finite number of

points. By theorem 3.2.1, we can solve the integer program max{c · x | x ∈ S} by

focusing our attention on max{c · x | x ∈ conv(S)}. Hence, we want conv(S), which

will give us all feasible and possibly maximal solutions to our ILP described by S. To

do this, it suffices to find the facets of conv(S). This is the motivation behind the

cutting plane technique, which iteratively tries to discover these facets by generating

“cuts” (i.e. valid inequalities) that describe conv(S). We do this using integrality and

the linear inequalities of P themselves; we begin with a family of linear inequalities of

the form Ax ≤ b, and if they are not sufficiently strong to describe conv(S), we refine

them into stronger ones. There are many different types of cuts, both general and

40

problem-specific, that may be constructed. General ones include the Chvátal-Gomory

cuts [13] and specific ones include cuts for packing problems which will be used in this

thesis [22, 35, 36, 37, 38].

The algorithm cutting-plane (Algorithm 3.2.1) provides pseudocode detailing a

typical cutting-plane method. The step in which we generate one or more cuts such

that the nonintegral solution to our LP relaxation, x, is not valid is called the separation

phase, as we separate x from the family of solutions to our ILP.

Algorithm 3.2.1 cutting-plane(ILP I)

loop

solve the LP relaxation of I to get solution x

if x is integer then

return x

end if

generate a valid inequality for I that is violated by x

end loop

While the cutting plane approach has fewer subproblems to deal with that a pure

branch-and-bound technique, it has the disadvantage that after several iterations, it is

typical for cuts to show little improvement towards obtaining an integer solution. In

essence, we cut off progressively smaller and smaller pieces of the polyhedron of the LP

relaxation. This phenomena is called tailing off. Depending on the choice of cuts and

the severity of the tailing off, it is possible that we may never reach an integer solution

using this technique.

3.3 Branch-and-Cut Technique

Due to the inherent limitations of each of the two above techniques, a third method

called branch-and-cut (as coined by Padberg and Rinaldi in [40]) was created that

41

Algorithm 3.3.1 branch-and-cut(ILP I)

opt = −∞, values = null

create tree T with root node representing I

while T has unexplored nodes do

get the next unexplored node n of T and its depth i

while criterion are satisfied to continue the cutting plane do

solve the LP relaxation of the ILP of n

if the LP relaxation is infeasible then

break and loop on the next node

end if

obtain the objective value sol with variable value vector v

if sol < opt then

fathom node n and loop to process the next one

end if

if v is integer then

if sol > opt then

opt = sol

values = v

end if

fathom node n, break, and loop to process the next node

end if

generate valid inequalities for the ILP that are violated by v

end while

branch on xi to create subnodes n0 (xi = 0) and n1 (xi = 1)

end while

return (opt, values)

42

combines the strengths of both branch-and-bound with those of the cutting plane

algorithm while guaranteeing that we will reach an integer solution.

The idea is that, given a node, we perform the cutting plane algorithm until some

criterion is no longer satisfied: usually, we measure the quality of the cuts to determine

if we are tailing off, or ascertain whether or not our algorithm is producing a sufficient

number of cuts to make it worthwhile to continue. When the cutting plane algorithm

seems to be contributing little towards integrality, we opt to branch as in branch-and-

bound. We continue in this fashion until all relevant nodes in our search space have

been processed. This method is shown in branch-and-cut (Algorithm 3.3.1).

For our implementation, we use a modified branch-and-cut tree where each node

is tested for canonicity prior to processing as described in Chapter 4. The details of

the cutting plane algorithm we use are given in cuttingplane (Algorithm 5.1.1) in

Chapter 5.

43

Chapter 4

Group theory algorithms and

isomorph-free branching trees

Many of the problems that we will investigate are impractical if we solve them in a

standard branch-and-cut framework as the number of nodes is far too high to process;

however, these problems often present a large number of “symmetries”, and if we are

not interested in equivalent solutions, we can simply ignore symmetric subproblems.

This has the possibility of dramatically reducing the number of nodes that we need to

consider.

A general review of group theory, along with definitions of permutation groups and

symmetry groups was presented in Section 1.3. We now proceed to examine ways to

store symmetry groups [21, 22], Margot’s techniques to exploit these groups to produce

isomorph-free branch-and-cut trees [22] and our extension of his algorithms in order

to explore isomorph-reduced trees, and three methods we derived to determine the

symmetry group of an arbitrary ILP.

44

4.1 The Schreier-Sims scheme and related algo-

rithms

In this section, we discuss an efficient way to store a permutation group. The two most

obvious ways to do this are to store either a list of all elements in the group, or to store

a minimal set of generators for the group. Neither one of these techniques is optimal

for our needs. In many problems of interest, the symmetry group is isomorphic, for

some v, to Sv, which has size v!. Because of this, even for small v, a complete list of all

permutations is inefficient to store. On the other extreme, Theorem 1.3.1 tells us that

Sv can be generated by the v − 1 permutations of the form (0 i), where i ∈ Zv \ {0}.

Thus, using this technique would require very little memory, but generating all the

v! permutations of the group may require a considerable amount of effort and many

compositions.

Instead of adopting either of these techniques, we use another intermediate approach

specifically designed for permutation groups called the Schreier-Sims scheme (see [21,

22]). This scheme stores a non-minimal set of generators such that it becomes easy

to construct any element in our group. Let G be a permutation group. We begin by

defining the following subgroups of G:

G−1 = G

G0 = {g ∈ G−1 | g(0) = 0}

G1 = {g ∈ G0 | g(1) = 1}

G2 = {g ∈ G1 | g(2) = 2}
...

...

This is clearly a nested family of subgroups of G (in the sense that Gn ≤ Gn−1 ≤ . . . ≤

G0 ≤ G). In addition, it is important to realize that Gi is the stabilizer of point i in

the group Gi−1. Thus, Gi stabilizes Zi.

45

Definition 4.1.1. Let G ≤ Sn be the symmetry group of our problem. Let T be an

n × n table with entries either in G or null (represented by 0) with Ti,j representing

the entry in the ith row and jth column of our table. For each k ∈ Zn, we calculate:

orb(k, Gk−1) = {k0, k1, . . . , kr−1}

which is the orbit, or images of k under the group Gk−1. Then, for each i ∈ Zr,

let gk,i ∈ Gk−1 be a permutation such that gk,i(k) = ki. Clearly, this is possible, as

ki ∈ orb(k, Gk−1). Define the entries of the table T as follows:

Tk,j =

1 if k = j,

gk,i if j = ki ∈ orb(k, Gk−1),

0 otherwise.

The table T is called the Schreier-Sims table, or the Schreier-Sims scheme of G.

We note that the table T is not unique for a group G; it is possible that we could

have chosen a different permutation from Gk−1 for each gk,i. However, the structure of

the table (i.e. the positions of the non-null entries) will always be the same, and the

table will always generate the same group, regardless of our choice of permutation.

Example: (From [22].) Let us consider all the symmetries of the 2 × 2 square shown

below:

0 1

2 3

There are eight such symmetries or permutations, namely the identity I, the rota-

tions R90 = (0132), R180 = (03)(12), and R270 = (0231), the reflection in the vertical

axis V = (01)(23), the reflection in the horizontal axis H = (02)(13), the reflection

in the main diagonal D1 = (12), and the reflection in the other diagonal D2 = (03).

Then, G−1 = G, G0 = {I, D1}, and G1 = G2 = G3 = {I}. We determine that

orb(0, G−1) = {0, 1, 2, 3}, orb(1, G0) = {1, 2}, orb(2, G1) = {2}, and orb(3, G2) = {3}.

A possible Schreier-Sims table for this group is then:

46

0 1 2 3

0 I V H R180

1 I D1

2 I

3 I

Theorem 4.1.1. (From [21, 22].) Given a permutation group G, a permutation g ∈ G,

and a Schreier-Sims table T representing G, we can find elements g0, g1, . . . , gn−1 in T

(where gi is an entry in row i of T) such that

g = g0g1 . . . gn−1.

Thus, the permutations in T generate the group G. We call such a set of generators a

strong set of generators, as every g ∈ G can be expressed as exactly the product of n

permutations of T .

Proof. The general idea is presented in [21, 22], but we expand on the details here.

Let g ∈ G be a permutation. We give a constructive proof which determines the

permutations gi. First, pick g0 to be the permutation in row 0 of T that maps 0 to

g(0), namely T0,g(0). By the property of the nested subgroups, all elements in row 1 of

T stabilize 0, so we can seek out a permutation g1 such that g(1) = g0g1(1), namely

T1,g−1
0 g(1). We repeat this process, observing that Zi is stabilized by all permutations in

rows i ≤ j ≤ n− 1 of T , so we can select permutation gi such that g(i) = g0g1 . . . gi(i),

namely Ti,g−1
i−1g−1

i−2...g−1
0 g(i). Then, it is clear that g0g1 . . . gn−1 = g.

We can extend and generalize the definition of the Schreier-Sims scheme by imposing

an arbitrary ordering on the elements of the set which we are permuting (i.e. Zn). We

call such an ordering the base of the table, and we represent it by an n-vector β with

the property that β[0] is the first element in our set, β[1] the second, etc. Then,

given any g ∈ G, we choose permutations g0, g1, . . . , gn−1 such that g0(β[0]) = g(β[0]),

g0g1(β[1]) = g(β[1]), etc. as opposed to our original construction.

47

The advantage to employing a base is that it greatly facilitates arbitrary orbit and

stabilizer calculations, as will be seen later in the algorithms orbit-in-stabilizer

(Algorithm 4.2.2), first-in-orbit1 (Algorithm 4.2.4), and first-in-orbit2 (Al-

gorithm 4.2.6). The disadvantage to such an approach is that, when we adjust the

base, we are required to rebuild, or at least re-order the table and re-enter certain

permutations.

From this point forward, when we discuss Schreier-Sims schemes, we assume that

we are discussing schemes that have a base imposed upon them.

The first two algorithms that we examine are used to build the table T itself.

We begin by investigating the test procedure [21, 22] as shown in Algorithm 4.1.1,

which, given a Schreier-Sims table T , a base β, a permutation p, and an index first,

returns the first i with β[i] ≥ first such that row β[i] of the table is modified by the

addition of p to T . If such a row does not exist (i.e. the permutation p can already

be constructed from T), then the algorithm returns n. We note that when adding

permutations to the table T , the value of first should always be 0. However, when

we modify the base of the table, we will need to remove and re-enter permutations,

and we can use the parameter first to improve efficiency; if we know that p stabilizes

the elements β[0], . . . , β[first − 1], then, certainly adding p to T will not modify the

rows corresponding to β[0], . . . , β[first− 1], so we do not need to check these rows in

the algorithm.

Theorem 4.1.2. The algorithm test (Algorithm 4.1.1) is correct and returns the index

i of the first row of our table that will be modified by the addition of p to our group and

a permutation p′ such that p′(j) = j for all j ∈ Zi and G ∪ {p′} = G ∪ {p}.

Proof. We give our own proof here, while the correctness has been shown in [22]. The

general idea behind this algorithm is to examine the Schreier-Sims table T to determine

if the permutation p can be constructed by a composition of strong generators as

detailed above. By construction, at the end of iteration j, we have found a permutation

48

Algorithm 4.1.1 test(T , β, p, first)

p′ = p

for i = first to n − 1 do

h = Tβ[i],p′(β[i])

if h 6= 0 then

p′ = h−1p′

else

return (i, p′)

end if

end for

return (n, p′)

fj = h−1
j h−1

j−1 . . . h−1
0 such that fjp(k) = k for all k ∈ Zj+1. The algorithm terminates

when we find an i such that fi−1p(k) = k for all k ∈ Zi but there is no permutation

h such that h pointwise stabilizes Zi and h(i) = fi−1p(i), and then returns i and

p′ = fi−1p.

Clearly, h0h1 . . . hi−1fi−1p = p, so by inserting fjp into row i, we can find generators

of the following form that construct p:

p = h0h1 . . . hi−1(fi−1p) 1 . . . 1
︸ ︷︷ ︸

n−i−1

.

If p is already an element represented by our table, no such i exists, and hence, the

algorithm returns n and fn−1p = 1 to indicate that this is the case.

The running time of the test algorithm is O(n2). This is because we iterate over

the n rows of the table, and for each row, permutation inverse and composition requires

n operations. Finding the permutation h can be done in constant time by the structure

of the table.

The next algorithm that we examine is used to add a permutation to the strong

set of generators representing our group G; it is hence called enter [21, 22], and the

49

general idea is outlined in Algorithm 4.1.2. Again, for a permutation p, if we know

that p stabilizes pointwise the elements β[0], . . . , β[first− 1], we may pass in a value

for the first parameter in order to reduce computation.

Algorithm 4.1.2 enter(T , β, p, first)

(i, p′) = test(T , β, p, first)

if i = n then

return

end if

Tβ[i],p′(β[i]) = p′

for j = first to i do

for k = 0 to n − 1 do

h = Tβ[j],k

if h 6= 0 and h 6= 1 then

p′′ = p′h

enter(T , β, p′′, first)

end if

end for

end for

for j = i to n − 1 do

for k = 0 to n − 1 do

h = Tβ[j],k

if h 6= 0 and h 6= 1 then

p′′ = hp′

enter(T , β, p′′, first)

end if

end for

end for

50

Theorem 4.1.3. (From [22].) The algorithm enter (Algorithm 4.1.2) adds the per-

mutation p to the group represented to the Schreier-Sims table T .

Proof. We follow the proof in [22] and expand with more details. Let G be the group

represented by T before performing enter. In order to show that enter works correctly,

it suffices to show that if T ′ is the table following a call to enter, then G′, the structure

arising from T ′, is a group that is generated by G and p. It is obvious that G ⊆ G′ and

clearly every element in G′ is a composition of permutations from G ∪ {p}. Hence, it

suffices to show that G′ is a group.

Let U ′
i represent the ith row of T ′. Then, we write U ′

iU
′
i+1 . . . U ′

j to indicate all the

permutations that can be generated by composing elements from row i to row j. Using

this notation, it is clear that:

G′ = U ′
0U

′
1 . . . U ′

n−1

We proceed by a proof by induction on n−i. Clearly, U ′
n−1 = {1} is a group. We will

show inductively that if Ai = U ′
i . . . U ′

n−1 is a group, then so is Ai−1 = U ′
i−1U

′
i . . . U ′

n−1.

Let x1, x2 ∈ Ai−1. We can find elements h1, h2 ∈ U ′
i−1 and g1, g2 ∈ Ai such that:

x1 = h1 ◦ g1,

x2 = h2 ◦ g2.

Obviously, g1 ◦ h2(j) = j for j ∈ Zi−1, as the elements of Ai fix all j < i, and the

elements of U ′
i−1 fix all j < i − 1. Because of the compositions in enter, there is an

h3 ∈ U ′
i−1 such that h3(i) = g1 ◦ h2(i). Hence, h−1

3 ◦ g1 ◦ h2 = g3 for some g3 ∈ Ai. This

gives us:

x1 ◦ x2 = h1 ◦ g1 ◦ h2 ◦ g2

= h1 ◦ h3 ◦ h−1
3 ◦ g1 ◦ h2 ◦ g2

= h1 ◦ h3 ◦ g3 ◦ g2

where g3 ◦ g2 ∈ Ai. By again considering the composition operation in enter, there

must be an h4 ∈ U ′
i−1 such that h4(i) = h1 ◦ h3(i), and hence, h−1

4 ◦ h1 ◦ h3 = g4 for

51

some g4 ∈ Ai. This gives us:

x1 ◦ x2 = h1 ◦ h3 ◦ g3 ◦ g2

= h4 ◦ h−1
4 ◦ h1 ◦ h3 ◦ g3 ◦ g2

= h4 ◦ g4 ◦ g3 ◦ g2

and h4 ◦ g4 ◦ g3 ◦ g2 ∈ U ′
i−1Ai. Thus, x1 ◦ x2 ∈ Ai−1, and hence, Ai−1 is closed under

composition. This implies that Ai−1 is a group. In particular, A−1 = G′ is a group.

Remark: We note that by Theorem 4.1.3, it suffices to add a minimal set of generators

for G to its Schreier-Sims scheme T in order to have T fully represent G. In fact, not

only is this sufficient, but it is desirable: for every permutation that we try to add to

our group, we require, in the bare minimum case, a call to the test algorithm, so in

order to represent the group, we would like to call enter only over a minimal set of

generators, if possible. This is why, in Chapter 2, we were concerned with finding a

minimal generating set for the symmetry group of each of the ILP formulations that

we described.

It is simple to make the enter algorithm nonrecursive by using a stack of permu-

tations. However, to do so will affect the order in which permutations are entered

into the table as the ordering in the stack will not be identical to the order in which

recursive calls are made. Thus, it may have an impact on time and memory costs. We

offer both implementations in our package.

Proposition 4.1.4. (From [22].) The algorithm enter runs in time O(n6).

Proof. This proof is taken from [22]. Inserting a permutation into a row is executed a

maximum of O(n2) times. This results in at most n2 (the number of non-zero entries in

the table) recursive calls to enter, for a total of O(n4) calls to enter. The compositions

can be accomplished in O(n), and the calls to test in O(n2). Hence, enter requires

at most O(n6) operations.

52

Later, we will see that one of the basic operations that is needed by the branching

algorithm involves making small changes to the base. One idea, for dramatic base

changes, would simply be to re-enter all the permutations in the table with regards to

the new base. However, depending on the structure of our table T , this could require up

to O(n2) calls to enter. Considering that, due to the nature of branch-and-cut, we will

be altering our base only in small, predictable ways, rebuilding the entire table would

not only be inefficient, but unnecessary. Instead, we use a technique called downing a

point: given two indices r and s with s ≥ r, we move the point β[r] at position r of

our base to position s and update the table T accordingly. This leads to the procedure

down [21, 22], as detailed in Algorithm 4.1.3.

Algorithm 4.1.3 down(T , β, r, s)

Require: r ≤ s

P = the non-null entries in row β[r] of T

set row β[r] of T to be the identity row

t = β[r]

for i = r + 1 to s do

β[i − 1] = β[i]

end for

β[s] = t

for all p ∈ P do

enter(T , β, p, r)

end for

Theorem 4.1.5. (From [22].) The algorithm down (Algorithm 4.1.3) is correct and

moves the element β[r] from position r to position s of our base for r ≤ s.

Proof. We give a proof of the theorem stated in [22]. By setting row i of our table to

53

be the identity row, we mean that we want the following structure for our row:

Ti,j =

0 if i 6= j,

1 otherwise.

Given a position i ∈ {r + 1, . . . , s}, it is clear that the permutations in row β[i]

of T stabilize the points β[0], β[1], . . . , β[r], . . . β[i − 1] by the structure of T . Thus, if

we move the element β[i] to β[i − 1] (i.e. moving β[i] down one position in our base),

the structure of the table is not violated as the necessary points are stabilized by the

permutations in this row. Hence, the reordering of the base for β[r + 1], . . . , β[s] is

valid.

It remains to show that the table is maintained for the permutations in row β[r].

As we are moving β[r] forwards in our base to position s, the permutations in row

β[r] of our table will not stabilize the points β[r +1], . . . , β[s] and simply adjusting the

base without restructuring the table is insufficient. Hence, we just set the row β[r] to

the identity row, and simply re-enter all the permutations originally contained in this

row. Through this technique, it is clear that the modified table and base will contain

all permutations originally in T and thus represents T with regards to the re-ordered

base.

A crude analysis of the algorithm demonstrates that down runs, in the worst case,

in time O(n3 + kn4), where k is the number of non-null entries in the original column

β[r] of the original table. However, this bound, as well as the bound for enter, have

been shown to be pessimistic, and both algorithms typically perform much faster than

this worst case analysis might indicate.

Incidentally, in certain cases, it may also be desirable to perform a reverse downing

of a point, i.e. we may wish to move the point β[r] from position r to position s, r > s.

We could simply do so by making r − s calls to down and swap the point with its

previous neighbour until it is in the desired position, but we can do so more efficiently.

We detail the procedure reverse-down in Algorithm 4.1.4.

54

Algorithm 4.1.4 reverse-down(T , β, r, s)

Require: r ≥ s

P = ∅

for i = s to r − 1 do

P = P ∪ non-null entries in row β[i] of T

set row β[i] of T to be the identity row

end for

t = β[s]

β[s] = β[r]

β[r] = t

for all p ∈ P do

enter(T , β, p, s)

end for

This algorithm is identical in function and comparable in complexity to calling down

r−s times, but we hope that by removing all permutations from rows β[s], . . . , β[r−1]

at once instead of processing each row individually that we will reduce the complexity

of the potentially large number of calls to enter that would result.

4.2 Algorithms for building isomorph-free branch-

ing trees

We will now examine the methods that we will employ to exploit the symmetry group

of an ILP in order to generate a nonisomorphic or partially nonisomorphic branch-and-

cut tree. The theory and algorithms here are taken from [22], with the exception of

Algorithms 4.2.6 and 4.2.7, which we designed. Note that all the algorithms listed in

this section could be applied to any type of branching tree (e.g. branch-and-bound

trees), but for the purposes of this thesis, we are predominantly interested in their uses

55

in branch-and-cut trees.

We begin by explaining how the algorithms use the concept of the table base to

impose an ordering on the branching variables of our tree. Given a node a of our

branch-and-cut tree over n variables (say xi for i ∈ Zn), we define the following sets:

F a
1 ={j ∈ Zn | xj is fixed to 1 at a}

F a
0 ={j ∈ Zn | xj is fixed to 0 at a}

F a=Zn \ (F a
1 ∪ F a

0)

Then we think of F a
1 as the indices of the variables fixed to 1 at a, F a

0 as the indices

of the variables set to 0 at a, and F a as the indices of the free variables at a. We will

often omit the term “indices” when referring to the elements of F a
1 , F a

0 , and Fa, and

simply call their elements the variables fixed to 1 at a, the variables fixed to 0 at a,

and the free variables at a, respectively.

We now outline the structure of the base that we will impose on the base set (i.e.

the set of variable indices) of our permutation group. At node a, we wish to maintain

the following base structure over our variables:

β = [F a
1 F a F a

0].

Furthermore, we want the elements of F a
1 to appear in the order that they were fixed

to 1 by our branch-and-cut tree, and we want the elements of F a
0 to appear in the

reverse order that they were fixed to 0 by our branch-and-cut tree. The ordering of F a

is unimportant. Here, we state and prove the following theorem:

Theorem 4.2.1. Let a and b be two nodes of our branch-and-cut tree with a an ancestor

of b. If β is the base associated with node b, by the above conditions placed on the bases,

β is also a valid base for node a.

Proof. We observe that β has the following format:

β = [F b
1 F b F b

0].

56

As a is an ancestor node of b, it is clear that F a
1 ⊆ F b

1 and F a
0 ⊆ F b

0 . Since the elements

of F a
1 were set to 1 before the elements of F b

1 \ F a
1 by our branch-and-cut algorithm,

and the elements of F b
1 appear in the order that they were set to 1, then we know that

our base can be written as:

β = [F a
1 (F b

1 \ F a
1) F b F b

0].

Similarly, since the elements of F a
0 were set to 0 before the elements of F b

0 \ F a
0 , and

the elements of F b
0 appear in the reverse order that they were set to 0, we can write

our base as:

β = [F a
1 (F b

1 \ F a
1) F b (F b

0 \ F a
0) F a

0].

Since F a = Zn \ (F a
1 ∪ F a

0), it is obvious that F a = (F b
1 \ F a

1) ∪ F b ∪ (F b
0 \ F a

0). Using

this, our base can be rewritten in the form:

β = [F a
1 F a F a

0].

This is just a rewriting of β while maintaining the original structure, and this base

satisfies the criteria for being a base for node a.

We now introduce the concept of canonicity with regards to the nodes of our branch-

and-cut tree. Let a and b be two nodes of our tree. If there exists a permutation

g ∈ G such that g(F a
1) = F b

1 and g(F a
0) = F b

0 , then we say that the nodes a and b

are isomorphic. As groups are closed and contain inverses, isomorphism is clearly an

equivalence relation; because of this, node-isomorphism yields a partition of the nodes

of our tree. We will refer to sets in our node-isomorphism partition as isomorphism

classes. We can impose a lexicographical ordering on the elements in an isomorphism

class in the following way: if A, B ⊆ Zn (with A 6= B) are sorted sets with A[i] and

B[j] (i ∈ Z|A|, j ∈ Z|B|) indicating the ith element of A and the jth element of B

respectively, if we can find k ∈ Z|A| such that A[i] = B[i] for all i ∈ Zk and A[k] < B[k]

(by imposing the natural integer ordering of Zn), then we say that A is lexicographically

57

smaller than B, which we will denote A < B. If no such k exists but A ⊂ B, then we

also say that A < B.

As it is our goal to have an isomorph-free branch-and-cut tree, we only wish to

investigate one node from each isomorphism class. To do so, given an isomorphism

class C, we will only consider the lexicographically smallest node in C (say a). We

designate a the canonical representative of C, or simply say that a is canonical. We

note that this concept of canonicity respects the concept of canonicity as outlined in

Section 2.3. Given a node b, to test it for canonicity, we simply calculate orb(F b
1 , G).

If F b
1 is the lexicographically smallest in this set, then we conclude that b is canonical,

and if not, we say that b is non-canonical.

During our branch-and-cut, for any node a, we only process a if it is canonical; if

not, we can immediately prune it and not consider it. We call this method isomorphism

pruning. It is not immediately obvious that we will not prune valid solutions from our

tree using this technique, so we briefly prove this here. As an additional and necessary

condition on our tree, we impose that at any node a, when we branch, we must branch

on variable xf where f = min(F a). This strategy is called minimum index branching.

Lemma 4.2.2. (From [22].) Let S ⊆ Zn be the lexicographically smallest set in

orb(S, G) under a permutation group G. Then S ′ = S \ max(S) is also the lexico-

graphically smallest set in orb(S ′, G).

Proof. If S ′ is not the smallest in orb(S ′, G), then we can find a permutation g ∈ G

such that g(S ′) < S ′. Hence, g(S) < S, which contradicts the lexicographically smallest

property of S.

Theorem 4.2.3. (From [22].) Let S be the set of all canonical nodes in our branch-

and-cut tree. Then:

1. Given any node a in S, the parent node of a is also in S.

2. S contains all optimal canonical solutions of our ILP.

58

Proof. Our proof is based upon the one provided in [22], and we extend with extra

details.

1. Let a be a node in S which is not the root. Let b be the parent node of a in a

full branch-and-cut tree without isomorphism pruning. As F a
1 is the smallest in

orb(F a
1 , G) by property of the canonicity of a, and as F b

1 ⊆ F a
1 which contains

the smallest |F b
1 | elements of F a

1 (by minimum index branching), by repeated

application of Lemma 4.2.2, F b
1 is the lexicographically smallest in orb(F b

1 , G).

Hence, b is canonical, so b ∈ S.

2. Let a be a node in our tree with F a
1 an optimal solution to our ILP. Let H

be the lexicographically smallest set in orb(F a
1 , G). Hence, there exists a node

b ∈ S with F b
1 = H . By repeated application of (1), every ancestor of b may

be found in S, and hence, the subtree containing node b will be explored by our

branch-and-cut algorithm with isomorphism pruning.

We proceed to introduce a type of fixing that we can perform in order to significantly

reduce the number of nodes that we must consider; this technique is called 0-fixing,

and was taken from [22]. While this is actually an algorithm for the branch-and-cut as

opposed to a group algorithm, it requires the concept of orbits and symmetry groups,

so we detail it here. Let a be a node in our branch-and-cut tree that was reached by

branching on variable xj (let j = −1 if a is the root node). We then have the procedure

outlined in Algorithm 4.2.1.

It is not obvious that a branch-and-cut tree using the above techniques will contain

all nonisomorphic optimal solutions. We now prove this.

Lemma 4.2.4. (From [22].) Using 0-fixing in a branch-and-cut tree with minimum

index branching and isomorphism pruning will not destroy any canonical solutions.

59

Algorithm 4.2.1 0-fixing(a, G)

if j ≥ 0 and xj = 0 then

set all variables in orb(j, stab(F a
1 , G)) ∩ F a to 0

end if

m = 0

while m 6= −1 do

m = −1

if |F a| > 0 then

m = min(F a)

if F a
1 ∪ {m} is not canonical then

set all variables in orb(m, stab(F a
1 , G)) ∩ F a to 0

else

return m

end if

end if

end while

return n

60

Proof. Here we follow the proof in [22]. Let a be a canonical node in our branch-and-

cut tree with F a
1 an optimal solution to our ILP. We assume that there does not exist a

canonical node b with F b
1 = F a

1 . Then, by Lemma 4.2.2, we can find a canonical parent

node c such that F c
1 contains the smallest |F c

1 | elements of F a
1 , and some variable in

F a
1 \ F c

1 was set to 0 by 0-fixing. As this may have happened multiple times in our

branch-and-cut tree, let us choose c to be as close as possible to the root node. Then,

we can find f ∈ F c
0 and j ∈ F a

1 \ F c
1 with j ∈ orb(f, stab(F c

1 , G)) such that:

max(F c
1) < f < m = min(F a

1 \ F c
1) ≤ j.

We note that the inequality max(F c
1) < f holds because at node c, due to minimum

index branching, all indices in F c are greater than those in F c
1 . Thus, any variable

fixed to 0 during 0-fixing at c trivially has index greater than max(F c
1). The second

inequality follows from the fact that F c
1∪{m} is clearly the smallest in orb(F c

1∪{m}, G):

if m is set to 0 during 0-fixing, it must be done from an index f < m, and hence, all f

considered by the 0-fixing algorithm are strictly smaller than m.

By construction, we can find a permutation g ∈ stab(F c
1 , G) such that g(j) = f .

Clearly, g(F c
1 ∪ {j}) = F c

1 ∪ {f}. This set is lexicographically smaller than F c
1 ∪ {m},

and hence, we have a contradiction as F c
1 ∪ {j} ⊆ F a

1 by design.

Thus, the use of 0-fixing preserves optimal canonical solutions. All that remains

to complete the description of our algorithm is to devise a technique to calculate

the orbit of a point in the stabilizer of a set. To do so, we examine a procedure

orbit-in-stabilizer (described in Algorithms 4.2.2 and 4.2.3 [22, 23]), which ex-

ploits the structure of the Schreier-Sims table and the base.

This algorithm relies on backtracking in order to find the images of β[k] in the

stabilizer of the set {β[0], . . . , β[k − 1]} under the action of our symmetry group, G.

We begin by calculating Jk, which we call the basic orbit of β[k] in G. This set is

61

Algorithm 4.2.2 orbit-in-stabilizer(T , β, k)

Jk = {i ∈ Zn | Tβ[k],i 6= 0}

p = 1 ∈ Sn

R = {β[0], . . . , β[k − 1]}

O = Jk

orbit-in-stabilizer-aux(T , β, k, Jk, p, R, O, 0)

Algorithm 4.2.3 orbit-in-stabilizer-aux(T , β, k, Jk, p, R, O, i)

for all j ∈ R do

h = Tβ[i],j

if h 6= 0 then

R′ = {h−1(r) | r ∈ R \ {j}}

g′ = ph

if i < k − 1 then

orbit-in-stabilizer-aux(T , k, Jk, g′, R′, O, i + 1)

else

O = O ∪ {g′(s) | s ∈ Jk}

end if

end if

end for

62

simply the image of β[k] under the action of permutations g of the form:

g = 1 . . . 1
︸ ︷︷ ︸

k−1 times

gkgk+1 . . . gn−1

where 1 represents the identity permutation, and gi is a permutation from column

β[i] of our table T , i.e. a permutation fixing elements β[0], . . . , β[i − 1]. Because the

permutations gk+1, . . . , gn−1, by property of T , will not permute k and we only concern

ourselves with the images of k, we need not consider them in our construction of Jk.

Now that we have established Jk, in order to calculate the complete orbit of k in

the stabilizer, all we need to do is find all permutations g′ of the form:

g′ = g0 . . . gk−1

where we enforce that g′({β[0], . . . , β[k − 1]}) = {β[0], . . . , β[k − 1]}. Then, by finding

all such g′ and all such g as detailed above, the set of g′g will comprise the entire

stabilizer that we are seeking. Hence, our orbit becomes elements of the form g′g(j)

for j ∈ Jk. As we have already computed Jk, it is sufficient to simply calculate all

permutations g′.

This is where the backtracking comes in. We think of the set R as the set of

remaining untargeted elements of {β[0], . . . , β[k − 1]} (i.e. the variables that have not

been mapped to by the g′ that we are constructing). The parameter i in the call to

orbit-in-stabilizer-aux dictates which β[i] we are currently considering. What we

do is to find all permutations that map β[i] to an element left in R. This gives us

some gi (indicated by h in our algorithm) in the construction of g as detailed above.

We then simply extend the permutation g′ (as occurs in the step g′ = ph). As it is

likely that gi has permuted other elements of R apart from β[i], we must take this into

account; hence, we create the set R′, which no longer contains j = gi(i) as something

has been mapped to j. As we keep inverse-permuting the elements of R in this way, at

any stage i when we have determined permutations g0, . . . , gi−1 with g′ = g0 . . . gi−1, we

have that R contains elements of the form g−1
i−1 . . . g−1

0 (r), where r consists of elements

63

of β[0], . . . , β[k − 1] that have not been the image of permutations yet. Hence, if we

consider g′(s) for s ∈ R, the inverses cancel out with the permutations to give us

original elements of β[0], . . . , β[k − 1] which is what we want, because we want these

g′ permutations to map {β[0], . . . , β[k − 1]} to itself.

Thus, we proceed in this way, making recursive calls to orbit-in-stabilizer-aux

until either we cannot find a permutation that maps i to a remaining element of R

(in which case, the for loop finds no permutation and makes no recursive calls, so we

backtrack) or until we have completed g′ (in which case, i = k − 1). When we have a

complete permutation g′, we extend our orbit O in the fashion explained above.

After we have exhausted all possibilities for mapping elements of R to themselves

and hence created all possible g′s, the backtracking ends and O contains the appropriate

orbit.

A rough examination of orbit-in-stabilizer shows us that the worst-case com-

plexity of the algorithm is O(nk!), although, in practice, this algorithm runs signifi-

cantly faster.

We now proceed to detail the techniques that we use for the canonicity testing itself;

as mentioned above, to determine if a node a is canonical, for our purposes, it suffices

to check if F a
1 is the lexicographically smallest in orb(F a

1 , G). Because of the ordering

of our base, if k + 1 is the number of elements fixed to 1, it suffices to check that the

set {β[0], . . . , β[k]} is the lexicographically smallest in its orbit under the action of our

symmetry group G.

If we have been performing 0-fixing, we may use this information to perform

a reasonably fast canonicity test as proposed in [22]. We call this fast algorithm

first-in-orbit1 and detail it in Algorithms 4.2.4 and 4.2.5.

The explanation for this algorithm comes largely from [22]; we expand upon this.

We begin by examining the data structures used in the algorithms. The vector Z is

used to hold some required information concerning variables that are fixed to 0. Let

64

Algorithm 4.2.4 first-in-orbit1(T , β, Z, k)

p = 1 ∈ Sn

R = {β[0], . . . , β[k]}

f = true

first-in-orb1-aux(T , β, Z, k, p, R, 0, f)

return f

Algorithm 4.2.5 first-in-orbit1-aux(T , β, Z, k, p, R, i, f)

if f is false then

return

end if

for all j ∈ R do

if β−1[j] ≥ Z[i] then

f = false

return

end if

h = Tβ[i],j

if h 6= 0 then

R′ = {h−1(r) | r ∈ R \ {j}}

p′ = ph

if i < k then

first-in-orbit1-aux(T , β, Z, k, p′, R′, i + 1, f)

end if

end if

end for

65

k + 1 be the number of variables at a node a fixed to 1. Then, we know that F a
1 , with

the base ordering imposed upon it, is of the form:

F a
1 = {β[0], . . . , β[k]} with β[0] < . . . < β[k].

We then construct the vector Z in the following fashion: Z[i] stores the index, with

respect to the base, of the last variable to have been fixed to 0 when β[i] was fixed to 1.

Then, we can conclude that the variables β[Z[i]], . . . , β[n − 1], where n is the number

of variables in our ILP, were all fixed to 0 when β[i] was set to 1.

Example: Consider a node a for an ILP with 10 variables and the following base

structure:

β = [1, 3, 4, 7,
︸ ︷︷ ︸

F a
1

9, 8,
︸︷︷︸

F a

6, 5, 0, 2
︸ ︷︷ ︸

F a
0

]

where the most recent variable fixing was setting x7 to 1; then we would have that

P [3] = 6, because when variable x7 (which corresponds to β[3]) was fixed to 1, variables

β[6], . . . , β[9] were fixed to 0.

Theorem 4.2.5. (From [22].) The algorithm first-in-orbit1 is correct.

Proof. We follow the proof in [22], and provide more detailed steps.

If, at any point, the condition β−1[j] ≥ P [i] holds, then, for some t ≤ i, there is a

point j ∈ R that was fixed to 0 before β[t] was fixed to 1 and, provided that t ≥ 2,

after β[t − 1] was fixed to 1. We define the following set:

S = p({β[0], . . . , β[i − 1]})

We will now demonstrate that at any stage, R, the set of remaining target elements

(as outlined in the orbit-in-stabilizer-aux algorithm) is always a subset of the set

S ′ = p−1({β[0], . . . , β[k]}) at any given point in the backtracking. At any point i in

the algorithm, with p = g0 . . . gi−1, let Ri denote the set R for this recursive call. We

66

then have:

R0 = R

R1 = {g−1
0 (r) | r ∈ R0 \ {g

−1
0 (0)}}

= {g−1
0 (r) | r ∈ R \ {g−1

0 (0)}}

R2 = {g−1
1 (r) | r ∈ R1 \ {g

−1
1 (1)}}

= {g−1
1 g−1

0 (r) | r ∈ R \ {g−1
0 (0), g−1

1 g−1
0 (1)}

...
...

Ri = {g−1
i−1 . . . g−1

0 (r) | r ∈ R \ {g−1
0 (0), g−1

1 g−1
0 (1), . . . , g−1

i−1 . . . g−1
0 (i − 1)}

...
...

As elements of S ′, at point i in the algorithm, are of the form g−1
i−1 . . . g−1

0 (s) for s ∈ Zk,

clearly it is the case that Ri is a subset of S ′ by construction. It is also obviously

disjoint from S as defined above (as S consists of all targets of the permutation p up

to point i). Because of this, we have that j = p−1(β[s]) for some s ∈ {i, . . . , k}.

As i was fixed to 0 before β[t] was set to 1, we can find a w < β[t] such that:

i ∈ orb(w, stab({β[0], . . . , β[t − 1]}, G)).

Because of this, we can find a permutation h in the stabilizer that maps i to w. We

define the set So = p({β[0], . . . , β[t− 1]}). Then, this is clearly a subset of S. We now

derive the following statement:

{hp−1(s) | s ∈ So} = {β[0], . . . , β[t − 1]}

since p−1 maps elements of So to {β[0], . . . , β[t−1]} and h, by selection, stabilizes these

elements. We also have:

hp−1(β[t]) = w < β[t].

Thus, we have found a permutation, namely hp−1, that maps the set So ∪ {β[t]} to

{β[0], . . . , β[t− 1], w}, which is lexicographically smaller than {β[0], . . . , β[t]}. Thus, if

the algorithm returns false, the set {β[0], . . . , β[k]} is not lexicographically smallest

in its orbit.

67

It remains to show the converse, namely that if {β[0], . . . , β[k]} is not the lexico-

graphically smallest in its orbit, then the algorithm returns false. Suppose that this

is the case. Then we can find a permutation q ∈ G that maps this set to something

lexicographically smaller in its orbit. Furthermore, we can find an index t ∈ Zk+1 such

that q stabilizes {β[0], . . . , β[t]} and q(β[t]) < β[t]. Pick t to be the smallest such value.

We write q = h0 . . . hn with hi from the ith column of our Schreier-Sims table

T . We note that w = q(β[t]) was set to 0 before β[t] was set to 1. Hence, we have

q−1({β0, . . . , βt − 1, w}) = {β[0], . . . , β[t]}. During the algorithm, we note that we will

find a permutation p such that p(β[i]) = q−1(β[i]) for i ∈ Zt, namely p = h1 . . . ht−1

as expected. Let z = q−1(β[t]). Then, we have that p−1q−1(w) = z, and that p−1q−1

stabilizes {β[0], . . . , β[t−1]}. Thus, it follows that z will be in the orbit of the stabilizer

of this set, and that z was fixed to 0 with w or earlier. Thus, R will contain z and

β−1[z] ≥ P [t], so the algorithm correctly returns false.

The worst-case complexity of first-in-orbit1 is O(n(k + 1)!), but as with the

algorithm, orbit-in-stabilizer, in practice, this method seems to run in much lower

time.

As mentioned above, there is, however, one problem with using the above algorithm

for testing node canonicity: it is dependent on the fact that we need to have set

everything possible to 0 (for the Z array to contain the proper information to be used)

via 0-fixing. As we are interested in the effects of “turning off” canonicity testing and

0-fixing at certain points in the tree (as it may be too costly to compute canonicity and

orbits in stabilizers for each node when F1 becomes large, especially given that orbits

become smaller as F1 increases in size) but may still require the ability to turn these

back on at later points, we must investigate algorithms that allow this. While it is still

possible to use orbit-in-stabilizer to determine orbits in stabilizers at any point,

for 0-fixing, we need to check whether a set is canonical as well. This leads us to the

modified algorithm, first-in-orbit2, as described in Algorithms 4.2.6 and 4.2.7.

68

Algorithm 4.2.6 first-in-orbit2(T , β, k)

return first-in-orbit2-aux(T , β, k, 1, {}, 0)

Algorithm 4.2.7 first-in-orbit2-aux(T , β, k, p, S, i)

if i = k + 1 then

return true

end if

if S < {β[0], . . . , β[i − 1]} then

return false

end if

for all permutation q in row Tβ[i] do

p′ = pq

S ′ = S ∪ {p′(β[i])}

if first-in-orbit2-aux(T , β, k, p′, S ′, i + 1) is false then

return false

end if

end for

return true

69

Theorem 4.2.6. The algorithm first-in-orbit2 is correct.

Proof. Given the set B = {β[0], . . . , β[k]}, assume that there is some permutation

p ∈ G such that p(B) < B. We show that we cover p by our algorithm. Given the

Schreier-Sims table T with base β, we can write:

p = h0h1 . . . hn−1

where hi is a strong generator from row Tβ[i]. Given that we are only interested in

the action of p on the elements of B and do not care about how it affects {β[k +

1], . . . , β[n − 1]}, we can consider the permutation:

p′ = h0h1 . . . hk 1 . . . 1
︸ ︷︷ ︸

n−k times

If p is in our table, then certainly, so is p′, and it is clear that p′(B) < B, so it suffices

to show that p′ will be constructed by our algorithm. However, this is obvious, as we

try all combinations of permutations over the rows β[0], . . . , β[k] of our table.

A pessimistic upper bound on this algorithm is O(nk). If the table T is sparse,

it performs significantly better. For problems with large symmetry groups, it may

approach this bound. Unfortunately, this algorithm is considerably less efficient than

first-in-orbit1, which exploits the fact that 0-fixing has been used and hence re-

quires the examination of far fewer permutations.

We note that all three of these algorithms can be made to run non-recursively by

using arrays to simulate recursion. We demonstrate them in a recursive fashion for its

elegance, but in our implementation, we have opted for the non-recursive implementa-

tion to avoid the overhead of repeated method calls.

We may take two different approaches to storing symmetry group information, both

with inherent advantages and disadvantages.

1. Store a single Schreier-Sims table for the entire tree and modify it as needed in

our depth-first tree search.

70

2. Store a Schreier-Sims table for each node in the tree.

These two techniques are discussed further in Chapter 6 when we establish specific

details on our branch-and-cut algorithm.

4.3 Variable fixings and the base

In some ILPs, it is known that certain variables will be fixed to 1 in a canonical design,

and as a consequence of the ILP constraints or symmetry group permutations, other

variables will be fixed to 0. Section 2.3 discusses what variables may be fixed in the

context of set system problems.

It is not possible to simply fix these variables in the problem formulation since this

would violate our use of minimum index branching. Instead, however, it is possible

to execute a change on the initial ordering of the variables using the base to allow for

1-fixings.

Given an ILP with a set of variables X , if we have subsets X1, X0, X ⊆ X such

that we know, for any canonical solution S = (x0, x1, . . .):

xi ∈ X1 ⇒ Si = 1

xi ∈ X0 ⇒ Si = 0,

then we can simply specify an initial base β = [X1 X X0] for our group before entering

the permutations, or, if we wish to 0-fix the variables in X0 at initialization time, an

initial base β = [X1 X0 X] to avoid reverse-downing.

This provides a generalization to minimum index branching; if our problem has n

variables, we simply need an ordered set O containing all elements from Zn and can

use that as our base set for the minimum index branching routine, picking the minimal

free element in O with regards to its ordering. In the case of standard minimum index

branching, we simply use Zn with standard integer ordering, as expected.

71

4.4 Algorithms for calculating the symmetry group

of an ILP

In order to use the above algorithms, it is essential that we can determine the sym-

metry group of our ILP. For some combinatorial problems, the structure of the group

immediately presents itself. In this case, we simply need to determine a set of gener-

ators and add them, using enter, to the Schreier-Sims table T to create the group.

Examples in which we implicitly know the symmetry group are given in Chapter 2.

In other, less structured cases, the symmetry group may not be so immediately

obvious. In these cases, it is necessary to use some method in order to determine it.

We discuss three such algorithms here. We note that in [22, 23], a simplified variant of

the algorithm presented in Section 4.4.3 was used; this original algorithm worked only

on matrices with 0-1 coefficients. The algorithms in Section 4.4.1 and 4.4.2, as well as

the general algorithm in Section 4.4.3, are proposed by us.

4.4.1 Näıve technique

The first approach that we look at simply iterates over all possible column and row

permutations of the coefficient matrix of our ILP. The basic pseudocode is listed in

find-symmetry-group1 (Algorithm 4.4.1), where we denote our n-vector of coefficients

as c, our m-vector of bounds as b, and our our m × n coefficient matrix as A.

Basically, this method iterates over all possible n! column permutations of the ma-

trix A, and for each column permutation, it examines whether or not there exists a row

permutation such that the two permutations fix A. Again, to find such a row permu-

tation, every possible permutation is examined, and there are m! such permutations.

Thus, the total running time of this algorithm is in the order of O(m!n!).

While this may seem infeasible, it is simple to implement, and the initial idea was

that it might run in a reasonable amount of time for small m and n, as is the case

72

Algorithm 4.4.1 find-symmetry-group1(c, A, b)

Sc = Sn

while |Sc| > 0 do

pick any p ∈ S1

Sc = Sc \ {p}

if p(c) = c then

Sr = Sm

while |Sr| > 0 do

pick any q ∈ Sr

Sr = Sr \ {q}

if q(b) = b then

if A(p, q) = A then

output p

exit inner loop

end if

end if

end while

end if

end while

73

with the 2-(5, 3, 1) packing (m = 10, n = 10). However, this proved to be an incorrect

assumption; on a Sun Fire V880 with eight 900 MHz UltraSparc III Cu processors and

32 GB of RAM (running Solaris 9), it was found that the algorithm took approximately

2.3 seconds (CPU time) to examine each column permutation. Given that there are

10! = 3, 628, 800 such permutations, we can easily see that iterating näıvely over all

permutations like this would take an approximated 96.6 days (real time).

Clearly, this is not a reasonable amount of time to calculate the symmetry group of

such a simple problem, and this algorithm increases factorially in terms of CPU time.

Since each column permutation from the construction of the 2-(5, 3, 1) packing considers

10! row permutations, we can (poorly) estimate that it takes 2.3/10! = 6.34 × 10−7

seconds to consider each row permutation. Hence, in the case of the symmetry group

for the 2-(7, 3, 1) design, which has
(
7
2

)
= 21 rows, each column permutation will take

at least the following amount of time to consider:

21! perms · 6.34 × 10−7 s

perm
≈ 3.24 × 1013 s ≈ 1.03 × 106 years.

As there are
(
7
3

)
= 35 columns in our ILP, we consider 35! = 1.03 × 1040 column

permutations, giving us that it is likely to take at least the following amount of time

to calculate the symmetry group for this problem using the näıve technique:

1.03 × 1040 perms · 1.03 × 106 years

perm
= 1.06 × 1046 years.

Instead, we obviously require a different approach to hope to calculate the symmetry

group of even small problems, which motivated our creation of the backtracking /

partitioning technique.

4.4.2 Backtracking / partitioning technique

This algorithm is based on ideas from Denny’s canonicity testing algorithm in [9].

The general idea behind the second technique we examine is that if a partial column

74

permutation is unable to fix A, then no extension of the partial permutation is able to

fix A. Thus, we build p by backtracking techniques, determining at each step of the

backtracking whether or not the possibility of a q exists such that A(p, q) = A.

As demonstrated in the näıve technique, it is not feasible to consider all row per-

mutations; thus, we use a technique called partition refinement in order to minimize

the number of row permutations that we need to try. In essence, when we manage to

complete p via backtracking techniques and we have a valid partition refinement, we

have found a p and q (or possibly a family of q permutations) that fix A. Thus, we

output p and backtrack. The general pseudocode for the algorithm, explained below,

is presented in find-symmetry-group2 (Algorithm 4.4.2).

Note that, at every iteration of the loop, we ensure that our partial permutation p

fixes c, and that the family of row permutations represented by our partition refinement

is capable of fixing b (if either of these cases fail, we backtrack immediately). Following

is a detailed explanation of the various components of the algorithm.

Backtracking on p

This is a fairly simple concept, and one that will not be examined in great depth (it

is assumed that the reader has knowledge of backtracking algorithms). The general

idea is that we have a partial permutation over the columns, and we extend it via

backtracking techniques. Thus, at some stage of the algorithm, if we have P = [1, 3, 5]

(where P [i] = p−1(i), for reasons explained in the following section) considered as a

partial permutation of S7, we have the following possible extensions of p:

P1 = [1, 3, 5, 0]

P2 = [1, 3, 5, 2]

P3 = [1, 3, 5, 4]

P4 = [1, 3, 5, 6]

All of these possibilities will be explored by the backtracking tree.

75

Algorithm 4.4.2 find-symmetry-group2(c, A, b)

calculate the partition scheme of A

i = 1

P = []

while i ≥ 1 do

try to extend P , the permutation vector, at position i

if this was not possible then

i = i − 1

loop

end if

refine the partitions of q

if q cannot be refined to a bijection then

loop

end if

if P does not represent a complete permutation then

i = i + 1

loop

end if

output the permutation p represented by P

end while

76

The advantage to using such an approach is twofold; firstly, if a partial column per-

mutation p does not fix the vector c, then no extension of p can fix c, and secondly, if no

row permutation exists that fixes A under the influence of p, then no row permutation

will exist that will fix A for any possible extension of p. Therefore, by this technique,

provided that the size of the symmetry group of the problem in consideration is a

sufficiently small subgroup of Sn, we can prune huge numbers of column permutations

from our search space.

Partition schemes and refinement

In this section, we represent permutations inversely; i.e. if p is a permutation, P [i] = j

means that j → i under the action of p. The reason we do this is that we want to

build permutations over our matrix columnwise from left to right, and hence it is our

goal to know what maps to column i rather than the converse.

Definition 4.4.1. A partition scheme is a two-dimensional array of sets, PS, such that

PS [col, val] is the set of positions in which val appears in column col of the matrix A.

Example: For the 2-(5, 3, 1)-packing design, we have the following matrix:

A =

1 1 1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 0

1 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 1 0 1 0

0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 0 1 0 0 1

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 0 1 1

77

Then, if we index the columns and the rows beginning at 0, PS[0, 0] is simply the

set of positions in which 0 appears in the first column (namely {2, 3, 5, 6, 7, 8, 9}), and

PS [0, 1] is the set of positions in which 1 appears in the first column (namely {0, 1, 4}).

Similarly, PS[1, 0] = {1, 3, 4, 6, 7, 8, 9} and PS[1, 1] = {0, 2, 5}, etc.

Definition 4.4.2. A partition refinement is an array of sets, PR, such that PR[row]

is the set of rows to which it is possible to map row such that A will be preserved under

the corresponding partial column permutation. Note that PR represents a family of

row permutations.

Initially, when P is empty (P = []), we know that any row can be mapped to any

other row, thus, PR[i] = Zm for all i ∈ Zm. At any stage of the backtracking, if we

extend P by x ∈ Zn at position i, the family of permutations represented by PR may

no longer all fix A under p, so we must refine to remove the invalid permutations.

When P is extended by x at position i (i.e. p maps column x to position i), we

perform the following refinement step:

PR[j] = PR[j] ∩ PS[i, A[j, p[i]]] for all j ∈ Zm

Example: Assume we have the matrix A as defined above for the 2-(5, 3, 1)-packing

design. For the purposes of this example, we will begin with p empty and add 2 to

it (i.e. mapping column 2 to position 0), so P = [2]. Then we perform the following

78

refinements:

PR[0] = PR[0] ∩ PS[0, A[0, 2] = 1]

= Zm ∩ {0, 1, 4}

= {0, 1, 4}

PR[1] = PR[1] ∩ PS[0, A[1, 2] = 0]

= Zm ∩ {2, 3, 5, 6, 7, 8, 9}

= {2, 3, 5, 6, 7, 8, 9}

PR[2] = PR[2] ∩ PS[0, A[2, 2] = 0]

= Zm ∩ {2, 3, 5, 6, 7, 8, 9}

= {2, 3, 5, 6, 7, 8, 9}

PR[3] = PR[3] ∩ PS[0, A[3, 2] = 1]

= Zm ∩ {0, 1, 4}

= {0, 1, 4}
...

...

Now, say we further extend P with 6, so P = [2, 6]. Now our “partially permuted”

matrix is as follows:

A(p, 1) =

1 0

0 0

0 0

1 0

0 1

0 1

1 0

0 1

0 0

0 0

79

Then our partition refinements become:

PR[0] = PR[0] ∩ PS [1, A[0, 6] = 0]

= {0, 1, 4} ∩ {1, 3, 4, 6, 7, 8, 9}

= {1, 4}

PR[1] = PR[1] ∩ PS [1, A[1, 6] = 0]

= {2, 3, 5, 6, 7, 8, 9} ∩ {1, 3, 4, 6, 7, 8, 9}

= {3, 6, 7, 8, 9}
...

...

PR[4] = PR[4] ∩ PS [1, A[4, 6] = 1]

= {2, 3, 5, 6, 7, 8, 9} ∩ {0, 2, 5}

= {2, 5}

In our partially permuted matrix, row 0 is [1 0]. If we scan the rows over the first two

columns of the unpermuted A, we see that the entries [1 0] occur in rows 1 and 4. Thus,

row 0 can only be mapped to rows 1 and 4 of our original matrix to preserve it under

our permutations at this point in the construction of p1. Similarly, row 4 corresponds

to [0 1] under the current column permutation, and so we scan our original matrix

A to find that rows 2 and 5 begin with [0 1], so they are the only possible images of

row 4 under a row permutation designed to fix A. In this case, it is easy to see that

our refinement is not extendible to a bijection; by looking at our partially permuted

matrix above, we can see that there is no row that corresponds to [1 1]. The first

row of A is [1 1], and thus it is not possible to find a surjective mapping between our

partially permuted matrix and the first two columns of A. Thus, since permutations

are bijections, our refinement represents the empty set of permutations (i.e. no row

permutation exists), and we backtrack immediately.

80

4.4.3 Technique based on coloured graphs

While the partitioning and refinement technique works well in comparison to the näıve

technique, it does present one major shortcoming: the algorithm generates every per-

mutation of our symmetry group, which could be quite large. In order to create the

Schreier-Sims representation of the group, we need only a minimal set of strong gener-

ators. It is this consideration that motivates our third algorithm.

The only necessary condition for this algorithm is that all variables of the ILP have

the same range. As we only concern ourselves with 0-1 ILPs, this technique will work

fine for our needs. If we have the ILP:

Maximize cx

subject to bl ≤ Ax ≤ bu

with c = [c0, . . . , cn−1], bl = [bl,0, . . . , bl,m−1], and bu = [bu,0, . . . , bu,m−1], and we denote

the entry in row i and column j of A to be ai,j, we can derive a graph representing our

problem.

Definition 4.4.3. A coloured graph is a graph C = (V, E) and a set K = {K0, . . . , Ks−1}

of colouring classes such that K partitions V , i.e.:

• K0 ∪ . . . ∪ Ks−1 = V

• Ki ∩ Kj = ∅ for {i, j} ⊆ Zs.

We derive a coloured graph C = (V, E) from our ILP in the following way: let

V = {x0, . . . , xn−1, y0, . . . , ym−1} and set E = {{xj, yi} | Ai,j 6= 0}. For each variable

xi, we create a vector vi = [ci a0,i a1,i . . . am−1,i]. Then two variables xi and xj are

in the same colour class if and only if vi = vj . Additionally, yi and yj are in the same

colour class if and only if [bl,i bu,i] = [bl,j bu,j].

Definition 4.4.4. Given a coloured graph C = (V, E) with colouring classes K =

{K0, . . . , Ks−1}, an automorphism g : V → V is a bijection such that:

81

• for v ∈ V , if v ∈ Ki, then g(v) ∈ Ki

• g(E) = E.

The automorphism group of a coloured graph is the group of all automorphisms of the

graph. We denote the automorphism group of C as Aut(C).

Theorem 4.4.1. Given the above construction, if G is the symmetry group of our ILP,

then there exists a surjective homomorphism of groups mapping Aut(C) onto G.

Proof. Consider G as a subgroup of Sn, and define the group homomorphism φ :

Aut(C) → G such that φ(g) = p, where:

p(i) = j for g(xi) = xj , i ∈ Zn

It suffices to show that it is surjective (i.e. every permutation in G is covered). Let

p ∈ G. We will show that there is a permutation g ∈ Aut(C) such that φ(g) = p.

Given that p ∈ G, we know from Definition 1.3.7 that we can find a row permutation

q ∈ Sm such that for the ILP:

• A(p, q) = A

• p(c) = c

• q(b) = b

We need to find a permutation g ∈ Aut(C) such that φ(g) = p. Define the following

permutation:

g : V → V

xi 7→ xp(i)

yj 7→ yq(j)

.

We now claim that g is an automorphism of our graph. By the three above properties, g

respects the colour classes of C, so it remains to show that g(E) = E. If e = {xj, yi} ∈

82

E, i ∈ Zm, j ∈ Zn, g(e) = {xp(j), yq(i)}. As A(p, q) = A and q(b) = b, g(e) ∈ E. As

this map is injective (as p and q are permutations), it is also surjective, and hence,

g(E) = E. Thus, φ is surjective.

Hence, if we can easily determine Aut(C) for our coloured graph C, we can then

easily obtain the symmetry group G of our ILP. Furthermore, a set of generators of

Aut(C) can be translated to a set of generators for G through the group isomorphism φ.

The freely distributable package nauty, by Brendan McKay [29], allows us to calculate

generators for the automorphism group of a coloured graph.

Hence, given an arbitrary ILP with variables all from the same range, we can

use nauty to compute generators for the coloured graph represented by the problem,

translate these to permutations over the variables using φ, and then enter these per-

mutations into our Schreier-Sims table in order to create our symmetry group.

The pseudocode for this third technique is given in find-symmetry-group3 (Algo-

rithm 4.4.3).

Algorithm 4.4.3 find-symmetry-group3(c, A, b)

construct C, the coloured graph representing the ILP

call nauty on C to get Aut(C) = 〈g0, . . . , gk−1〉

for i = 0 to k − 1 do

output φ(gi)

end for

4.4.4 Comparison of the three techniques

Table 4.1 shows the times required for the three different algorithms to calculate the

symmetry groups for several different 2-(v, 3, 1) packings using the block formulation.

In the table, we denote the find-symmetry-group algorithms by their number. For the

first algorithm (the näıve approach), we provide lower-bound estimates on the times

83

using an approximation of 6.34 × 10−7 seconds to process each row permutation. The

times reported are measurements of CPU time in seconds.

v |G| fsg1 time fsg2 time fsg3 time

5 120 8.34 × 106 0.05 ≤ 0.01

6 720 2.02 × 1024 2.01 ≤ 0.01

7 5040 3.35 × 1053 65.49 0.01

Table 4.1: CPU times for the three different symmetry group calculation algorithms.

As it is not feasible to continue find-symmetry-group1 and find-symmetry-group2

for higher v, in Table 4.2 we give results exclusively for find-symmetry-group3 for

a larger number of values to demonstrate its efficiency and compare it with the time

taken to simply enter generators known a priori, as specified in Section 2.1.1. The col-

umn S contains the number of strong generators appearing in the Schreier-Sims table,

not including identity permutations.

84

v |G| S fsg3 time Gens time

5 120 15 0.00 0.00

6 720 29 0.00 0.01

7 5040 49 0.01 0.01

8 40320 76 0.05 0.03

9 362880 111 0.15 0.11

10 3628800 155 0.47 0.32

11 39916800 209 1.50 0.83

12 479001600 274 3.72 2.13

13 6227020800 351 8.80 5.00

14 8.72 × 1010 441 20.82 10.98

15 1.31 × 1012 545 42.43 22.58

16 2.09 × 1013 664 82.77 44.44

Table 4.2: CPU times for find-symmetry-group3 compared with entering generators

known a priori.

85

Chapter 5

Cuts used and our cutting plane

implementation

A general cutting plane algorithm was introduced in section 3.2. We now describe

our particular implementation of the cutting plane method used for our branch-and-

cut, as well as the two cuts that we provide, namely isomorphism cuts [22] and clique

inequalities [35, 36].

5.1 Cutting plane implementation

As detailed in section 3.2, the pure cutting plane technique for solving ILPs iterates

repeatedly until an integer solution is obtained. In the cutting plane algorithm used by

branch-and-cut, we generate cuts until some selected criteria indicates to us that it is

no longer likely to be useful to continue to do so, at which point we instead utilize the

methods of branch-and-bound and branch on a variable. We here follow the algorithm

proposed in [34, 35].

For the purposes of our framework, we selected two measurements to determine the

effectiveness of each iteration of the cutting plane. Firstly, we measure the number of

86

cuts generated. If the algorithm does not generate a sufficient number of cuts during the

separation phase, we heuristically decide that our time would be better spent branching

as opposed to iteratively producing more cuts. Secondly, as we are only adding cuts to

our ILP that are violated by the current fractional solution of the LP relaxation, we

may measure the maximum violation amongst all the generated cuts. If the maximum

violation does not exceed some minimum value, we suspect that our cutting plane

algorithm is either producing cuts that have little benefit towards achieving integrality

or that the cutting plane algorithm is tailing off.

In addition, it may not be advantageous to add any violated cut to our ILP. Certain

cuts may not result in sufficient violations, and thus will simply complicate our ILP

formulation without significantly assisting in obtaining an integral solution. Hence, we

only add cuts if they are violated to a specified degree.

We will refer to the minimum number of required cuts parameter as MNC. Instead

of directly specifying the minimum required violation (MRV) to continue the cutting

plane algorithm and the worthwhile violation (WV) to add a cut to the ILP, we allow a

lower bound and an upper bound to be specified on these parameters, say [vmin, vmax]

and [mmin, mmax] respectively. Let numvars and numfracvars be the total number of

variables for the ILP and the total number of variables with fractional values in the

current LP solution. We then set MRV = vmin + numfracvars

numvars
(vmax−vmin), and similarly for

WV. The motivation behind this is to encourage the algorithm to continue and generate

cuts if the previous iteration produced a solution that demonstrated a higher degree of

integrality. The goal of the cutting plane algorithm is to approach an integer solution;

if we are making little progress in attaining this goal as indicated by a large number

of fractional variables, we become more restrictive with respect to MRV and WV and

set them closer to their upper bounds vmax and mmax; we suspect that continuing is

unlikely to help sufficiently, so we instead demonstrate a preference to terminate and

resort to branch-and-bound techniques.

87

The cutting plane procedure used by our package is outlined in cutting-plane (Al-

gorithm 5.1.1). The framework allows users to arbitrarily select which cut generation

techniques to use, as well as to create new ones. We provide two types of cuts, namely

isomorphism cuts and clique inequalities, and examine them in the next sections. This

algorithm performs feasibility test and bounds testing on LPs: if an LP is not feasible,

or cannot be solved to give an integer solution at least as good as the current best

solution, the calling code is informed.

5.2 Isomorphism cuts

Margot [22] has proposed isomorphism-cuts (Algorithm 5.2.1). Isomorphism cuts are

a family of cuts that are aimed at reducing the number of calls to canonicity-test

(Algorithm 6.0.4) by allowing the LP solver to prune some non-canonical nodes before

they are fully tested for canonicity.

Given a node a of our branch-and-cut tree, define the set Ha = F a
1 ∪ F a. We can

then think of Ha as the variables that can potentially have value 1 at node a. Suppose

we can find J ⊆ Ha with J ∩ F a 6= ∅ such that J∗ is the canonical representative

isomorphic to J under orb(J, G) and J∗ < F a
1 . Then, if b is any descendant of a with

J ⊆ F b
1 , this node will be automatically pruned by the canonicity testing. Hence, to

improve algorithmic efficiency and avoid generating unnecessary nodes, we can add the

following cut to the subtree rooted at node a:

IC(J) :
∑

j∈J

xj ≤ |J | − 1.

We are processing in a depth-first fashion and always exploring the child of a node a

where the branching variable was fixed to 1 before exploring the child with branching

variable fixed to 0. Thus, we will be enumerating the sets F d
1 , where d is any node

in the tree, in a lexicographical fashion from smallest to largest. Because of this,

88

Algorithm 5.1.1 cutting-plane(Node n, ILP I, MNC, vmin, vmax, mmin, mmax,

bestObjectiveValue)
flag = true

loop

process the node n

solve the LP relaxation of I to get solution x∗ with objective value b

if the LP is infeasible then

return an error code stating that the node is infeasible

end if

if bbc ≤ bestObjectiveValue then

return a message saying this node will not lead to an optimal solution

end if

if flag is false then

return (x∗, b)

end if

if x∗ is integer then

return (x∗, b)

end if

MRV = vmin + numfracvars

numvars
(vmax − vmin), WV = mmax + numfracvars

numvars
(mmax − mmin)

generate cuts with violation at least WV, recording numcuts and maxviolation

if numcuts < MNC then

flag = false

end if

if maxviolation < MRV then

flag = false

end if

end loop

89

any isomorphism inequality generated at a node a will be valid for any other node

investigated later in the branch-and-cut.

The next question that arises is how we pick the subsets J . As Ha can be quite

large, it does not make sense to test every possible subset. It is our goal to only generate

violated cuts; non-violated cuts are useless to us. Clearly, by the nature of the cut,

picking variables xi who have, by the solution of our LP relaxation, value close to 0

will not likely lead to violated cuts. Hence, we pick some δ such that we only consider

variables xj > δ. Because of this, we can construct the following set:

H = {j | j ∈ Ha and xj > δ} ⊆ Ha

Then, we need only consider all J ⊆ H .

We outline the techniques, taken from [22], that we use to create isomorphism

cuts in isomorphism-cuts (Algorithm 5.2.1) and isomorphism-cuts-aux (Algorithm

5.2.2).

Algorithm 5.2.1 isomorphism-cuts(Node a, Table T , Z, x, δ)

H = ∅

for i = 0 to n − 1 do

if xi > δ then

H = H ∪ {i}

end if

end for

S = ∅

s[−1] = 0

isomorphism-cuts-aux(a, T , Z, x, H , S, s, 1, 0)

We now explain the algorithm. The parameter represents the Schreier-Sims table

defining our symmetry group, and Z, the vector used in first-in-orbit1 (shown in

Algorithm 4.2.4). In a fashion identical to that of the first-in-orbit1 algorithm,

90

Algorithm 5.2.2 isomorphism-cuts-aux(Node a, Table T , Z, x, Set R, Set S, s, Perm

p, i)

for all j ∈ R do

S ′ = S ∪ {p[j]}

s[i] = s[i − 1] + x[p[j]]

if s[i] ≤ i then

return

end if

if β−1[j] ≥ Z[i] then

output the cut IC(S ′)

loop

end if

h = Tβ[i],j

if h 6= 0 and i < |F a
1 | then

R′ = {h−1(m) | m ∈ R \ {j}}

p′ = ph

isomorphism-cuts-aux(a, T , Z, x, R′, S ′, s, p′, i + 1)

end if

end for

91

we maintain a permutation p to test canonicity. As this is done in the same way as

first-in-orbit1, it is not explained here. The vector s is used in the backtracking

to store sums of the variables selected in our set of remaining elements R (initially

H); this information allows us to determine whether or not S represents a violated

isomorphism inequality.

Essentially, what we do in this backtracking approach is try to pick a variable

(according to the above conditions) from R to add to S. If we cannot find a variable

that generates a valid isomorphism cut, we simply backtrack. If we are able to extend

our subset S, we check it for canonicity, and if it is canonical, we have found an

isomorphism cut and add it to the constraints. Note that we no longer try to extend S

at this point; if S ′ ⊃ S is an extension of S, then the isomorphism cut generated by S

automatically implies the cut generated by S ′, so we need not consider any extensions

once we have constructed a violated cut. If, on the other hand, S is not canonical, we

try to extend S in order to get a canonical set that generates violated cuts. To do so,

we construct a new set R′ which only consists of our next valid choices of R, permuted

in the same fashion as in first-in-orbit1, and proceed.

A rough estimate for the time required by isomorphism-cuts is O(n|H|!), but this

algorithm typically performs much faster.

One problem with this algorithm is that it does require canonicity testing: for this

to be feasible in a reasonable amount of time, we must use the techniques of algorithm

first-in-orbit1, which requires that 0-fixing be done up to this node. If we opt to

turn 0-fixing or canonicity testing off (which is performed by 0-fixing) at any ancestor

of this node, we cannot generate isomorphism cuts using these techniques.

5.3 Clique Inequalities

Another family of inequalities that we can exploit are called clique inequalities. Given a

0-1 maximization ILP with 0-1 entries in the m×n coefficient matrix A and constraints

92

of the form Ax ≤ 1, we can define the following set for each column i:

Ci = {j ∈ Zm | A[j][i] = 1} for i ∈ Zn

We then say that two columns i and j intersect if Ci ∩ Cj 6= ∅.

From this definition, using the following technique as outlined in [36], we can create

a graph G = (V, E) from our ILP:

V = Zn

E = {{i, j} | Ci ∩ Cj 6= ∅}

Definition 5.3.1. Given a graph G = (V, E), a clique of G is a subset C ⊆ V such that

for all {i, j} ⊆ C, {i, j} ∈ E. A clique C is said to be maximal if there is no v ∈ V \ C

such that C ∪ {v} is a clique.

Let C be any clique in our graph G. Then the following clique inequality holds for

the ILP:
∑

c∈C

xc ≤ 1

To make these inequalities as strong as possible, it is desirable that C be a maximal

clique. Indeed, if C is a maximal clique, then the above inequality induces a facet of

the packing problem [11].

In the separation phase of the cutting plane algorithm, we attempt to generate

clique inequalities that are violated by the current solution of the relaxation. Trivially,

vertices corresponding to variables with value 0 in the solution will not help us find

violated clique inequalities, so we may omit them in our formulation of the graph

G. For packings, xi = 1 implies that xi is not part of a violated clique, so we may

ignore all variables with value 1. Hence, we need only consider the graph with vertices

corresponding to variables with fractional values in the current solution [16].

Definition 5.3.2. For a graph G = (V, E), we say that two vertices i and j are

connected if there is a path {i, v0, . . . , vn, j} ⊆ V such that {i, v0} ∈ E, {vi, vi+1} ∈ E

93

for all i ∈ Zn, and {vn, j} ∈ E. We trivially define a vertex to be always connected

to itself. Then connectedness defines an equivalence relation on V , and we can find a

partition P = {C0, . . . , Ck} of V . We call the sets Ci the connected components of G.

It has been shown in [16] that decomposing a graph into its connected components

resulted in large savings for their clique generation algorithms. The connected compo-

nents of a graph G can be determined using a simple depth-first search (DFS) of the

graph. By the definition of a clique, we can subdivide the problem of finding maxi-

mal cliques in G to a family of subproblems of finding maximal cliques in each of the

connected components of G. However, even in this case, the clique separation problem

is known to be NP-hard, and hence, it may only be feasible to search for violated

cliques in small connected components; instead, we can use heuristics to attempt to

find violated cliques.

We now investigate two algorithms to generate cliques. The first can be used for

generic 0-1 maximization packing ILPs and the second is a specialization that exploits

the structure of the block formulation of t-(v, t + 1, 1) packings and designs.

5.3.1 Generalized clique detection algorithm

We now discuss a general clique detection technique, as proposed in [35] with ideas

taken from [16, 36] and outlined in general-clique-detection (Algorithm 5.3.1).

For connected components with enumthreshold or fewer vertices, we search for all

maximal cliques in the graph, and otherwise, we use a heuristic given in [36] to find

good cliques.

In order to enumerate all maximal cliques of a component, we use a backtracking

technique to attempt all valid possibilities and output the cliques that are discovered.

In the case that it is not feasible to enumerate all maximal cliques, we employ a greedy

heuristic by Nemhauser and Sigismondi. Given a graph G = (V, E) and a vertex v ∈ V ,

94

Algorithm 5.3.1 general-clique-detection(ILP I, fracvalue, enumthreshold)

generate a graph G = (V, E) representing I

C = ∅

find {C0, . . . , Ck}, the connected components of G, using DFS

for i = 0 to k do

if |Ci| ≤ enumthreshold then

enumerate all maximal cliques of Ci and store in C

else

associate a value vc = |xc − fracvalue| with c ∈ Ci

call a greedy heuristic on Ci based on nondecreasing value of vc to get good

cliques and store them in C

end if

end for

return C

we define:

N(v) = {w | {v, w} ∈ E}.

We call this set the neighbourhood of v in G. Clearly, if C is a clique containing

v, C ⊆ {v} ∪ N(v). The greedy algorithm considers each vertex v in turn, giving

precedence to vertices near fracvalue, and finds cliques by focusing on the subgraph

{v} ∪ N(v). Moura [35] experimentally showed that in design problems, choosing a

value of 0.5 for fracvalue was likely to give good cliques, so we selected that as our

default.

After the cliques have been generated, if the inequalities implied by one of these

cliques is violated sufficiently, we add the clique inequality to our problem.

95

5.3.2 t-(v, t + 1, 1) packing and design clique inequalities

In the case of t-(v, k, 1) packings and designs, if k = t+1, we easily know the structure

of the graph detailed above and hence, do not need to construct it; clearly, vertices

represented by variables xi and xj have an edge between them if and only if the k-sets

represented by xi and xj have exactly t points in common. From this, the structure of

the maximal cliques themselves are also easily determined.

Theorem 5.3.1. (From [35].) For any t ≥ 1, v ≥ t + 3, k = t + 1, and λ = 1, there

exists exactly two distinct (up to isomorphism) clique facets for the polytope associated

with the packing / design:

∑

K∈(Zv
t+1):T⊆K

xK ≤ 1, for all T ∈
(

Zv

t

)
,

∑

K∈(L

t+1)
xK ≤ 1, for all L ∈

(
Zv

t+2

)
.

Cliques of the first type are included in the LP relaxation for the problems, and

so they cannot be violated by its solution. Therefore, the only candidates for violated

cliques are the ones of the second type.

Example: For a 2-(7, 3, 1) design, if we consider the 4-set {0, 1, 2, 3}, we have a clique

between the following blocks:

x0 = {0, 1, 2}, x1 = {0, 1, 3}, x5 = {0, 2, 3}, x15 = {1, 2, 3}

Clearly, no pair of these blocks can appear in a 2-(7, 3, 1) design, as any two of these

blocks share a pair in common. Indeed, in the general case, it is obvious that any two

distinct k-sets constructed from a k +1 set will share t = k− 1 points in common, and

hence cannot both appear in a packing or in a design.

At a given node, we are only interested in generating clique inequalities that cut

off the current non-integer solution. As these clique inequalities are of the form:

xi0 + xi1 + . . . + xik ≤ 1

96

we can derive that, for the inequality to be violated, at least one of the variables on the

left hand side must have value at least 1
k

= 1
t+1

. In our specialized clique enumeration

algorithm, we examine all fractional variables with value at least 1
k

and then consider

all (k + 1)-sets containing the k-set represented by such a variable. This leads us to

the procedure proposed in specialized-clique-detection (Algorithm 5.3.2).

Algorithm 5.3.2 specialized-clique-detection(Node n, v, k, Soln x, fracbound)

lower = max(fracbound, 1
k
)

upper = 1 - fracbound

for all x ∈ F n do

if xi ≥ lower and xi ≤ upper then

let K be the block represented by xi

for all j ∈ Zv \ K do

if we have not considered the (k + 1)-set K ∪ {j} then

determine if the maximal clique over all k-subsets of K ∪ {j} leads to a

violated inequality, and if so, add it to the node

end if

end for

end if

end for

97

Chapter 6

Isomorph-free branch-and-cut for

optimization and exhaustive

generation

In this chapter, we develop isomorph-free branch-and-cut algorithms for various types

of problems. Margot [22, 23, 24] has proposed an isomorph-free branch-and-cut method

for solving an ILP, that is, for searching for a single maximum or generating all max-

imum solutions. We focus on his basic methods proposed in [22], and we extend his

techniques to two other types of problems. We also discuss some specifics of our im-

plementation.

Notation: Given an ILP I over n variables, let SI ⊆ {0, 1}n denote the set of all

solutions satisfying the constraints of I, i.e. the feasible solutions of I. For x ∈ SI , we

denote the value of the objective function evaluated at x as ObjI(x).

Definition 6.0.3. Let I be an ILP. Then a solution x ∈ SI is said to be optimal if,

for all y ∈ SI , ObjI(y) ≤ ObjI(x).

98

Definition 6.0.4. Let I be a 0-1 ILP over n variables. We define the following function:

Q : {0, 1}n → P(Zn)

x 7→ {i | xi = 1}

We then say that I has set inclusion property if for all x ∈ SI and y ∈ {0, 1}n such

that Q(y) ⊆ Q(x), we have that y ∈ SI and ObjI(y) ≤ ObjI(x).

Definition 6.0.5. Given a 0-1 ILP I with set inclusion property and a solution x ∈ SI ,

we say that x is maximal if there does not exist a solution y ∈ SI such that ObjI(x) ≤

ObjI(y) and Q(x) ⊂ Q(y).

Example: In the context of 2-(5, 3, 1) packing designs, x1 = {{0, 1, 2}} is a solution,

and x2 = {{0, 1, 2}, {0, 3, 4}} is a maximum (and maximal) solution. As Q(x1) ⊂ Q(x2)

and ObjI(x1) < ObjI(x2), we conclude that x1 is not a maximal solution.

Definition 6.0.6. In a branch-and-cut tree associated with a problem with v variables,

at a node n, we construct s′ = (s′1, . . . , s
′
v), the partial solution vector (or partial

solution) for node n, as follows:

s′i =

xi if variable i is fixed at n

0 otherwise.

Given an ILP formulation, there are several problems we may be interested in

solving. Our framework is designed to deal with the following problem types:

1. Search for a single optimal solution (standard optimization problem)

2. Generation of all optimal canonical solutions

3. Generation of all maximal canonical solutions (with regards to set inclusion)

4. Generation of all feasible canonical solutions

99

The four algorithms share much in common, and hence, we provide a general frame-

work for solving all problems in general-bac (Algorithm 6.0.5). For a more in-depth

general branch-and-cut procedure, see branch-and-cut (Algorithm 3.3.1).

The basic idea behind general-bac is to explore the relevant part of the search

space in the branch-and-cut tree associated with the problem. We process the tree in

a depth-first fashion: not only does this allow us to find solutions early on (giving us a

lower bound for early pruning), but it allows us to minimize the amount of data that

we store at each node when we are using the symmetry group algorithms (Sections 4.1

and 4.2).

To represent the nodes that we still need to process, we utilize a stack data structure

S with a backtracking approach. Given a node n which is at depth d in the branch-

and-cut tree, let ai represent the ancestor of n at depth i in the tree. The structure of

our stack S is then as follows:

S = (a0, a1, . . . , ad−1, n)

where the right side of the vector represents the top of the stack. In essence, the stack

holds, in order of depth, all of the ancestors of the current node n. At any point in

our branch-and-cut, to retrieve the next node to be processed from our stack, we use

get-next-node (Algorithm 6.0.3).

We begin the search by pushing the root node (marked as unprocessed) on the stack.

This node will be immediately retrieved by the first pass through the branch-and-cut

loop. Every time we branch on a node n, we will push the child node with branching

variable x fixed to 1 onto the stack. Thus, we have already extended the stack to

account for the subtree with x fixed to 1, and when we return to n via backtracking,

provided that n has already been marked as being processed, we know that we need

only consider the subtree of n with x fixed to 0 to explore all children of this node

completely.

The reason for this stack-based approach is two-fold. First, it allows us to determine

100

Algorithm 6.0.3 get-next-node(S)

let F n denote the indices of the free variables at node n

while S is not empty do

n = top(S)

if we have not processed n then

mark n processed

return n

end if

if the branching variable to get to n was fixed to 0 then

pop(S) and loop

end if

x = min(F n), the free variable of minimum index

create n0, the node with x fixed to 0

push(S, n0)

end while

return 0

101

the next node to be processed quickly, in worst case Θ(d), where d is the depth of the

previously considered node in the tree. Moreover, in most cases, we are able to retrieve

the next unprocessed node in constant time, or time significantly better than O(d);

indeed, the amortized time for getting the next node is Θ(1). The second benefit of

the stack-based implementation is that it provides us with an easy partial maximality

testing technique, which is needed for our third exploration technique (generation of all

maximal solutions). This algorithm is not used in the general case and will be outlined

below in Algorithm 6.3.2.

The solution of the LP / feasibility check is performed in conjunction with the

generation of cuts; this is done in cutting-plane (Algorithm 5.1.1). While our current

implementation calls an LP solver to check constraint validity, return a bound on the

solution, and give us a fractional solution associated with the bound, this could be done

via a different technique. We also note that the variable bestObjectiveValue may

not be relevant in some of the algorithms; however, it is needed for the cutting-plane

algorithm, and initially assigning it a value of −∞ ensures correct behaviour.

The preprocessing, processing (as performed in cutting-plane), and postprocess-

ing methods of the branch-and-cut algorithm do nothing in the generic framework;

they are provided to allow users of the package to easily extend the basic algorithm to

include problem-specific optimizations, pruning techniques, etc. For example, we use

Margot’s symmetry group algorithms as one preprocessing enhancement: we use them

to both optimize (via 0-fixing) and possibly reject (via canonicity testing). We present

canonicity-test (Algorithm 6.0.4) which shows how the algorithms of Chapter 4

may be used in order to produce an isomorph-free branch-and-cut. The preprocessing

returns true if the node is found to be valid, and false otherwise.

Given any node a and its base B = [F a
1 F a F a

0], if we maintain an ordering on the

sets F a
1 and F a

0 so that the elements in F a
1 appear in order of when they were fixed to

1, and elements in F a
0 appear in reverse order of when they were fixed to 0, then for

102

Algorithm 6.0.4 canonicity-test(Node a, Group G)

let k be the branching variable index or -1 if this is the root node

let (T, β) be the tree and base associated with G

if we wish to test canonicity at node a then

if 0-fixing has been done at all parent nodes then

0-fixing(a, G)

return true

else

return first-in-orbit2(T , β, k)

end if

end if

return true

Algorithm 6.0.5 general-bac(ILP I)

create a stack S = {a0} with a0 the root node representing I

bestObjectiveValue = −∞

while (n = get-next-node(S)) 6= 0 do

preprocess n

let (x∗, b) be the results of a call to cutting-plane

if the LP at n is infeasible or the objective function bounds are not met then

prune n and loop

end if

postprocess n

if there are free variables at n then

determine x, the lowest indexed free variable at n

push(S, n1), with n1 the child node of n where x = 1

end if

end while

103

any ancestor node b of a, B is also a valid base for b. This is the case because F b
1 ⊆ F a

1 ,

F b
0 ⊆ F a

0 , and furthermore, because of the ordering imposed on F a
1 and F a

0 , we can

think of our base B as having the form:

B = [F b
1 (F a

1 \ F b
1) F a (F a

0 \ F b
0) F b

0].

Since F b = F a ∪ (F a
1 \ F b

1) ∪ (F a
0 \ F b

0), and the ordering on the free variables is not

important to the structure of the base, this is obvious. This is rigorously proven in

Theorem 4.2.1.

We can exploit this fact in order to use the same group and base data structure for

the entire tree. We begin by noting that if the tree were to be processed in another

fashion (e.g. breadth-first), it would be necessary to maintain a group and base data

structure for each currently unprocessed node: there is no guarantee of any structural

relation between bases of nodes located on different branches of the tree. However, due

to our depth-first exploration, when we finish processing a subtree and return to some

parent node where we branched by fixing variable xi to 1, we can simply examine the

other child tree of this parent node by fixing xi to 0, shifting xi in the base by a call to

reverse-down (Algorithm 4.1.4), and proceeding. We note that we need not consider

the other case, namely returning to a parent where we branched by fixing xi to 0.

When we return to such a parent, as by the algorithm we always consider the subtree

with xi fixed to 1 before the subtree with xi fixed to 0, we can conclude that the entire

subtree rooted at this parent has been fully explored, and we simply backtrack further

up the branch-and-cut tree.

Alternatively, we can store a group and base data structure per node and simply

make a copy of it for child nodes of a node. Since, for any given node n, F n will always

be maintained in ordered form, the lowest indexed variable will always appear in the

first position of F n, removing the need to ever call reverse-down.

There are several advantages and disadvantages to both techniques. In storing a

single Schreier-Sims table for the entire tree, we dramatically reduce the amount of

104

memory that might be spent in storing many copies of the symmetry group, but we

may require many calls to reverse-down, which can be an extremely costly opera-

tion due to the number of calls to enter that it may require. On the other hand,

storing a Schreier-Sims table per node will raise memory costs and there is overhead

involved in duplicating the table structure and copying all the permutations, but this

guarantees that the free variables are always sorted and removes the need to ever call

reverse-down. We investigate the efficiency of both of these techniques in Section 8.2.

We now turn our attention to a detailed examination of the techniques used to

derive each of the four aforementioned problem types.

6.1 Search for a single optimal solution

In this types of problems, we seek to find only one out of the possibly many optimal

solutions of the ILP.

The general algorithm, search-for-optimal, is given in Algorithm 6.1.1. This

algorithm relies on the solver, which, given a node n, will solve a relaxation of the

problem associated with n. The key to this is that the relaxed solution must be no

worse than any integer solution that can be found in the subtree rooted at n. If an LP

solver like CPLEX is used, for instance, the integrality constraint of the ILP is relaxed

and an upper bound b on the objective function for this node is returned.

If s, the solution vector associated with the bound b, is integer, then we have found

a vertex of the convex hull associated with the general problem. The subtree rooted at

node n may contain other integer solutions whose objective values are also equal to b,

but this subtree cannot contain any nodes with integer solutions that exceed b. Hence,

at node n, we have found one optimal solution for this subtree, namely s, and as we

are only concerned with generating a single optimal solution for the ILP, we need not

explore this subtree.

At any node n, if the bound returned by the solver is less than or equal to

105

bestObjectiveValue, the best value found for the objective function by an integer

solution thus far, then we know that any solution in the subtree rooted at n will give

us a solution no better than the best solution we have found so far. Because of this,

we can prune node n immediately.

When all the valid nodes have been processed, an optimal solution is returned if

one was found; if the value of bestObjectiveValue is still -1, then we have proven

that no solution exists for this problem.

Algorithm 6.1.1 search-for-optimal(ILP I)

create a stack S = {a0} with a0 the root node representing I

bestObjectiveValue = −∞, bestSolutionVector = 0

while (n = getNextNode(S)) 6= 0 do

preprocess n

let (x∗, b) be the results of a call to cutting-plane

if the LP at n is infeasible or bbc ≤ bestObjectiveValue then

prune n and loop

end if

if x∗ is integer then

bestObjectiveValue = b, bestSolutionVector = x∗

pop(S) and loop

end if

postprocess n

if there are free variables at n then

determine x, the lowest indexed free variable at n

push(S, n1), with n1 the child node of n where x = 1

end if

end while

return (bestObjectiveValue, bestSolutionVector)

106

6.2 Generation of all optimal solutions

Whereas in the previous technique, we concerned ourselves solely with finding an opti-

mal solution to the supplied ILP, in this case, we wish to find all optimal solutions to

the problem.

We outline the algorithm generate-optimal in Algorithm 6.2.1. This algorithm

is similar to the algorithm for the generation of a single optimal solution with several

modifications. Again, one of the key ideas used in this algorithm involves the solver

that is employed to process the relaxation of the problem. As in the previous case, we

require that the solver return a bound b such that no solution in the subtree rooted at

n gives us an objective value better than b.

As enumerating all solutions for a given ILP involves exploring considerably more

of the search space than, say, a generation algorithm might require, our goal is to

attempt to prune subtrees that will not yield optimal solutions as quickly as possible.

We do this by trying to find an integer solution that will give us a bound for the

optimal solution, thus allowing us to discard a large number of subtrees that cannot give

optimal solutions. Intuitively, due to the nature of the majority of the 0-1 maximization

problems that we will be considering, the objective function will entail some linear sum

of the variables in our problem with positive coefficients. Hence, it is reasonable to

hypothesize that solution vectors with a large number of variables set to 1 will maximize

the value of the objective function. This is largely our motivation in the order of the

creation of the subnodes of n: by first exploring the branch n1 with x (the branching

variable) fixed to 1, and then n0, the node with x fixed to 0, as n1 has more variables

fixed to 1 than does n0, we suspect that the subtree rooted at n1 will be more likely to

result in a canonical node with high objective value. This branching order is the same

in all algorithms, but is of particular importance in this case.

Unlike the search algorithm, we cannot stop processing the subtree rooted at a node

n if the partial solution vector s at n is integer; there may be nodes in this subtree

107

with solution vectors that differ from s, but that are still considered optimal. Thus,

we may only use the information generated by the solver to obtain an early bound:

if s is integer and gives us a bound that is better than our current bound, then the

subtree rooted at n contains at least one optimal solution better than any solution we

have seen so far (namely s), and so we clear the set of all optimal solutions as any

past stored solutions are not optimal, and we record the new bound b immediately (as

opposed to when a solution is recorded at a leaf in the tree) in hopes that we may use

it to prune branches of the subtree rooted at n.

We also note that, unlike the search case, if the bound b obtained for a node n

of the search space is the same as the best objective value seen so far, we must still

consider the node n and its associated subtree as there may be other canonical optimal

solutions rooted at n.

When all the relevant nodes of the search space have been explored, the best ob-

jective value found and all solutions that provide that objective value are returned.

If bestObjectiveValue is -1, then we have shown that no valid solution to the ILP

exists.

6.3 Generation of all maximal solutions

Given Definition 6.0.5 of maximality, it is our goal to generate all maximal solutions

(with respect to set inclusion) of our ILP.

We begin by noting that if x1 and x2 are maximal solutions of some ILP I, |Q(x1)|

may not be equal to |Q(x2)|, and likewise there may be no relation between ObjI(x1)

and ObjI(x2), so unlike the previous two algorithms, we cannot exploit bounds while

exploring the tree.

The question that arises is how can a solution be tested efficiently for maximality?

Many problems might demonstrate large sets of solutions, and pairwise testing to see

if a new solution contains or is contained in an already discovered solution may not be

108

Algorithm 6.2.1 generate-optimal(ILP I)

create a stack S = {a0} with a0 the root node representing I

bestObjectiveValue = −∞, bestSolutionVectorSet = {}

while (n = getNextNode(S)) 6= 0 do

preprocess n

let (x∗, b) be the results of a call to cutting-plane

if the LP at n is infeasible or bbc < bestObjectiveValue then

prune n and loop

end if

if x∗ is integer and b > bestObjectiveValue then

bestObjectiveValue = b, bestSolutionVectorSet = {}

end if

if there are no free variables at n then

bestSolutionVectorSet = bestSolutionVectorSet ∪{x∗}

pop(S) and loop

end if

postprocess n

if there are free variables at n then

determine x, the lowest indexed free variable at n

push(S, n1), with n1 the child node of n where x = 1

end if

end while

return (bestObjectiveValue, bestSolutionVectorSet)

109

a feasible way to approach this task.

Instead, we implement maximality testing using two different techniques. The first

is called partial maximality testing, where we use the structure of the node stack itself to

reject some non-maximal solutions. For each node n, we have a flag, possibly-maximal(n).

The value of possibly-maximal(root) is set to true. Let n′ be the parent node of n.

The value of this flag for node n is set as follows:

possibly-maximal(n) =

true if we branched with value 1 at n′,

possibly-maximal(n′) otherwise.

When we reach a leaf node n in our tree with valid solution s, we immediately traverse

backwards through the stack, setting every node’s possibly-maximal flag to false.

By the structure of the stack, every node in the stack is an ancestor of n. Given any

ancestor m of n, the trivial solution extension of m (i.e. setting all variables in F m

to 0) is clearly contained in the solution s. It is only when we fix a variable in F m

to 1 that we can possibly have a maximal solution, which explains the condition on

possibly-maximal as detailed above. If we branch at a node, fixing a variable to 0,

then the child can only be possibly maximal if the parent is also possibly maximal.

The partial maximality test does not reject all non-maximal solutions: if we consider

the set of solutions, listed in order of their discovery by our algorithm,

S = {(1, 0, 1), (1, 0, 0), (0, 0, 1)} ⊂ Z
3
2,

then our algorithm will recognize that (1, 0, 0) is contained in (1, 0, 1), but it will not

recognize that (0, 0, 1) is contained in (1, 0, 1)). However, it allows us to recognize a

large class of non-maximal solutions and reject them without more complete maximality

testing.

To supplement this approach, we perform a complete maximality test on each solu-

110

tion. If we are working with n variables, we first define the following function:

Q−1 : P(Zn) → {0, 1}n

K 7→ [x0, x1, . . . , xn−1]

where xi =

0 if i 6∈ K,

1 otherwise.

Our test is dependent on the following condition: Let S be our solution set, and let

s, t ∈ S be two solutions associated respectively with nodes a and b such that s 6= t

and s is contained in t. Then, if we consider the set D = Q(t) \Q(s), the set of indices

of all variables fixed to 1 in t but not in s, and we pick d ∈ D, then Q−1(Q(s)∪{d}) is

a solution to our problem. Furthermore, Q(s) ⊂ Q(s) ∪ {d} ⊆ Q(t), so s is contained

in Q−1(Q(s) ∪ {d}). Because of this assumption, we need only try “flipping” variables

in F a
0 to 1 and see if the constraints are still valid. The algorithm maximality-test

(Algorithm 6.3.1) is derived from this idea.

Algorithm 6.3.1 maximality-test(ILP I, Solution s ∈ S ⊆ {0, 1}n)

for all i ∈ Zn \ Q(s) do

let s′ = Q−1(Q(s) ∪ {i})

if ObjI(s
′) < ObjI(s) then

loop

end if

if s′ is a feasible solution to I then

return false

end if

end for

return true

This algorithm requires us to check for feasibility of s′. This is simple, since we

only need to check whether s′ satisfied all constraints of the ILP.

111

Thus, at a node a with solution s, we consider every x = xi ∈ F a
0 . If flipping x to

1 does not invalidate any of our constraints and positively benefits the objective value

associated with the solution, we have found a solution Q−1(Q(s)∪{i}) that contains s,

so s is not maximal. If t is a maximal solution such that Q(s) ⊆ Q(t), this technique

depends fully on the assumption that intermediate subsets via Q between s and t are

also valid solutions. If this assumption does not hold, maximality testing becomes

extremely time consuming, as with a naive flipping approach, we would need to test

2|F
a
0 | flips and check a possibly large number of constraints for each flip.

We note that this approach works only for problems such as packings. In the

case where we want to minimize the objective function, we would take the opposite

approach: for any two solutions s, t, Q(s) ⊆ Q(t) would indicate that t is contained

in s. However, it is often simple to formulate a minimization problem of this nature

as a maximization problem through a simple change of variables, so we do not provide

the framework for this testing. This leads us to generate-maximal, as outlined in

Algorithm 6.3.2.

Note that in this algorithm, if no lower bound is given, we do not need to solve

an LP; we check the constraints directly for feasibility instead. If we have a lower

bound, we solve the LP in order to determine if nodes can be pruned. Additionally,

the cutting plane method serves no function unless a fractional optimal solution to the

LP relaxation is calculated.

6.4 Generation of all feasible solutions

This technique is fairly simple; we want all solutions that satisfy our constraints, re-

gardless of their objective value (i.e. for an ILP I, we want SI). The procedure is

more-or-less a simplification of Algorithm 6.2.1 with the bounds checking removed.

Pseudocode for this approach is provided in generate-all (Algorithm 6.4.1).

Again, as with the enumeration of all maximal solutions algorithm, we simply need

112

Algorithm 6.3.2 generate-maximal(ILP I)

create a stack S = {a0} with a0 the root node representing I

bestObjectiveValue = −∞, maximalSolutionVectorSet = {}

while (n = getNextNode(S)) 6= 0 do

preprocess n

call cutting-plane if appropriate (e.g. lower bound specified on problem)

if the LP at n is infeasible then

prune n and loop

end if

if there are no free variables at n then

if possibly-maximal(n) is set to false then

pop(S) and loop

end if

set the possiblyMaximal flag of all nodes in S to false

let x∗ be the solution at node n

if maximality-test(I, x∗) then

maximalSolutionVectorSet = maximalSolutionVectorSet ∪{x∗}

pop(S) and loop

end if

end if

postprocess n

if there are free variables at n then

determine x, the lowest indexed free variable at n

push(S, n1), with n1 the subnode of n where x = 1

end if

end while

return maximalSolutionVectorSet

113

Algorithm 6.4.1 generate-all(ILP I)

create a stack S = {a0} with a0 the root node representing I

bestObjectiveValue = −∞, solutionVectorSet = {}

while (n = getNextNode(S)) 6= 0 do

preprocess n

let (x∗, b) be the results of a call to cutting-plane

if the LP at n is infeasible then

prune n and loop

end if

if there are no free variables at n then

solutionVectorSet = solutionVectorSet ∪{x∗}

pop(S) and loop

end if

postprocess n

if there are free variables at n then

determine x, the lowest indexed free variable at n

push(S, n1), with n1 the child node of n where x = 1

end if

end while

return solutionVectorSet

114

to check whether or not the constraints are violated by any of our fixings, and if so,

we prune the current node.

115

Chapter 7

The NIBAC package: overview and

user options

Our branch-and-cut package, called NIBAC (Non-Isomorphic Branch-And-Cut), pro-

vides an easily programmable C++ framework for formulating combinatorial problems

as ILPs and then solving them either using pure branch-and-cut techniques or an

isomorph-reduced or isomorph-free branch-and-cut tree which exploits the symmetry

group.

NIBAC has been written in a style that may be processed by the doxygen docu-

mentation system, and references, including class descriptions and diagrams may be

found in the doc subdirectory of the project in HTML and LATEX formats. The source

code may be found in src with a Makefile which is set up for Sun Solaris and must

be edited for your architecture.

A brief summary of the classes and packages is presented below. UML class dia-

grams are given in Figures 7.1, 7.2, 7.3, and 7.4. Note that, because the class diagram

is large and has been spread over several pages, some of the “has-a” relationships are

not explicitly presented; these should, however, easily be inferred.

116

• BAC

The necessary framework for a branch-and-cut. This is the implementation and

related data structures of the algorithms in Chapter 6.

• BACOptions

A set of options for the branch-and-cut. This class allows users to specify to what

depth NIBAC should process until hands the problem to the ILP solver, along

with holding values for various parameters like which cut producers will be used,

bounds on the objective function, etc. It provides an initialization method

that, given the command line arguments passed to main, will parse command

line options automatically and return a modified command line argument list

and count to the calling code.

• bitstring

This class is not intended for users of the framework and is provided for use in

find-symmetry-group2 (Algorithm 4.4.2).

• Block

A convenience class to represent blocks from final solutions.

• BlockGroup

A SchreierSimsGroup that acts as the symmetric group over a set of points on

variables representing blocks of the problem.

• CliqueCutProducer

A CutProducer that finds violated clique inequalities as specified in Section 5.3.

• Column

This class is not intended for users of the framework. It is a component of the

Formulation class and represents a column of our ILP.

117

• ConstraintC

A constraint for our problem. As problems manage their own constraints, users

are expected to initialize a variable of type Constraint (a pointer to a ConstraintC)

using the provided static methods, and then add the Constraint to either the

Formulation (for a globally valid constraint) or a Node (for a constraint valid for

a subtree rooted at the node).

• CPLEXSolver

An implementation of LPSolver using CPLEX 7.x or 8.x.

• CutProducer

Abstract interface for classes that generate cuts. BACOptions holds a vector of

CutProducers that will be used by BAC in the cutting-plane algorithm.

• DefaultSolutionManager

A simple, memory-based SolutionManager that takes care of all solutions re-

ported and only maintains those that fit the problem type and criteria (with

regards to things like maximality, optimality, etc.).

• Formulation

The ILP formulation of the problem. Users are expected to create their ILP

using this class by supplying it with an objective function and a set of instances

of Constraint.

• GeneratedGroup

An abstract subclass of Group which encompasses methods used for a group that

is represented by a set of generators. The find-symmetry-groupN family of

algorithms (Algorithms 4.4.1, 4.4.2, and 4.4.3) are presented here.

118

• Graph

Not intended for users of the framework. This is an internal class used by

CliqueCutProducer to hold the graph associated with the ILP.

• Group

Abstract superclass for a symmetry group.

• IsomorphismCut

Not intended for users of the framework. This class represents a linked list

of isomorphism cuts, written in order to efficiently maintain a list of minimal

and unique isomorphism cuts during isomorphism cut production. Used by

IsomorphismCutProducer.

• IsomorphismCutProducer

Producer of isomorphism cuts.

• LPSolver

Abstract interface to which an LP solver must adhere to be used by NIBAC. Cur-

rently, a concrete implementation that uses CPLEX (CPLEXSolver) is provided,

but other LP solving packages could easily be used as an alternative.

• MargotBAC

A subclass of BAC that defines the preprocess method by employing Margot’s

algorithms as described in Section 4.2. For isomorph-free branch-and-cut, or

isomorph-reduced branch-and-cut, this is the class that should be used.

• MargotBACOptions

This class extends the functionality of the BACOptions class by allowing users to

specify depths and criteria for canonicity testing.

119

• matrix

A package of C++ routines for allocating and deallocating two or three dimen-

sional arrays of arbitrary types.

• MatrixGroup

A SchreierSimsGroup that represents all the row and / or column permutations

over an m × n matrix of variables, as in an incidence matrix style formulation.

• Node

This class is not intended for use by programmers of the framework. It encapsu-

lates the data needed by the branch-and-cut and related algorithms for a single

node of the search tree.

• NodeStack

This class is not intended for use by programmers of the framework. It stores a

stack of Nodes and implements the get-next-node algorithm (Algorithm 6.0.3).

• PermutationPool

This class manages memory for permutations (arrays of int) by offering either a

static pool or dynamic allocation.

• Problem

The main class of interest for users of the framework. It instantiates and initializes

objects needed by BAC and presents a set of methods that must be overridden

that allow users to define the ILP, determine fixings, set up the cut producers,

etc.

• SchreierSimsGroup

A concrete implementation of GeneratedGroup that uses the algorithms of Sec-

tion 4.1 to represent a group. If users intend to create their own groups without

120

using BlockGroup or MatrixGroup, they should instantiate an instance of this

class and enter permutations into it; a minimal set of generators will suffice.

• SolutionManager

An abstract interface for a class used to process solutions. A concrete implemen-

tation is provided with DefaultSolutionManager.

• Statistics

A set of statistics maintained about the branch-and-cut process. These are held

in, and accessible through the BACOptions class. They need not be instantiated

by the user, and come with convenience printing routines in order to output

statistics to an output stream.

• Timer

A millisecond-precise stopwatch for measuring time elapsed.

The basic technique to formulate a problem is to extend the Problem class. The

methods of this class, as detailed in the doxygen documentation, can be overridden to

construct the formulation, determine the symmetry group, set up the cut producers,

etc. Examples of implementations of the abstract Problem class can be found for all

of the problems in Chapter 2, as well as for the generation and enumeration of cyclic

basis representations of subspaces of dimension two over the F2-vector space F
n
2 .

A full user manual will be released with the package in PDF format in the doc

subdirectory along contact information for the author regarding questions and bugs.

For the remainder of this chapter, we examine the various parameters that may be

altered in order to affect the performance of the branch-and-cut and how these relate

to the algorithms previously discussed.

121

Figure 7.1: Class diagram (part one of four) for the NIBAC package.

122

GeneratedGroup
Abstract class for groups represented by generators

+GeneratedGroup(): constructor

+enter(int*): void

+createSymmetryGroup(Formulation&): void

+findSymmetryGroup1(Formulation&): void

+findSymmetryGroup2(Formulation&): void

+findSymmetryGroup3(Formulation&): void

-firstSnPerm(int,out int*): void

-nextSnPerm(int,int*,out int*): bool

SchreierSimsGroup

#lists: std::map< int, int* >

#base: int*

#baseinv: int*

#tmpperm1: static int*

#tmpperm2: static int*

#rstack: static std::vector< int* >

#used: static bool*

#remain: static int*

#pos: static int*

#hperms: static int*

#locperms: static int*

#Jk: static std::vector< int >

#mapiters: static std::map< int, int* >::iterator

+SchreierSimsGroup(int*=0,int*=0): constructor

+initialize(int): static void

+destroy(): static void

+getPermutation(int,int): int*

+enter(int*): void

+down(int,int): void

-test(int*,int): int

-enter(int*,int,bool=true): void

+isCanonicalAndOrbInStab(int,int,out std::set< int >&,int*,bool=true,bool=true,bool=true): bool

+isCanonical(int): bool

+getPosition(int): int

+getBaseElement(int): int

+getNumGenerators(): int

+makeCopy(): Group*

#initializeSets()

#deleteSets(): void

+insertSorted(int,inout std::vector< int >&): static int

+removeSorted(int,inout std::vector< int >&): static void

Group
Abstract superclass for groups

#x: static int

#memsize: static int

#pool: static PermutationPool*

#idperm: static int*

+Group()(): constructor

+initialize(int): static void

+destroy(): static void

+multiply(int*,int*,out int*): static void

+invert(int*,out int*): static void

+isIdentity(int*): static bool

+getBaseSetSize(): static int

+getIdentityPermutation(out int*): static void

+getPermutation(int,int): int*

+isCanonicalAndOrbInStab(int,int,out std::set< int >&,int*,bool=true,bool=true,bool=true): bool

+down(int,int): void

+getPosition(int): int

+getBaseElement(int): int

+makeCopy(): Group*

MatrixGroup
Group of row and column permutations

+MatrixGroup(int,int,int**,bool,bool,int*=0)

BlockGroup
Symmetric group acting on blocks

+BlockGroup(int,int,int,int*=0): constructor

+BlockGroup(int,int,int,std::set< int >&,int*): constructor

#setupVertexTransposition(int,int,int,int*,int,int): void

#initializeGroup(int,int,int,std::set< int >&): void

Figure 7.2: Class diagram (part two of four) for the NIBAC package.

123

CutProducer
Interface class for cut producers

+CutProducer(): constructor

+generateCuts(BAC*,Node*,double,out int&,out double&): void

#quicksort(std::vector< int >&,double*,int,int): void

#quicksort(int*,double*,int,int): void

IsomorphismCutProducer

-numvariables: int

-IC_MIN_FRACTIONAL_VALUE: double

-tmpperm: int*

-used: bool*

-remain: int*

-pos: int*

-selected: int*

-hperms: int**

-sum_x: double*

+IsomorphismCutProducer(int,double=IC_DEFAULT_MIN_FRACTIONAL_VALUE): constructor

+generateCuts(BAC*,Node*,double,out int&,out double&): void

CliqueCutProducer

-CC_FRACTIONAL_THRESHOLD: double

-CC_FRACTIONAL_PREFERENCE: double

-CC_ENUMERATION_VALUE: int

+CliqueCutProducer(double=CC_DEFAULT_FRACTIONAL_THRESHOLD,double=CC_DEFAULT_FRACTIONAL_PREFERENCE,int=CC_DEFAULT_ENUMERATION_VALUE): constructor

+generateCuts(BAC*,Node*,double,out int&,out double&): void

-determineMaximalCliques(Graph&,std::vector< int >&,out std::vector< std::vector< int > >&): void

-cliqueHeuristic(Graph&,std::vector< int >&,double*,int,int,int*,float,out std::vector< std::vector< int > >&): void

+cliqueHeuristicAux(Graph&,int,double*,std::vector< int >&): void

IsomorphismCut
Class used by IsomorphismCutProducer

-numindices: int

-indices: int*

-size: int

-bitstring: unsigned long*

-violation: double

-prev: IsomorphismCut*

-next: IsomorphismCut*

+IsomorphismCut(int,int,int*,double): constructor

+setNext(IsomorphismCut*): IsomorphismCut*

+getNext(): IsomorphismCut*

+deleteCut(): IsomorphismCut*

+getIndices(): int*

+getNumIndices(): int

+getViolation(): double

+operator==(const IsomorphismCut&): bool

+operator<(const IsomorphismCut&): bool

SolutionManager
Abstract interface for solution managers

+SolutionManager(): constructor

+newSolution(): Node*

DefaultSolutionManager
Default memory-based solution manager

#bestsoln: double

#solutions: std::vector< std::vector< int > * >

#type: ProblemType

#enumerateall: bool

+DefaultSolutionManager(ProblemType,SolutionType): constructor

+newSolution(Node*): void

+getSolutions(): std::vector< std::vector< int > * >&

+getBestSolutionValue(): double

#clearVector(): void

Statistics

-numcanoncalls: unsigned long

-numcanonrejects: unsigned long

-noncanonmaxdepth: unsigned long

-margottime: Timer

-grouptimer: Timer

-formulationtimer: Timer

-numnodes: unsigned long

-backtracks: unsigned long

-lpsolvetime: Timer

-numlpssolved: unsigned long

-septime: Timer

-numcuts: std::vector< unsigned long >

-treedepth: unsigned long

-groupcopytime: Timer

-tottime: Timer

+nodesbydepth: std::map< int, int > nodesbydepth;

-fixingsbydepth: std::map< int, int >

+Statistics()

+getNumCanonCalls(): unsigned long

+setNumCanonCalls(unsigned long): void

+reportCanonCall(): void

+getNumCanonRejects(): unsigned long

+setNumCanonRejects(unsigned long): void

+getNonCanonMaxDepth(): unsigned long

+setNonCanonMaxDepth(unsigned long): void

+reportNonCanonDepth(unsigned long): void

+getMargotTimer(): Timer&

+getSymmetryGroupTimer(): Timer&

+getFormulationTimer(): Timer&

+getNumNodes(): unsigned long

+setNumNodes(unsigned long): void

+reportNodes(unsigned long=1): void

+getNumBacktracks(): unsigned long

+setNumBacktracks(unsigned long): void

+reportBacktrack(): void

+getLPSolverTimer(): Timer&

+getNumLPsSolved(): unsigned long

+setNumLPsSolved(unsigned long): void

+reportLPsSolved(): void

+getSeparationTimer(): Timer&

+setNumCutters(unsigned int): void

+getNumCuts(): std::vector< unsigned long >&

+getTreeDepth(): unsigned long

+setTreeDepth(unsigned long): void

+reportBranchDepth(unsigned long): void

+getGroupCopyTimer(): Timer&

+getTotalTimer(): Timer&

+getNodeCountByDepth(): std::map< int, int >&

+getVariableFixingCountByDepth(): std:::map< int, int >&

Graph

-v: int

-adjlists: std::set< int >*

-components: std::vector< std::vector< int > >

+Graph(int): constructor

+getNumVertices(): int

+addEdge(int,int): void

+getAdjLists(): std::set< int >*

+determineComponents(): void

+getComponents(): std::vector< std::vector< int > >&

Timer

-tp: struct tms

-cstart: unsigned long

-cstop: unsigned long

-seconds: double

+Timer(): constructor

+start(): void

+stop(): void

+reset(): void

+setSeconds(double): void

+getSeconds(): double

Figure 7.3: Class diagram (part three of four) for the NIBAC package.

124

Figure 7.4: Class diagram (part four of four) for the NIBAC package.

125

7.1 Constants and variable parameters

In order to optimize the branch-and-cut framework, a number of user-adjustable pa-

rameters have been provided. These are outlined in the following sections.

7.1.1 Constants

Constants are defined in the file common.h and must be redefined at compile time if

they are to be changed.

EPSILON

Default: 10−3

A real number close to 0 used in floating point calculation. A floating point number

x is considered to be equal to y if |x − y| ≤ EPSILON. This constant is also used in

determining integrality.

7.1.2 Variable parameters

Variable parameters are either specified in a constructor of a class or as a setting in the

BACOptions class (or a subclass thereof) when it makes sense to do so. We proceed to

detail the various parameters here and their default values.

Branch-and-bound parameters

• BB LBOUND

Set via: BACOptions

Default: INT MIN

This parameter allows the user to specify a lower bound on the optimal value of

the solution if one is known. This allows early pruning of branches from the tree

in a maximization problem, and in a minimization search problem, we know that

a solution is optimal and terminate if we ever achieve this bound.

126

• BB UBOUND

Set via: BACOptions

Default: INT MAX

This parameter allows the user to specify an upper bound on the optimal value

of the solution if one is known. This allows early pruning of branches from the

tree in a minimization problem, and in a maximization search problem, we know

that a solution is optimal and terminate if we ever achieve this bound.

• BB DEPTH

Set via: BACOptions

Default: BAC::BB NEVER

This parameter specifies the depth of our branch-and-cut tree in which we stop

the branch-and-cut algorithm and hand the ILP to the LPSolver class. The

LPSolver class must solve it fully at that level if such behaviour is supported. In

the case of the default implementation, this consists of asking CPLEX to solve

an ILP instead of the LP relaxation. For the default value, BB NEVER, branch-

and-cut continues at arbitrarily high depths.

Cutting plane parameters

• CP MIN NUMBER OF CUTS

Set via: BACOptions

Default: BAC::CP DEFAULT MIN NUMBER OF CUTS = 5

In order to continue running the cutting plane algorithm, we need to produce at

least this many cuts meeting our criteria in a single iteration.

• CP VIOLATION TOLERANCEL

Set via: BACOptions

Default: BAC::CP DEFAULT VIOLATION TOLERANCEL = 0.3

127

This is the parameter vmin, as outlined in Algorithm 5.1.1.

• CP VIOLATION TOLERANCEU

Set via: BACOptions

Default: BAC::CP DEFAULT VIOLATION TOLERANCEU = 0.6

This is the parameter vmax, as outlined in Algorithm 5.1.1.

• CP MIN VIOLATIONL

Set via: BACOptions

Default: BAC::CP DEFAULT MIN VIOLATIONL = 0.3

This is the parameter mmin, as outlined in Algorithm 5.1.1.

• CP MIN VIOLATIONU

Set via: BACOptions

Default: BAC::CP DEFAULT MIN VIOLATIONU = 0.6

This is the parameter mmax, as outlined in Algorithm 5.1.1.

• CP ACTIVITY TOLERANCE Set via: BACOptions

Default: BAC::CP DEFAULT ACTIVITY TOLERANCE = 0.1

A cut ax ≤ b is considered active if b − ax ≤ CP ACTIVITY TOLERANCE. Inactive

cuts are not used in a node or in subnodes: they are added when we return

to the parent of the node in which they were determined to be inactive if the

CP KEEP CUTS variable is set to TRUE (default) in the BACOptions class. The

ability to permanently discard cuts is offered to reduce memory consumption.

Canonicity testing and 0-fixing parameters

• Canonicity flag string

Set via: MargotBACOptions

Default: “-”, i.e. always

128

A user-supplied string that determines at what depths canonicity testing should

be performed in the branch-and-cut. The string consists of ranges of the form “a-

b”, where all depths in range between a and b inclusive are tested for canonicity. If

a is omitted, 0 is assumed. If b is omitted, INT MAX (i.e. every depth greater than

a) is assumed. Multiple ranges may be specified by separating the ranges with

commas. Note that in the case of any enumeration, canonicity testing will always

be performed on complete solutions to ensure that an isomorph-free catalogue is

output.

• Orbit flag string

Set via: MargotBACOptions

Default: “-”, i.e. always

A user-supplied string that determines at what depths 0-fixing should be per-

formed in the branch-and-cut. The string consists of ranges of the form “a-b”,

where all depths in range between a and b inclusive are tested for canonicity. If a

is omitted, 0 is assumed. If b is omitted, INT MAX (i.e. every depth greater than

a) is assumed. Multiple ranges may be specified by separating the ranges with

commas.

Isomorphism cut producer parameters

• IC MIN FRACTIONAL VALUE

Set via: IsomorphismCutProducer constructor

Default: IsomorphismCutProducer::IC DEFAULT MIN FRACTIONAL VALUE = 0.5

At a node a, we have the set Ha = F a
1 ∪ F a. In the interests of efficiency and

likelihoods of generating isomorphism cuts, we restrict our consideration to the

set H ′ = {i ∈ Ha | xi ≥ IC MIN FRACTIONAL VALUE}. The default value for this

parameter was proposed in [22].

129

Clique cut producer parameters

• CC FRACTIONAL THRESHOLD

Set via: CliqueCutProducer constructor

Default: CliqueCutProducer::CC DEFAULT FRACTIONAL THRESHOLD = 0.15

For clique cuts, in the interests of efficiency and producing valid cliques, we only

consider variables x such that CC FRACTIONAL THRESHOLD ≤ x ≤ 1−CC FRACTIONAL THRESHOLD.

• CC ENUMERATION VALUE

Set via: CliqueCutProducer constructor

Default: CliqueCutProducer::CC DEFAULT ENUMERATION VALUE = 20

When generating cliques, if a connected component has CC ENUMERATION VALUE

or fewer vertices, we enumerate all maximal cliques: otherwise, we rely on the

heuristic. The default value for this parameter was proposed in [16].

• CC FRACTIONAL PREFERENCE

Set via: CliqueCutProducer constructor

Default: CliqueCutProducer::CC DEFAULT FRACTIONAL PREFERENCE = 0.5

When generating cliques using the heuristic, we give priority to vertices that are

near to CC FRACTIONAL PREFERENCE.

130

Chapter 8

Experimental results and case

studies

We now proceed to investigate the performance of the NIBAC framework and use it to

solve some combinatorial problems. Using his framework, Margot was able to address

a number of different problems: showing nonexistence of a 4-(10, 5, 1) covering of size

50 [22, 24]; generating all canonical 4-(10, 5, 1) coverings of size 51 [24]; searching for

a single optimal solution for a number of different covering problems [23]; finding an

optimal error correcting code A(8, 3) [22], A(9, 4), and A(10, 5) [23]; and solving several

set covering problems derived from Steiner triple systems [23].

In this chapter, we test the problems detailed in Chapter 2 using the four techniques

outlined in Chapter 6, thus examining and expanding the applicability of isomorph-

free branch-and-cut to a larger variety of combinatorial problems. Additionally, we

investigate how specific variations of the algorithm affect performance: for example,

we study the differences in efficiency using one group representation for the entire tree

versus one group representation per node, as proposed in Chapter 6.

We begin by establishing estimates on good values for several of the parameters

for NIBAC algorithms. After these have been determined, we investigate the effects

131

of different types and combinations of cuts. Once we have determined which NIBAC

configuration we will use by default, we perform several case studies on the problems

of interest defined in Chapter 2.

We use the bounds given in Theorems 2.1.1, 2.1.2, and 2.1.3. For all t-(v, k, λ)

design problems, we set the upper and lower bounds:

BB LBOUND = BB UBOUND =
λ
(

v

k

)

(
v

t

) .

If λ = 1, we also use the standard fixing of
(

v−1
k−1

)
+ 1 variables as described in Section

2.3; otherwise, we fix only the first block. For all t-(v, k, λ) packings, we set the upper

bound given by the First Johnson bound in Theorem 2.1.2:

BB UBOUND =

⌊
v

k

⌊
v − 1

k − 1
. . .

⌊
λ(v − t + 1)

k − t + 1

⌋⌋⌋

.

For t-(v, k, λ) coverings, we use the lower bound provided by the Schönheim bound:

BB LBOUND =

⌈
v

k

⌈
v − 1

k − 1
. . .

⌈
λ(v − t + 1)

k − t + 1

⌉⌉⌉

.

In both packing and covering problems, we also use the standard fixing of 1 variable

as described in Section 2.3.

The tests were run on a Sun Fire V880 with eight UltraSPARC III Cu 900 MHz

processors and 32 GB of RAM running Solaris 9. The programs were compiled with

the Sun Forte Developer 7 C++ compiler, and for the LP solver (and ILP solver, in

some instances as detailed below), CPLEX 7.0 was used.

A legend of the headings used in the results tables is provided in Table 8.1. We

note that results that are new are indicated in the tables in bold face.

132

B The number of backtracks in the node stack.

C The number of calls to the fast canonicity algorithms.

CC The number of clique cuts produced by the cutting plane.

CPs Types of cut producers used:

i = isomorphism, s = specialized cliques, g = general cliques.

CR The number of canonical rejections.

CT Time spent in fast canonicity testing / 0-fixing (in seconds).

CV Variation of the clique cut producer used:

SC for specialized clique producer, GC for general clique producer.

#D The number of forward (regular) down operations performed.

D The highest depth amongst all processed nodes.

DT Time spent performing forward down operations.

#GC The number of group copies performed by the branch-and-cut.

GCC The number of general clique cuts produced by the cutting plane.

GCT The time spend copying groups.

GT Time spent in the Schreier-Sims group algorithms.

N The number of nodes explored by the tree.

IC The number of isomorphism cuts produced by the cutting plane.

LP The number of LPs solved during execution.

LPT Time spent solving linear programs (in seconds).

#RD The number of reverse-down operations performed.

RDT Time spend performing reverse-down operations.

SC The number of calls to the slow canonicity algorithm.

SCC The number of special clique cuts produced by the cutting plane.

SCT Time spent in slow canonicity testing.

ST Time spent in the separation (in seconds).

T Total time spent in branch-and-cut (in seconds).

Table 8.1: Description of the columns in the tables of results.

133

8.1 Setting up the default NIBAC configuration

We begin by determining a good configuration for the NIBAC parameters through

experimentation on several problems. After this has been established, we will use this

configuration when dealing with the case studies in the next section.

8.1.1 The effects of varying [vmin, vmax] and [mmin, mmax]

In Section 5.1, we describe the use of the parameters [vmin, vmax] and [mmin, mmax] in

the cutting plane algorithm. It was shown in [35] that the values [0.3, 0.6], [0.3, 0.6]

performed best for the cuts and problems that were used in that particular branch-

and-cut implementation. We will examine how these parameters impact our branch-

and-cut package. Because during search for the 2-(v, 3, 1) designs that we attempted,

no isomorphism cuts were generated for the parameter ranges attempted in [35], we

included a smaller range in the experimental values in hopes that we might find such

a cut. We test various combinations of parameters as detailed in Table 8.2 for several

different problems: block formulation designs and packings both in the search for one

structure (Table 8.3) and generation of all optimal structures (Table 8.4). The results

are similar for other designs and packings, even if the parameter λ is varied.

p# vmin vmax mmin mmax

1 0.01 0.01 0.01 0.01

2 0.1 0.1 0.1 0.3

3 0.1 0.1 0.3 0.3

4 0.3 0.3 0.3 0.3

5 0.3 0.6 0.3 0.6

Table 8.2: Parameter combinations for the cutting plane algorithm.

134

Table 8.5 demonstrates the effects of varying these parameters in the generation of a

single 2-(13, 3, 1) design using the incidence matrix formulation. The lowest execution

time is reported when the cutting plane algorithm is turned off completely. Other 2-

(v, k, λ) designs are either generated or enumerated too quickly to provide information

or are infeasible for testing purposes using this technique.

In some cases, the times for the separation algorithm may seem very high: reasons

for this are discussed in the following section. In the meantime, we observe that for

all attempted parameter intervals higher than [0.3, 0.6], no cuts are obtained in all

examples: the value [0.6, 0.6] generated no cuts in all cases, thus making the cutting

plane algorithm useless.

From the examples, it is not easy to determine the best values for the cutting plane

parameters; clearly, there is no advantage to [0.01, 0.01] as we still do not generate

any isomorphism cuts for the majority of generation problems. Intuitively, this makes

sense, as there is no backtracking in the branch-and-cut tree, indicating that we are only

creating a canonical set representing the solution. In the case of incidence matrices,

the cost of the separation does not justify its benefits.

In light of these experiments, we will, from this point forward for the general case,

proceed to use the values [0.3, 0.6] as per [35] for both ranges, as there are certain

instances where each interval performs well and this interval demonstrates reasonably

low times in most cases.

135

v p# N LPT LP ST IC CV CC T

15 - 15 0.12 15 - - - - 17.99

1 17 0.08 24 25.60 0 SC 24 31.67

9 0.18 24 8.18 0 GC 52 16.40

2 17 0.16 23 22.39 0 SC 15 44.63

15 0.16 28 19.54 0 GC 42 37.67

3 17 0.14 23 22.56 0 SC 15 44.77

14 0.18 26 14.99 0 GC 38 30.84

4 13 0.10 16 9.74 0 SC 3 23.63

13 0.13 18 10.16 0 GC 7 23.97

5 13 0.08 15 15.69 0 SC 2 29.33

10 0.11 15 6.59 0 GC 9 15.72

19 1 29 0.87 49 3935.44 0 SC 86 11789.40

28 1.14 70 4864.78 0 GC 191 12271.30

2 30 0.77 46 3739.90 0 SC 57 12349.40

29 1.34 71 5339.79 0 GC 180 13195.10

3 28 0.70 41 3078.49 0 SC 48 10490.70

29 0.96 65 4271.28 0 GC 148 12121.10

4 29 0.74 38 3213.54 0 SC 11 11066.80

28 0.85 48 3170.27 0 GC 49 10587.20

5 29 0.73 36 3170.85 0 SC 8 11035.20

30 0.90 44 3434.46 0 GC 28 12055.00

Table 8.3: Search for several 2-(v, 3, 1) designs using the block incidence formulation for

determining good cutting plane algorithm parameters. There are never any backtracks

in the tree.

136

v p# N B LPT LP ST IC CV CC T

11 - 319 159 0.68 319 - - - - 9.82

1 197 98 0.69 235 0.94 415 SC 31 6.31

183 91 0.73 254 0.86 237 GC 190 5.99

2 259 129 0.67 295 0.87 157 SC 28 9.17

193 96 0.74 260 0.78 130 GC 167 5.93

3 259 129 0.84 295 0.94 157 SC 28 9.23

193 96 0.57 260 0.82 130 GC 167 5.98

4 263 131 0.64 285 0.83 113 SC 12 9.43

191 95 0.56 234 0.75 297 GC 86 5.74

5 261 130 0.60 288 0.83 260 SC 8 9.54

247 123 0.66 292 0.73 126 GC 69 8.76

12 - 6701 3350 19.23 6701 - - - - 695.43

1 5523 2761 17.21 6151 48.00 3997 SC 59 660.28

3835 1917 13.57 4631 25.20 2903 GC 1751 484.44

2 1793 896 8.83 2313 29.50 3816 SC 49 148.64

3871 1935 14.18 4651 24.73 3131 GC 1734 489.86

3 1793 896 8.37 2311 29.91 3834 SC 59 148.29

3909 1954 24.56 4690 24.56 2924 GC 1723 491.47

4 1829 914 8.36 2288 28.73 3780 SC 31 148.09

4691 2345 15.65 5428 27.16 2967 GC 1146 579.80

5 1847 923 8.39 2283 27.86 3424 SC 18 146.65

4677 2338 14.98 5394 26.37 3179 GC 1058 576.44

Table 8.4: Generation of all optimal 2-(v, 3, 1) packings for determining good cutting

plane algorithm parameters.

137

p# N B LPT LP ST IC T

- 754 344 189.85 754 - - 30949.0

1 739 338 179.45 807 12488.3 348 42496.6

2 736 338 179.83 801 12207.9 305 42006.2

3 736 338 179.80 801 12205.9 305 42001.7

4 739 338 181.70 785 11816.8 136 41816.3

5 742 338 174.81 792 12128.5 198 42471.8

Table 8.5: Search for a 2-(13, 3, 1) design using the incidence matrix formulation for

determining good cutting plane algorithm parameters.

138

8.1.2 The effects of different types of cuts

Tables 8.3, 8.4, and 8.5 demonstrate some large times for the cutting plane algorithm.

We investigate this phenomenon here to determine its causes.

We begin by examining the statistics by choosing different cut producers for the

search problem for a 2-(19, 3, 1) design (Table 8.6) and the optimal generation problem

for 2-(12, 3, 1) packings (Table 8.7). We report on combinations of isomorphism cuts

(i), specialized clique generation (s), and general clique generation (g).

CPs N LPT LP ST IC GCC SCC T

- 30 0.59 30 - - - - 8645.10

g 30 0.92 44 0.02 - 28 - 8629.89

s 29 0.73 36 0.02 - - 8 7862.46

gs 29 0.86 52 0.09 - 31 7 7852.21

i 30 0.62 30 3368.60 0 - - 11984.60

ig 30 0.96 44 3431.93 0 28 - 12053.80

is 29 0.68 36 3168.15 0 - 8 11031.60

igs 29 1.00 52 3244.26 0 31 7 11098.30

Table 8.6: The effects of using different cut producers on the search for an optimal

2-(19, 3, 1) design.

It is clear that in certain cases, as with the 2-(19, 3, 1) design search, the high

amount of time spent generating isomorphism cuts is not worthwhile: indeed, in this

case, no isomorphism cuts are generated, so there is no effect on canonicity. This is due

to the nature of the isomorphism cut generation algorithm. The backtracking approach

that we use to create lexicographically smaller sets is quite intensive when the number

of variables and the size of the symmetry group are large.

In the case of the 2-(12, 3, 1) packing generation, the isomorphism cuts are obviously

139

CPs N LPT LP ST IC GCC SCC T

- 6973 19.28 6973 - - - - 717.98

g 5283 17.20 6010 0.35 - 1241 - 591.91

c 2977 10.52 2991 0.24 - - 20 189.60

gc 1849 9.06 2444 0.45 - 1054 16 144.44

i 5547 16.96 6052 44.74 3586 - - 650.93

ig 4677 15.03 5394 26.41 3179 1058 - 574.46

ic 1847 8.44 2283 27.53 3424 - 18 146.09

igc 1395 7.52 1959 18.77 3127 853 17 112.92

Table 8.7: The effects of using different cut producers on the generation of all optimal

2-(12, 3, 1) packings.

beneficial: despite the large amount of time spent in the separation, they decrease the

number of nodes by 10% to 37% depending on the other types of cuts selected, and

always reduce overall run time, sometimes significantly (by up to 22%).

In both examples, it is always beneficial to use both general clique cuts and the

specialized clique cuts when possible. In the enumeration of all maximal (9, 5, 3) inter-

secting set systems, cuts do not assist the problem. While the cutting plane algorithm

takes no more than 0.05 seconds in all cases, the execution time with cuts enabled rises

from 1401.77 s to 1472.96 s (or by approximately 5%). As this increase is negligible,

we are not concerned by enabling all cuts in the general case.

From the above tables, it is clear that generating isomorphism cuts can increase

the separation time for a problem. We proceed to investigate whether or not they are

advantageous, and if so, to what types of problems.

As we have seen in Table 8.3, isomorphism cuts do not appear to be generated for

small v in the search problems for 2-(v, 3, 1) designs, so we no longer investigate those

here and conclude that isomorphism cuts are detrimental in these cases.

140

We examine several different design generations in Table 8.8 and packing enumera-

tions in Table 8.9. Each of these formulations was run for generation as well, and none

of them reported an isomorphism cut in this case; however, the separation never took

more than a fraction of a second for each problem.

v k λ IsoCuts N ST IC CT C CR T

7 3 2 off 147 - - 0.10 323 108 0.43

on 133 0.05 10 0.09 290 96 0.43

7 3 3 off 637 - - 0.64 1454 511 2.55

on 559 0.17 42 0.72 1256 430 2.45

7 3 4 off 3423 - - 5.21 7357 2263 16.42

on 3011 1.51 118 4.93 6434 1958 16.32

7 3 5 off 17649 - - 50.73 34607 8284 112.65

on 15849 14.16 382 46.84 30819 7196 119.07

8 4 3 off 163 - - 1.02 547 307 2.71

on 159 0.20 4 0.96 522 288 2.89

9 3 2 off 3179 - - 18.93 8677 3960 33.67

on 2349 4.13 615 12.11 5928 2453 28.13

9 4 3 off 1717 - - 9.10 6996 4439 35.87

on 1419 1.14 107 7.19 5438 3325 30.66

10 4 2 off 131 - - 1.62 638 445 7.52

on 131 0.37 13 1.67 638 445 8.08

Table 8.8: The effects of isomorphism cuts on several 2-(v, k, λ) design generations. No

cuts were generated for the 2-(11, 5, 2), and 2-(13, 4, 1) design generations, nor did the

separation take more than 0.01 s, so these results are omitted.

It seems that it is difficult to predict whether or not isomorphism cuts will assist

the problem. In the examples studied, in the worst case, execution time increased by

141

v IsoCuts N ST IC CT C CR T

10 off 163 - - 1.04 733 512 2.10

on 151 0.23 106 0.91 634 430 2.24

11 off 319 - - 6.71 1272 839 9.77

on 275 0.81 244 5.93 1023 654 9.82

12 off 6973 - - 641.33 43680 33904 715.17

on 5591 44.16 3893 545.76 33942 26210 654.36

Table 8.9: The effects of isomorphism cuts on several 2-(v, 3, 1) packing generations.

7.74%. The greatest reduction in execution time was 16.99%. In exactly half of the test

cases where the execution time was affected by isomorphism cuts, the time dropped.

In the instances where isomorphism cuts hindered the problem runtime, despite the

fact that they almost always reduced the number of nodes in the tree and the number

of canonicity tests performed, the time spent in the separation algorithm outweighed

the benefits.

In problems like the search for a 2-(13, 3, 1) design using the incidence matrix for-

mulation (Table 8.5), isomorphism cuts are shown to be detrimental to the execution

time; however, this is understandable as the isomorphism cuts are generated using an

algorithm similar to that of canonicity testing, and canonicity testing dominates the

run time when the cutting plane algorithm is turned off (taking 83.53% of the CPU

time). This brings into question whether this type of ILP is suited for the NIBAC

algorithms.

Because of their possible usefulness and in order to follow Margot’s proposed frame-

work more closely, from this point forth we will leave isomorphism cuts enabled unless

otherwise indicated.

142

8.2 Using node groups versus tree groups

Chapter 6 discusses two possible approaches to storing the group for a branching tree:

either we can maintain one group representation for the entire tree, which has the

advantage that it requires far less memory and requires no overhead in copying permu-

tations, or we can hold one representation per node, which allows us to avoid making

calls to the potentially costly reverse-down (Algorithm 4.1.4). In the results in the

previous sections, we employed the one group per node philosophy; we now proceed to

compare the two possibilities.

It seems that in the case where the symmetry group is isomorphic to a symmetric

group or the direct composition of a small number of symmetric groups that there

is very little difference between the two representations; in fact, it seems that using

one group for the entire tree reduces the execution time because there is no need to

perform a group copy operation for each visited node. We demonstrate results for

this on design problems (Table 8.10) and packing problems (Table 8.11), focusing on

generation rather than search; for the majority of search problems where a structure

exists, the algorithms usually require no backtracking, and thus, there is no need to

ever call reverse-down.

Clearly, in the above examples, there is little variation between the two different

group representations. However, this is not always the case: if the structure of the

symmetry group is instead isomorphic to the direct composition of a large number of

small symmetric groups, then the time spent downing increases significantly, and the

time spent in reverse-downing becomes exorbitant. To illustrate this, we consider an

ILP for t-(v, k, λ) designs using the block formulation and λ > 1, in which we remove

the inequalities of the form:

x(B,c) ≥ x(B,d), B ∈

(
V

k

)

, c < d, c, d ∈ Zλ.

The canonical solutions will be the same, but we introduce a large number of isomorphs.

143

t v k λ Tech #GC GCT #D DT #RD RDT T

2 8 4 3 TG - - 774 0.08 392 0.10 2.94

NG 159 0.07 783 0.08 - - 2.93

2 9 3 2 TG - - 5416 0.16 4384 0.12 26.46

NG 2351 0.87 5449 0.14 - - 28.19

2 9 4 3 TG - - 5105 0.55 4277 0.42 27.99

NG 1441 1.27 5210 0.50 - - 31.00

2 10 4 2 TG - - 1386 1.05 522 0.67 8.12

NG 131 0.27 1396 1.18 - - 8.04

2 11 5 2 TG - - 1687 19.78 98 11.03 46.33

NG 35 0.22 2705 23.51 - - 39.35

2 13 3 1 TG - - 1573 ≤ 0.01 1123 ≤ 0.01 122.90

NG 229 0.35 1598 0.01 - - 123.86

Table 8.10: The effects of using a node group (NG) versus a tree group (TG) for several

t-(v, k, λ) design generation problems.

This causes the symmetry group G to grow from size v! to v!λ!(
v

k), where:

G = Sv � Sλ � . . . � Sλ
︸ ︷︷ ︸

(v

k) times

.

It is natural to expect that larger symmetry groups require more time spent in group

algorithms; however, by the examples in Tables 8.10 and 8.11, this time seems to

increase evenly between the two approaches. Using the formulation that yielded the

larger symmetry group, for the 2-(9, 4, 3) design generation problem, the execution

time increased from 159.47 seconds to 2601.84 when a tree group was used instead of

a node group; 2329.91 seconds of this time was spent in reverse-downing.

Upon investigation, it became apparent that it was not so much the size of the

symmetry group that imposed this large increase, but the structure of the symmetry

144

t v k λ Tech #GC GCT #D DT #RD RDT T

2 10 3 1 TG - - 803 0.12 397 0.06 1.72

NG 123 0.06 844 0.12 - - 1.76

2 11 3 1 TG - - 1128 0.34 467 0.22 5.43

NG 189 0.13 1128 0.37 - - 5.48

2 12 3 1 TG - - 7660 1.00 6757 0.89 110.23

NG 1391 1.52 7673 1.10 - - 110.76

Table 8.11: The effects of using a node group (NG) versus a tree group (TG) for several

t-(v, k, λ) packing generation problems.

group itself. When the symmetry group is either isomorphic to a symmetric group

or a small number of direct compositions of symmetric groups, the majority of the

permutations in the Schreier-Sims representation become concentrated in the early

rows of the table (vis-a-vis the base). Since it is extremely unlikely that we will be

downing the variables appearing early in the base as they were likely fixed to 1 by

preprocessing or early in the branch-and-cut, the permutations in these rows will not

have to be re-entered through calls to down or reverse-down. Indeed, the majority

of calls to down and reverse-down will not require us to re-enter any permutations.

When, however, the symmetry group is instead isomorphic to the direct composition of

a large number of small symmetric groups, the permutations become spread throughout

the Schreier-Sims table. Thus, every call to down is likely to require entering at least

one permutation, and calls to reverse-down may require entering many more.

Because the node group representation is likely to work better in the general case,

the time spent copying groups is not a significant part of total execution time, and

the memory requirements for doing so are not prohibitive, we opt to store a group per

node for our purposes.

145

8.3 Case studies: solving various problems with

NIBAC

We now turn our attention to the effectiveness of using NIBAC to solve a variety of

different problems. We focus our efforts on the following tactics:

1. using an isomorph-free branch-and-cut tree with 0-fixing,

2. using an isomorph-free branch-and-cut tree up to a depth d and then proceeding

with normal branch-and-cut via NIBAC,

3. using an isomorph-free branch-and-cut tree up to a depth d and then proceeding

with normal branch-and-cut via CPLEX, and

4. turning on and off canonicity testing at various points in the branch-and-cut tree.

8.3.1 Block incidence formulation for designs, packings, and

coverings

The block incidence ILP formulation for designs, packings, and coverings was given

in Section 2.1.1. We examine the effectiveness of NIBAC at solving these types of

problems.

2-(v, 3, λ) designs, packings, and coverings

Tables 8.12 and 8.13 detail the results of several packing, covering, and design searches

with regards to three different techniques: allowing CPLEX to completely solve the

problem (CPLEX), allowing NIBAC to solve the problem without canonicity testing

(NIBAC iso-off), and allowing NIBAC to solve the problem using canonicity testing

(NIBAC iso-on). In all tests in these tables, while canonicity testing significantly

146

decreased the number of nodes explored by our branch-and-cut, in terms of execution

time, it was usually worse to use canonicity testing.

CPLEX NIBAC iso-off NIBAC iso-on

v k λ N T N D T N D CT T

11 5 2 1 0.59 674 338 15.85 18 10 0.05 20.57

14 3 1 1 0.13 289 151 1.70 13 12 1.02 4.56

15 3 1 1 0.29 224 118 1.82 10 9 8.93 15.71

19 3 1 1 0.60 626 325 15.73 30 27 8611.74 12324.70

Table 8.12: Search for several 2-(v, k, λ) packings and designs using CPLEX, NIBAC

with isomorphism testing turned off, and regular NIBAC.

CPLEX NIBAC iso-off NIBAC iso-on

v N T N D T N D CT T

5 1 ≤ 0.01 1 0 0.01 1 0 ≤ 0.01 ≤ 0.01

6 1 ≤ 0.01 44 16 0.04 22 10 0.01 0.03

8 1 0.01 14322 52 16.30 488 30 5.55 9.04

Table 8.13: Search for several 2-(v, 3, 1) coverings using CPLEX, NIBAC with isomor-

phism testing turned off, and regular NIBAC.

In Table 8.14, we give experimental results for a search for a 2-(14, 3, 1) packing

where we turn canonicity testing off at a specified depth and allow either CPLEX or

NIBAC (iso-off) to complete the problem. In all tests in this table, it was advantageous

or comparable to allow CPLEX to perform branch-and-cut. This is typical of many

search problems where an object is easily generated (i.e. no, or very few backtracks

occur in the tree). Canonicity testing affects the branch-and-cut tree in unpredictable

ways (as shown by the fluctuating number of nodes and execution times), and since

147

the object is easily produced by traditional branch-and-cut, canonicity testing is not

beneficial.

NIBAC iso-on NIBAC iso-on

+ CPLEX + NIBAC iso-off

depth N T N D LPT LP ST CT T

never 1 0.13 289 151 0.60 300 0.17 ≤ 0.01 1.65

0 1 2.63 216 113 0.45 255 0.12 ≤ 0.01 3.83

1 35 3.34 73 39 0.16 80 0.09 ≤ 0.01 3.24

2 16 3.23 307 161 0.55 316 0.18 ≤ 0.01 4.55

3 4 2.91 147 79 0.32 159 0.12 0.01 3.77

4 74 3.50 135 73 0.32 145 0.13 0.02 3.71

5 10 3.30 242 129 0.53 249 0.22 0.09 4.56

6 62 3.45 85 48 0.28 96 0.17 0.17 3.62

7 12 3.34 111 62 0.34 125 0.22 0.23 3.95

8 9 3.39 202 110 0.57 210 0.34 0.33 4.78

9 10 3.56 14 12 0.16 22 0.39 0.4 3.71

10 11 3.82 27 19 0.21 36 0.50 0.50 3.97

11 12 4.12 13 12 0.14 21 0.63 0.72 4.24

always - - 13 12 0.15 21 0.63 1.03 4.54

Table 8.14: The effects of canonicity testing in the search for a 2-(14, 3, 1) packing. We

use NIBAC with canonicity testing turned on up to depth, and compare completion

by CPLEX with completion by NIBAC with canonicity testing turned off.

We now turn our attention to the possibility of turning off canonicity testing at

a certain depth, and then resuming it later on in the tree for search problems. As

an example that is typical for this technique, we examine the search for a 2-(10, 3, 1)

packing where canonicity is turned off at depth 3 in Table 8.15 and turned back on

148

at a specified depth. In all cases, the execution time was higher than always using

canonicity testing (0.16 seconds, 10 nodes, depth 8) and never using canonicity testing

(0.09 seconds, 36 nodes, depth 19). We could not find larger problems where we could

turn off canonicity testing at a certain depth and then turn it back on, even for a single

row of our tree, and obtain results in a reasonable amount of time. For example, in

the case of search for a 2-(14, 3, 1) packing, shutting off canonicity at depth 7 (as per

Table 8.14) resulted in a total runtime of 3.95 seconds, but resuming it even for only

depth 10 caused the problem to run for over 24 hours without completing. There may

be many nodes to test for canonicity at depth 10, and while a large number of these

might be found to be isomorphic, there could be a significant portion of nodes (those

leading to maximum solutions, and those leading to sub-optimal solutions or infeasible

solutions that are still canonical) that need to be tested.

CDepth N D CT T

- 41 23 0.01 0.16

4 37 21 13.97 14.11

5 37 21 14.05 14.20

6 42 24 36.56 36.71

7 42 24 36.61 36.79

8 41 23 25.19 25.38

9 41 23 25.22 25.41

10 41 23 22.90 23.06

11 19 11 0.03 0.17

Table 8.15: The effects of turning off canonicity at depth 3 in the search for a 2-(10, 3, 1)

packing and then resuming at depth CDepth.

In all examined search cases for existence of a design or packing, if the upper bound

provided was tight, it appeared that canonicity testing only increased the execution

149

time dramatically: this increase was from 1.65 to 4.54 for finding a single 2-(14, 3, 1)

packing (see Table 8.14). However, if the bounds are looser, canonicity testing is

advantageous. We demonstrate this in Table 8.16 in the search for a 2-(11, 3, 1) packing,

where the Johnson bound provides us with an upper bound of 18 but the packing

number is actually 17. We provide details for continuing the branch-and-cut with

either CPLEX or NIBAC with canonicity turned off and note that the former performed

better than the latter. We can see that canonicity testing is extremely beneficial since

execution time increases from 1.03 seconds to 1840.64 seconds when it is not used.

Turning canonicity testing off could be done without much change in running time

from depth 7 or greater.

We now turn our attention to a generation problem to view the effects of canonicity

testing in such an example: we will create an isomorph-free list of all 2-(10, 3, 1) max-

imum packings (there are two). Table 8.17 details the times spent testing canonicity

up to a prescribed depth and then turning the testing off. Since this is an exhaustive

generation problem and we only want isomorph-free list of solutions, any solution en-

countered after this depth must be tested for canonicity using the slow canonicity test

first-in-orbit2 (Algorithm 4.2.6) in order to determine whether or not it belongs

in our list. It is interesting to note that if we cut off canonicity testing at depth 1,

we are able to perform 27359 calls to first-in-orbit2 in 103.50 seconds; however,

if we cut off canonicity testing at depth 13, we require 66.19 seconds in order to run

this algorithm three times, two of which are used to determine that the tested solution

is one of the canonical packings that will appear in our final list. This demonstrates

the strengths and weaknesses of first-in-orbit2: in most cases, it is able to reject

isomorphic solutions quickly, but it requires a large amount of time (as it must try

every permutation over the set F1) to determine that a solution is canonical.

In Table 8.18, we show the results of using NIBAC to generate all 2-(v, 3, 1) coverings

for several small values of v. We were unable to generate all 2-(9, 3, 1) coverings with

150

the block incidence formulation.

NIBAC iso-on NIBAC iso-on

+ CPLEX + NIBAC iso-off

depth N T N D LPT LP ST CT T

never 132012 262.24 513619 82 735.64 542051 202.31 - 1840.64

0 132012 263.38 473887 82 748.35 508842 204.13 ≤ 0.01 1911.53

1 17992 31.46 59137 65 95.93 64072 28.09 ≤ 0.01 244.37

2 4995 6.12 11107 57 18.70 12133 5.37 ≤ 0.01 46.7

3 1083 1.79 3535 52 6.28 3879 1.72 ≤ 0.01 15.59

4 910 1.89 3623 46 6.08 3940 1.27 0.01 15.14

5 48 0.81 437 31 0.92 484 0.14 ≤ 0.01 2.47

6 116 0.80 383 29 0.70 418 0.11 0.02 2.19

7 23 0.82 91 25 0.23 109 0.06 0.04 1.05

8 19 0.82 79 22 0.19 95 0.07 0.04 1.09

9 42 0.94 41 18 0.15 51 0.11 0.05 1.01

10 25 0.97 31 14 0.13 38 0.14 0.09 1.04

always - - 25 11 0.15 32 0.09 0.10 1.03

Table 8.16: The effects of canonicity testing in the search for a 2-(11, 3, 1) packing,

where the Johnson bound is higher than the packing number.

In Table 8.19, we detail the results of some more difficult exhaustive generation

problems, namely the generation of all 2-(14, 3, 1) packings and 2-(15, 3, 1) designs.

The column #ni lists the number of nonisomorphic structures. Using a full canonicity

test, NIBAC was able to generate all 80 2-(15, 3, 1) designs in 2 days, 134 seconds: this

required visiting 20233 nodes with a tree depth of 48, where the majority of execution

time (170831 seconds) was spent in canonicity testing. Due to the large number of

designs, it is not feasible to turn off canonicity testing for this problem: the algorithm

151

first-in-orbit2 would take far too long to completely test 80 designs for canonicity.

Similarly, the 787 2-(14, 3, 1) packings were generated in 6.42 days, where 4.69 days

were spent testing canonicity.

depth N D LPT LP ST CC CT SC SCT T

1 2558309 88 2075.33 2598647 31.60 6 ≤ 0.01 27359 103.50 5987.80

2 493145 82 398.20 500343 4.84 11 ≤ 0.01 5328 103.76 1221.87

3 130277 72 110.09 133432 1.71 25 ≤ 0.01 1884 195.49 495.92

4 23043 65 18.09 23533 0.24 36 ≤ 0.01 348 100.41 152.58

5 14687 58 11.57 15019 0.21 54 0.03 248 170.35 203.70

6 4309 45 3.55 4383 0.06 76 0.02 78 167.54 177.57

7 3453 45 2.72 1785 0.06 95 0.02 64 171.43 179.60

8 1493 42 1.39 1520 0.12 128 0.02 30 164.94 168.86

9 957 41 1.00 987 0.09 152 0.10 19 156.29 159.13

10 697 39 0.77 721 0.11 220 0.16 14 155.89 158.29

11 493 39 0.60 521 0.14 302 0.23 10 150.80 152.86

12 251 36 0.48 278 0.11 381 0.42 6 126.17 127.92

13 183 32 0.28 206 0.07 470 0.44 3 66.19 67.91

14 127 18 0.28 152 0.09 505 0.59 1 31.14 32.87

always 123 15 0.22 148 0.11 532 0.64 - - 1.78

Table 8.17: The effects of canonicity testing in the generation of all 2-(10, 3, 1) packings.

152

v N D LP LPT ST CT T #ni

4 7 3 7 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 1

5 11 4 11 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.01 1

6 161 16 162 0.06 ≤ 0.01 0.02 0.15 1

8 11915 46 11942 6.26 20.68 88.20 124.72 5

Table 8.18: Exhaustive generation of minimum 2-(v, 3, 1) coverings. We omit v ∈ {7, 9}

since these are designs.

v N D LP LPT ST CT T #ni

14 739879 55 1068325 7788.74 101246.00 432755 554887 787

15 20233 48 21141 121.20 1567.49 160711 172934 80

Table 8.19: Exhaustive generation of all 2-(14, 3, 1) packings and 2-(15, 3, 1) designs.

153

λ-families of simple and non-simple triple systems

For given t, v, and k, we now investigate exhaustive generation of families of designs as

λ varies. Using NIBAC with canonicity testing turned on, we were able to enumerate

some results for the first time.

Definition 8.3.1. A design (V,B) is said to be simple if B is a set (i.e. no blocks are

repeated).

In some cases, due to the large number of distinct structures, we are not able to

generate all t-(v, k, λ) designs, in which case we focus on finding the simple ones only.

Mathon [25] was able to determine the number of 2-(6, 3, 2n) designs.

Theorem 8.3.1. (From [25].) The number of nonisomorphic 2-(6, 3, 2n) designs is:

5∑

i=0

ai,n mod 12

⌊ n

12

⌋i

,

where A = (ai,j) is a 6 × 12 matrix defined as follows:

A =
1

10

10 10 40 60 130 190 340 480 760 1050 1530 2060

111 136 321 476 821 1176 1771 2436 3411 4536 6061 7836

295 620 1005 1480 2075 2820 3745 4880 6255 7900 9845 12120

1220 1400 1700 2120 2660 3320 4100 5000 6020 7160 8420 9800

360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960 4320

864 864 864 864 864 864 864 864 864 864 864 864

.

Using NIBAC with canonicity testing always turned on, we were able to confirm

this formula for n ∈ [1, 15] and determine all simple 2-(6, 3, λ) designs: there are only

two such simple designs, namely one for n = 1 and one for n = 2. The results are

given in Table 8.20. The column #ni gives the number of nonisomorphic designs. Both

Ivanov [17] and Gronau and Prestin [14] were able to determine the number of designs

for n = 2 and n = 3. Ivanov [17, 18] was additionally able to solve for n ∈ [4, 6], and

154

n b N D LPT LP ST CT T #ni

1 10 33 16 0.03 33 0.01 0.01 0.06 1

2 20 225 39 0.35 228 0.24 0.60 1.45 4

3 30 791 87 1.09 793 0.28 0.95 3.54 6

4 40 2441 123 3.76 2452 2.41 7.09 18.36 13

5 50 6427 157 12.05 6470 3.93 11.52 42.06 19

6 60 15297 218 35.14 15361 15.04 47.15 137.61 34

7 70 32991 275 86.41 32372 29.63 76.52 287.19 48

8 80 63691 316 186.83 63866 81.99 215.91 697.28 76

9 90 117515 359 383.72 117788 166.81 371.33 1356.12 105

10 100 204841 399 742.95 205303 370.12 816.78 2756.46 153

11 110 341043 439 1358.19 341704 698.16 1390.22 4955.94 206

12 120 547563 479 2400.10 548484 1308.27 2722.75 9071.63 286

13 130 847233 519 4042.61 848546 2302.34 4444.47 15225.80 375

14 140 1274737 559 6751.18 1276651 4052.31 7809.90 25856.90 501

15 150 1870649 599 10691.40 1873101 6695.58 12309.20 41047.30 644

Table 8.20: Results for the generation of 2-(6, 3, 2n) designs.

the generation for n ∈ [7, 9] was completed by Denny [9]. The values for n ∈ [10, 15]

seem to have been generated here for the first time.

Additionally, NIBAC is able to generate all 2-(7, 3, λ) designs for λ ∈ [1, 8]. For

higher values of λ, the program runs out of memory. Table 8.21 details the results. The

columns #ni and #sp give the number of nonisomorphic general and simple designs

respectively. While the details in the table reflect the statistics for producing all designs,

we provide the column SiT, which lists only the time required to produce exclusively

the simple designs. These confirm previous results by Ivanov [18], Gronau and Prestin

[14], and Pietsch [41]. Mathon and Pietsch [27] were able to solve this problem for

155

n ∈ [10, 12], and Denny [9] addressed the cases where n ∈ [13, 16].

λ b N D LPT LP ST CT T SiT #ni #sp

1 7 7 3 ≤ 0.01 7 ≤ 0.01 0.01 0.02 0.02 1 1

2 14 133 26 0.10 137 0.04 0.09 0.43 0.09 4 1

3 21 559 51 0.55 575 0.14 0.62 2.49 0.15 10 1

4 28 3011 94 3.98 3056 1.69 4.63 16.25 0.47 35 1

5 35 15849 140 24.75 16000 14.11 47.42 119.77 3.05 109 1

6 42 86459 194 150.65 86850 53.80 151.28 559.62 - 418 0

7 49 409349 234 806.65 410481 296.70 797.06 2970.75 - 1508 0

8 56 1731055 270 3811.60 1733790 1560.72 4054.98 14466.90 - 5413 0

Table 8.21: Results for the generation of 2-(7, 3, λ) designs.

For 2-(9, 3, λ) designs, NIBAC was only able to generate all 36 designs with λ = 2

(Table 8.22). Mathon and Lomas [26] showed that there are 22521 2-(9, 3, 3) designs,

but this was too difficult for NIBAC to reproduce. However, we were able to compute

all simple 2-(9, 3, λ) designs. These results are shown in Table 8.23. As we are unable

to perform a full generation for these designs, the data given in the table reflects the

statistics of the generation for simple designs only.

λ b N D LPT LP ST CT T #ni #sp

2 24 2349 69 3.74 2514 3.94 10.15 28.58 36 13

Table 8.22: Results for the generation of 2-(9, 3, λ) designs.

We were unable to generate all 2-(10, 3, 2n) designs for n > 1, even in the simple

case, but it took NIBAC 2136.57 seconds (98687 nodes, tree depth 134, 101626 LPs

solved in 195.06 seconds, 300.04 seconds in the separation, and 1230.63 seconds in

canonicity testing) to find all 960 2-(10, 3, 2) designs, 394 of which were simple. This is

156

λ b N D LPT LP ST CT T #sp

2 24 1547 53 1.19 1566 0.44 17.56 21.16 13

3 36 42157 66 35.23 42406 26.37 2088.52 2218.29 332

5 60 4065 71 9.21 4109 97.49 1220.10 1691.47 13

6 72 191 72 2.32 194 30.23 116.45 342.57 1

7 84 159 79 0.22 159 ≤ 0.01 2584.74 2585.16 1

Table 8.23: Results for the generation of simple 2-(9, 3, λ) designs.

detailed in Table 8.24. These results concur with previous findings by Ganter, Gülzow,

Mathon, and Rosa [12]; Colbourn, Colbourn, Harms, and Rosa [2]; and Ivanov [17].

n b N D LPT LP ST CT T #ni #sp

1 30 98687 134 195.06 101626 300.04 1036.28 2136.57 960 394

Table 8.24: Results for the generation of 2-(10, 3, 2n) designs.

157

Maximal partial triple systems

Definition 8.3.2. A maximal partial triple system MPT(v) is a 2-(v, 3, 1) (not neces-

sarily maximum) packing (Zv,B) such that B is a maximal set of triples.

We are interested in generating all unique MPT(v). We begin by examining the

spectrum of numbers of triples in MPT(v)s, denoted S(3)(v).

Theorem 8.3.2. (From [3].) The largest number of triples that an MPT(v) can have

is:

µ(v) =

⌊
v
3

⌊
λ(v−1)

2

⌋⌋

− 1 if v ≡ 5 (mod 6),
⌊

v
3

⌊
λ(v−1)

2

⌋⌋

otherwise.

Theorem 8.3.3. (From [3].) The smallest number of triples that an MPT(v) can have

is v2+d(v)
12

, where:

d(v) =

−2v + 36 if v ≡ 0, 8 (mod 12),

−2v if v ≡ 2, 6 (mod 12),

−2v + 4 if v ≡ 4 (mod 12),

−2v + 16 if v ≡ 10 (mod 12),

−1 if v ≡ 1, 5 (mod 12),

3 if v ≡ 3 (mod 12),

11 if v ≡ 7, 11 (mod 12),

15 if v ≡ 9 (mod 12).

The spectrum, or values between the maximum and minimum values that can be

realized, were established by Colbourn, Rosa, and Zńam [4] and are given in [3]. NIBAC

was able to generate all nonisomorphic MPT(v) for v ∈ [5, 12], thus enumerating

designs for each block count. The results we present are new, and are detailed in

Tables 8.25 and 8.26.

158

v N D CT T #ni

5 3 1 ≤ 0.01 ≤ 0.01 1

6 9 3 ≤ 0.01 ≤ 0.01 2

7 25 6 ≤ 0.01 0.04 2

8 61 8 0.06 0.15 4

9 323 14 0.42 1.21 10

10 3359 27 11.75 23.42 47

11 112919 44 1161.85 1724.81 472

12 10004627 46 314922.00 449517.00 14771

Table 8.25: Generation of all MPT(v) for v ∈ [5, 12].

159

b \ v 5 6 7 8 9 10 11 12

2 1 1

3

4 1

5 1

6

7 1 3

8 1 4 1

9 3

10 2 10

11 15 3

12 1 19 9

13 2 132 12

14 209 25

15 110 586

16 7 3638

17 2 6855

18 3196

19 454

20 5

total 1 2 2 4 10 47 470 14771

Table 8.26: Spectral information in the generation of MPT(v) for v ∈ [5, 12].

160

Triple systems with holes

In this section, we provide some exhaustive generation results for triple systems with

holes. To the best of our knowledge, the values have not been computed before; how-

ever, the results for w = 3 could be produced directly from the complete lists of

2-(v, 3, 1) designs, known up to v = 19, instead of generated as we did.

Definition 8.3.3. (From [3].) An incomplete triple system ITS(v, w; λ) is a 2-(v, 3, λ)

packing (Zv,B) such that there exists a W ⊆ Zv with the property that for each

{v0, v1} ∈ V , there is no B ∈ B such that {v0, v1} ∈ B. We then call W the hole of the

design.

It then becomes easy to make small modifications to our block incidence formulation

to look for incomplete triple systems. In the original formulation for each 2-set, we had

the following constraint:

∑

(B,c)∈(V

3)×Zλ:T⊆B

x(B,c) = λ, T ∈

(
V

2

)

.

For the sets T corresponding to 2-sets of W , we need simply change the right hand

side of these constraints from λ to 0 in order to ensure that they do not appear in

the packing. This has the effect of changing the symmetry group as well: we can no

longer permute between elements of W and V \ W ; thus, our symmetry group is now

isomorphic to G′ = Sv−w �Sw, and is in fact defined by the actions of G′ on the blocks

representing the variables of our problem.

Theorem 8.3.4. (From [3].) An ITS(v, w; λ) exists whenever w = 0 or w ≡ 1, 3

(mod 6), v ≡ 1, 3 (mod 6), and v ≥ 2w + 1.

The number of blocks in an ITS(v, w; λ) is λv(v−1)−w(w−1)
6

.

We display results for the generation of all ITS(7, 3; λ) for λ ∈ [1, 18] in Table 8.27;

there are only three simple designs, namely one ITS(7, 3; 1), one ITS(7, 3; 2), and one

161

ITS(7, 3; 3). We also detail the generation of some other ITS(v, w; λ) in Table 8.28.

To the best of our knowledge, these results have not been computed before.

As with designs without holes, search problems perform significantly worse when

canonicity is used (e.g. we require 0.27 seconds to find a single ITS(15, 7; 1) when

canonicity is turned off, and 7.95 seconds when it is turned on). Similarly, in the

optimal generation scenario, it is not useful to turn canonicity testing off at any level;

all experimental results dictate that turning canonicity testing back on increases time

significantly, and it is preferable to employ the canonicity test throughout the entire

tree.

162

λ N D LPT LP ST CT T #ni

1 19 9 ≤ 0.01 19 ≤ 0.01 0.01 0.03 1

2 97 23 0.08 98 0.01 0.04 0.21 3

3 249 41 0.28 251 0.03 0.30 0.96 5

4 609 58 0.91 614 0.16 0.55 2.75 9

5 1253 73 2.14 1262 0.57 1.39 6.96 13

6 2703 88 4.95 2721 1.77 5.92 19.92 22

7 4883 103 10.13 4918 3.48 10.70 39.29 30

8 8815 119 21.60 8859 8.22 25.11 84.24 45

9 14491 135 37.53 14558 17.37 53.96 162.80 61

10 23363 150 68.71 23460 33.61 98.53 299.69 85

11 35459 165 115.57 35574 58.13 172.83 507.50 111

12 53481 180 191.70 53636 107.38 316.16 879.72 149

13 76123 195 294.35 76308 173.99 494.31 1358.33 189

14 107623 210 458.48 107833 284.50 816.81 2179.60 244

15 147611 225 677.98 147926 439.62 1277.38 3308.14 304

16 200123 240 989.93 200493 683.40 1929.61 4999.83 381

17 264531 255 1393.26 264948 989.12 2809.43 7035.22 465

18 347751 270 1950.00 348312 1495.60 4187.10 10231.20 571

Table 8.27: Generation of all ITS(7, 3; λ) for λ ∈ [1, 18]. The only simple ITS(7, 3; λ)

are one ITS(7, 3; 1), one ITS(7, 3; 2), and one ITS(7, 3; 3).

163

v w λ N D LPT LP ST CT T #ni #sp

9 3 1 33 16 0.06 34 ≤ 0.01 0.01 0.15 1 1

2 2239 73 2.95 2275 1.01 3.68 13.41 34 8

3 276057 167 487.31 277371 143.86 482.27 1834.01 1924 26

13 3 1 1467 142 3.05 1497 1.25 37.06 49.91 10 10

15 3 1 533889 253 1724.81 535495 887.66 99448.60 104860.00 1746 1746

15 7 1 395 39 2.06 317 0.99 24.44 41.70 6 6

Table 8.28: Generation of several different ITS(v, 3; λ).

164

Steiner Quadruple Systems

Definition 8.3.4. A Steiner Quadruple System is a 3-(v, 4, 1) design, and is denoted

SQS(v).

Theorem 8.3.5. (From [5].) A SQS(v) exists if and only if v ≡ 2, 4 (mod 6).

The number of blocks in an SQS(v) is v(v−1)(v−2)
24

. This number grows quickly,

thus causing the canonicity testing algorithm time to increase dramatically even for

small v. Table 8.29 shows our findings for the exhaustive generation of several SQS(v).

NIBAC was able to reproduce previously known results by Mendelsohn and Hung [30]

for SQS(v) with v ∈ {8, 10, 14}.

v N D LPT LP ST CT T #ni

8 25 12 0.01 25 ≤ 0.01 0.14 0.2 1

10 53 26 0.18 53 ≤ 0.01 8.03 8.73 1

14 14939 111 4371.04 20131 15725.10 136924.00 157609.00 4

Table 8.29: Generation of all optimal SQS(v) for v ∈ {8, 10, 14}.

As with the other designs studied in this chapter, for SQS(v) search problems,

canonicity testing to any degree increased execution time significantly. For example,

to produce a 91-block single SQS(14) using canonicity testing took 286.37 seconds,

whereas we were able to find one in 27.54 seconds if we used traditional branch-and-

cut.

165

8.3.2 Incidence matrix formulation for 2-(v, k, λ) designs

Our initial impression, from the results in Table 8.5, lead us to believe that the in-

cidence matrix formulation for designs may not perform well in our framework: with

default parameters, it took NIBAC 42471.80 seconds to generate a single 2-(13, 3, 1)

design using an incidence matrix, with 742 nodes visited (tree depth 57), 174.81 sec-

onds spent solving 792 LPs, 12128.50 seconds taken by the separation, and 30090.00

seconds spent canonicity testing. Given that the only cuts being used in this problem

were isomorphism cuts, we note that the backtracking algorithms for canonicity and

isomorphism cut generation dominated 99.4% of the total execution time. On the other

hand, when using a block incidence formulation, the same problem required only 1.74

seconds to complete. We conclude that it is by far preferable to use the block incidence

formulation for these problems.

We conjectured that perhaps the poor execution times were due to the large size

of the symmetry group; this is what motivated us to add further constraints to the

problem in order to remove the column permutations (as detailed in Section 2.1.2) and

hence reduce the size of the group from v!
(

v(v−1)
k(k−1)

)

! to v!.

This strategy, however, turned out to be very poor in practice. The problem of

generating a single 2-(9, 3, 1) design increased from 1.03 seconds to 13.22 seconds.

Enumerating all 2-(9, 3, 1) designs initially required 5.61 seconds to enumerate with

the original formulation, and with the new one, took 63.14 seconds.

Further investigation revealed why this turned out to be the case: while the pres-

ence of the column permutations increased the time required by canonicity testing

algorithms, it dramatically reduced the benefits of 0-fixing. In the enumeration of

2-(9, 3, 1) designs, our original problem required only 53 nodes and was able to fix 7

variables at depth 1 and 21 at depth 2 by 0-fixing. In the new formulation, our tree

contained 4161 nodes and could only fix 1 variable at depth 1 and 1 at depth 2.

Because of these limitations, we concluded that the incidence matrix formulation

166

was poorly suited to NIBAC and demonstrated the weaknesses of some of its algo-

rithms. The canonicity testing algorithms in Chapter 4 depend on both the size of the

symmetry group and the number of variables fixed to 1 in a final solution. In the case

of an incidence matrix, the number of variables fixed to 1 can grow quite high: namely

k times higher than the equivalent block incidence formulation. For a large number of

variables, for 0-fixing to be effective, it is beneficial to have a reasonably big symme-

try group; however, this symmetry group causes canonicity testing to perform poorly.

Thus, for problems with a large number of variables, it is likely that large symmetry

groups are needed for NIBAC algorithms to be useful, but it is unlikely that the cost

of these algorithms will justify the benefit.

8.3.3 Intersecting set systems

Using NIBAC, we were able to construct all the maximal intersecting set systems pre-

sented in [33]. We show our results in Table 8.30, where the number of nonisomorphic

maximal structures is given in the column #ni. It was our hopes that we would be to

produce a new result, namely the generation of all maximal (16, 4, 1) intersecting set

systems, but even after several weeks of CPU time, NIBAC was unable to complete

the problem.

v k t N D B CT T #ni

5 3 2 9 4 4 ≤ 0.01 ≤ 0.01 2

6 4 3 11 5 5 ≤ 0.01 0.01 2

7 3 1 1205 17 602 1.58 3.91 15

8 4 2 3543 22 1771 11.36 76.58 17

9 5 3 10467 24 5233 86.62 1472.96 17

Table 8.30: The generation of several maximal (v, k, t) intersecting set systems.

167

We now turn our attention to the issue of turning off canonicity testing for these

problems during the branch-and-cut. Because of the large number of solutions to

relevant problems, turning off fast canonicity testing early and testing each solution

for isomorphism was far too costly: in the case of the (7, 3, 1) intersecting set system,

the execution time required for pure branch-and-cut and then checking solutions for

isomorphism was 5723.04 seconds (with 2578381 nodes visited) as opposed to always

checking canonicity using the fast test, which only required 4.68 seconds (with 1205

nodes visited).

Table 8.31 provides results for the generation of all feasible (v, k, t) intersecting set

systems. We note that the number of nonisomorphic systems in column #ni does not

include the trivial (i.e. empty) system. These results are new.

v k t N D B CT T #ni

5 3 2 9 4 4 ≤ 0.01 ≤ 0.01 5

6 4 3 11 5 5 ≤ 0.01 0.01 6

7 3 1 1205 17 602 1.52 3.81 603

8 4 2 3543 22 1771 11.05 75.19 1772

9 5 3 10467 24 5233 85.73 1202.86 5234

Table 8.31: The generation of all feasible (v, k, t) intersecting set systems.

168

Chapter 9

Conclusion and open questions

In this thesis, we have examined an approach for creating isomorph-free or isomorph-

reduced branch-and-cut trees to solve 0-1 integer linear programs. This study has led

to a deeper understanding as to the types of problems and ILP formulations for which

such a method is effective, and has allowed us to solve several new problems and verify

many previously known results.

In particular, we examined three different ILP formulations and the effects of

isomorph-free branch-and-cut on them: the block incidence formulation for t-(v, k, λ)

designs, coverings, and packings (Section 2.1.1) with several variations (maximal pack-

ings, triple systems with holes, and Steiner triple and quadruple systems); the incidence

matrix formulation for 2-(v, k, λ) designs (Section 2.1.2); and a formulation for (v, k, t)

intersecting set systems (Section 2.2).

We created a programmable, redistributable framework, NIBAC (NonIsomorphic

Branch-And-Cut) based on the group algorithms [21] and Margot’s canonicity testing

scheme [22]. We extended this previous work by implementing Margot’s algorithms to

function with several different problem solving variations: search for a single optimal

solution (Section 6.1), generation of all optimal solutions (Section 6.2), generation of

all maximal solutions with regards to set inclusion (Section 6.3), and generation of

169

all feasible solutions (Section 6.4). Additionally, our framework is able to determine

the symmetry group for arbitrary ILPs (Section 4.4), accommodate variable fixings

through a change of base (Section 4.3), and support additional types of cuts (Section

5.3).

It was our goal to use the NIBAC framework on the above three ILP formulations

in order to examine the following four possibilities:

1. using a pure nonisomorphic branch-and-cut tree to solve the problems,

2. using a nonisomorphic branch-and-cut tree up to a specified depth and then

resorting to pure branch-and-cut using CPLEX,

3. using a nonisomorphic branch-and-cut tree up to a specified depth and then

resorting to pure-branch-and-cut using NIBAC, and

4. turning on and off isomorphism checking at various depths of the branch-and-cut

using NIBAC.

Our experimental results indicated to us that an “all-or-nothing” approach was

often best. In terms of search, unless an object was difficult to find (e.g. no tight

bound was known, as in the example of the 2-(11, 3, 1) packing), not enough of the

search space was examined in order to merit canonicity testing, and so it was best

avoided; and with regards to exhaustive generation problems, always performing

canonicity testing seemed to be preferable to any of the aforementioned alternatives.

In this chapter, we begin by examining the strengths and limitations of NIBAC

with regards to different types of ILPs, and then proceed to detail which combinatorial

design problems NIBAC was able to handle well. We conclude with some remaining

open questions and possibilities for further research in this field.

170

9.1 Conclusions on the suitability of NIBAC for

ILP problems

First consideration: Nature of the symmetry group

The structure of the symmetry group is perhaps the biggest factor in determining

whether or not a problem is suitable for NIBAC techniques. It is important that the

symmetry group be large enough with a structure that is beneficial for 0-fixing, meaning

that the orbits of variables should be quite large. For example, in the block incidence

formulation for designs, the orbit of each block under the action of the symmetry group

is the full set of
(

v

k

)
variables (as any block can be permuted to another via a point

permutation), whereas in the incidence matrix formulation with column permutations

removed (Section 8.3.2), the orbit of each block contains only v variables out of v v(v−1)
k(k−1)

.

Alternatively, large symmetry groups, while perhaps beneficial for 0-fixing, tend to

make the algorithms in Section 4.2 perform poorly. In the incidence matrix formulation

for 2-(v, 3, 1) designs with column ordering constraints removed, the symmetry group

had size v!
(

v(v−1)
k(k−1)

)

!, which proved to be too large to work efficiently with our canonicity

testing and isomorphism cut generation algorithms (Section 8.3.2). In our case, the

block incidence formulation was much better because of both the small size of the

symmetry group and the large size of the orbits.

Experimentally, it seemed that symmetry groups isomorphic to a symmetric group

performed best. This was largely due to the representation of the group via the Schreier-

Sims table: in such cases, permutations tended to be concentrated in a small number of

rows near the beginning of the table, and thus calls to down during base changes would

result in no, or very few permutations needing to be re-entered into the group. If the

symmetry group was more complex (e.g. as in the case of the 2-(11, 5, 2) design with

block ordering constraints removed, which resulted in the symmetry group involving the

direct composition of
(

v

k

)
copies of λ! to compensate), it was likely that permutations

171

would be more evenly distributed over the table and calls to down would require one

or more permutations to be re-entered, which was a costly operation.

In problems that present multiple ILP formulations, the symmetry groups resulting

from each should be taken into consideration.

Second consideration: Nature of the ILP formulation

The algorithms for determining canonicity increase in complexity as both the number

of 1s in a final solution and the size of the symmetry group increase. Typically, in most

problems, these two factors increase together. Consider the generation of 2-(v, 3, 1)

designs, for instance: as the parameter v increases, both the number of variables and

the size of the symmetry group increase as well. This was demonstrated by the problem

of searching for a single 2-(19, 3, 1) design; the number of variables fixed to 1 in a final

solution (57), coupled with the large size of the symmetry group (19!) caused canonicity

testing to dominate the overall execution time. This, however, was not the case in the

generation of all optimal 2-(6, 3, 30) designs; while the number of variables fixed to 1

was overall considerably higher (150), the small size of the symmetry group (6!) allowed

our canonicity testing algorithms to run in a reasonable amount of time.

If the size of final solutions and both the symmetry group are high, the problem

may not be suited to NIBAC techniques.

Third consideration: Search problems

If we are working with search problems (problem type 1) that satisfy the above two

considerations, it is difficult to determine the exact nature of isomorph-free branch-

and-cut. If it is expected that the problem does not have a solution and we are simply

seeking to prove this fact, in some cases it will be essential to use isomorph-free branch-

and-cut trees to reduce the number of nodes considered to a feasible level (see [22]); this

is also likely for problems in which we expect to find a solution but do not know a tight

172

upper bound. If bounds are known on the problem and are tight, then the problem is

likely easily solved by standard branch-and-cut techniques and the added complexity of

canonicity testing will increase execution time: this is seen with the search for a single

2-(19, 3, 1) design. On the other hand, when bounds are loose, it is likely that we will

have to traverse a much larger portion of the search space in order to ascertain that

a solution is optimal: this is demonstrated with the search for a 2-(11, 3, 1) packing

(Table 8.16), where the Johnson bound is 18 and the packing number is 17. In this

case, using isomorph-free trees is recommended.

Fourth consideration: Generation problems

If we are working with generation problems that fare well with regards to the first

two considerations, especially in the case where there are many solutions with large

automorphism groups, we will need canonicity testing in the branch-and-cut tree in

order to solve these problems in a reasonable amount of time. This is demonstrated

by the enumeration of the two maximum 2-(10, 3, 1) packings (Table 8.17) and the

enumeration of all maximal (7, 3, 1) intersecting set systems (Table 8.30).

Fifth consideration: Canonicity testing depth

In almost all examined cases, using canonicity testing for the entire branch-and-cut

tree was either preferable or not significantly worse than using canonicity testing up

to a certain depth and then turning it off. In the case of generation, turning off

canonicity proved to be extremely detrimental: final solutions, needing to be checked

for isomorphism, could no longer be examined using the quicker first-in-orbit1

algorithm (Algorithm 4.2.4), and the alternative test, first-in-orbit2 (Algorithm

4.2.6), required far more time to accept a solution as being canonical. In the case of

search, this was largely unpredictable (as demonstrated by the search for a 2-(14, 3, 1)

packing in Table 8.14) and likely depends on the nature of the ILP as mentioned in

173

the second consideration above.

In all investigated cases, it was disadvantageous to turn canonicity testing off at

some point in the tree and then later re-enable it. This is due to the fact that, when

canonicity testing is resumed, we must use the slower first-in-orbit2 technique.

Depending on where canonicity testing is turned back on, we may be likely to meet

many nodes that may be canonical; while first-in-orbit2 may reject nodes quickly,

it may take a significant amount of time to accept a node as being canonical due to

the nature of the algorithm. In a Schreier-Sims scheme where the symmetry group is

isomorphic to a symmetric group, the majority of the permutations occur in the first few

rows of the table; because first-in-orbit2 backtracks over the rows corresponding

to the beginning of the ordered base representing the variables fixed to 1, this number

of permutations may be huge.

In conclusion, there was no case found in which it was valuable to stop canonicity

testing and recommence at a later depth in the tree. When performing search, as

solutions do not need to be checked to be nonisomorphic, it may theoretically be useful

to turn off canonicity testing at some point, but that point is not easily determined.

In exhaustive generation, it is recommended that canonicity testing be done at all

nodes in the tree.

9.2 Suitability of NIBAC to solve combinatorial de-

sign problems

NIBAC fares particularly well in search problems when the upper bound on the prob-

lems are not tight, and therefore harder to solve. An example of this can be found in

the search for an optimal 2-(11, 3, 1) packing: the Johnson bound for the 2-(11, 3, 1)

packing is 18, while the packing number is 17. NIBAC was able to find a 2-(11, 3, 1)

packing in only 1.03 seconds, while CPLEX took 262.24 seconds (Table 8.16).

174

NIBAC more strongly demonstrates its capabilities in exhaustive generation prob-

lems and is able to handle problems in which the size of the symmetry group is small.

For instance, because of the small size of the symmetry group for the 2-(6, 3, 2n) fam-

ily of designs, despite the number of blocks and large solution sizes, we were able to

generate all such designs for n ∈ [1, 15]. The results for n ∈ [10, 15] had not been

previously verified. Additionally, for small problems, NIBAC was able to perform well

and generate new results; this can be seen in the generation of all maximal partial

triple systems, where we solved the problem for v ∈ [5, 12].

9.3 Open questions and future work

While the NIBAC framework runs well in some instances, there are others in which it

does not. We would like to extend Margot’s algorithms and the NIBAC framework to

deal with larger problem sizes and different types of problems. This brings to light a

variety of questions regarding isomorphism testing and nonisomorphic branch-and-cut.

• The slow canonicity test, first-in-orbit2, which doesn’t depend on 0-fixing is

extremely restrictive: while it may be able to reject non-canonical nodes fairly

quickly, testing canonical nodes requires large amounts of execution time. In

order to avoid this limitation and further examine the possibility of turning on

and off isomorphism testing in the branch-and-cut tree, we require a more efficient

canonicity test. Is it possible to derive one, either through use of the Schreier-Sims

group representation, or through some other group representation? Additionally,

if canonicity testing is turned off at some point during an exhaustive generation,

and only final solutions need to be tested, is there some faster approach (perhaps

using McKay’s nauty) that we can employ in order to determine canonicity?

• Instead of performing full canonicity tests, it may be advantageous to use isomor-

phism invariants that could quickly reject some noncanonical nodes. This could

175

be used in conjunction with, or instead of full canonicity tests.

• In our current implementation, our canonicity testing techniques depend on min-

imum index branching; however, we may be able to derive heuristics to choose

better variables upon which to branch. Is there a possible way of generalizing

Margot’s algorithms so that branching variables can be chosen arbitrarily? Mar-

got has done some research into this problem in [23].

• Our framework currently employs a depth-first tree traversal technique. If one

chooses to use a group representation per node (an option available in NIBAC)

instead of a group representation for the entire tree, it is possible to select any

type of search tree traversal. A best-first technique is often effective for ILPs;

what impact would this have on search problems?

• The framework can deal only with 0-1 variables in its current implementation:

the algorithms for calculating orbits-in-stabilizers and testing canonicity have

been specifically designed to exploit this restriction. However, for problems such

as t-(v, k, λ) designs, by allowing for arbitrary integer values, we would not need

block duplication for λ > 1. Is it possible to extend the concept of a base and

modify the orbit-in-stabilizer and canonicity testing algorithms so that we can

investigate nonisomorphic branch-and-cut trees for general integer problems?

More work in these areas will assist in further extending the power of isomorph-free

and isomorph-reduced branch-and-cut trees in order to solve larger classes of symmetric

problems.

176

Bibliography

[1] Alberto Caprara and Matteo Fischetti. Branch-and-cut algorithms. In

M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies

in Combinatorial Optimization, chapter 4, pages 45–63. John Wiley and Sons,

Ltd., 1997.

[2] C. J. Colbourn, M. J. Colbourn, J. J. Harms, and A. Rosa. A complete census of

(10, 3, 2) block designs and of Mendelsohn triple systems of order ten. III. (10, 3, 2)

block designs without repeated blocks. Congressus Number., 37:211–234, 1983.

[3] C. J. Colbourn and A. Rosa. Triple Systems. Oxford University Press, 1999.

[4] C. J. Colbourn, A. Rosa, and S̆. Znám. The spectrum of maximal partial Steiner

triple systems. Des. Codes Crypt., 3:209–219, 1993.

[5] Charles J. Colbourn and Rudolf Mathon. Steiner systems. In Charles J. Colbourn

and Jeffrey H. Dinitz, editors, The CRC Handbook of Combinatorial Designs,

pages 66–75. CRC Press, Boca Raton, 1996.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. McGraw Hill, second edition, 2001.

[7] Harlan Crowder, Ellis L. Johnson, and Manfred Padberg. Solving large-scale zero-

one linear programming problems. Operations Research, 31:803–834, 1983.

177

[8] G. Dantzig. Linear Programming and Extensions. Princeton University Press,

1963.

[9] Paul C. Denny. Search and enumeration techniques for incidence structures. Mas-

ter’s thesis, University of Auckland, 1998.

[10] R. Dorfman. The discovery of linear programming. Annals of Computing,

6(3):283–295, July 1984.

[11] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Math. Program-

ming, 1:168–194, 1971.

[12] B. Ganter, A. Gülzow, R. Mathon, and A. Rosa. A complete census of (10, 3, 2)

designs and of Mendelsohn triple systems of order ten. IV. (10, 3, 2) designs with

repeated blocks. Kasseler Math Schriften, 78(5), 1978.

[13] Ralph E. Gomory. Recent Advances in Mathematical Programming, pages 269–302.

McGraw-Hill, 1963.

[14] H.-D. O. F. Gronau and J. Prestin. Some results on designs with repeated blocks.

Rostock Math. Kolloq., 21:15–38, 1982.

[15] K. Hoffman and M. Padberg. LP-based combinatorial problem solving. Annals of

Operations Research, 4(6):145–194, 1985.

[16] Karla L. Hoffman and Manfred Padberg. Solving airline crew-scheduling problems

by branch-and-cut. Management Sci., 39:657–682, 1993.

[17] A. V. Ivanov. Konstruktivnoye perec̆islenie sistem incidentnosti, III. Rostock.

Math. Kolloq., 24:4–22, 1983.

[18] A. V. Ivanov. Constructive enumeration of incidence systems. Ann. Discrete Math,

26:227–246, 1985.

178

[19] N. K. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4:373–395, 1984.

[20] L. G. Khachiyan. Polynomial algorithms in linear programming. Zhurnal Vychis-

litel’noi Matematiki i Matematcheskoi Fiziki, 20:51–68, 1980.

[21] Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms: Generation,

Enumeration, and Search. CRC Press, Boca Raton, 1999.

[22] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Program-

ming, 94:71–90, 2002.

[23] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming Ser.

B, 98:3–21, 2003.

[24] F. Margot. Small covering designs by branch-and-cut. Mathematical Programming

Ser. B, 94:207–220, 2003.

[25] R. A. Mathon. Computational methods in design theory. In A. D. Keedwell, editor,

Surveys in Combinatorics 1991, pages 101–117. Cambridge University Press, 1991.

[26] R. A. Mathon and D. Lomas. A census of 2-(9, 3, 3) designs. Australas. J. Combin.,

5:145–158, 1992.

[27] R. A. Mathon and Ch. Pietsch. On the family of 2-(7, 3, λ) designs, 1999.

[28] Rudolf Mathon and Alexander Rosa. 2-(v, k, λ) designs of small order. In

Charles J. Colbourn and Jeffrey H. Dinitz, editors, The CRC Handbook of Com-

binatorial Designs, pages 3–41. CRC Press, Boca Raton, 1996.

[29] Brendan D. McKay. nauty User’s Guide (Version 2.2). Australian National Uni-

versity, Australia.

179

[30] N. S. Mendelsohn and S. H. Y. Hung. On the Steiner systems s(3, 4, 14) and s(4,

5, 15). Utilitas Math., 1:5–95, 1972.

[31] W. H. Mills and R. C. Mullin. Packings and coverings. In Jeffrey H. Dinitz

and Douglas R. Stinson, editors, Contemporary Design Theory: A Collection of

Surveys, chapter 9, pages 371–399. John Wiley and Sons, Ltd., 1992.

[32] Lucia Moura. Computational and constructive design theory. In W. D. Wallis,

editor, Polyhedral methods in design theory, number 368 in Math. Appl., pages

227–254. Kluwer, 1996.

[33] Lucia Moura. Maximal s-wise t-intersecting families of sets: kernels, generating

sets, and enumeration. Journal of Combinatorial Theory Ser. A, 87(1):52–73,

1999.

[34] Lucia Moura. A polyhedral algorithm for packings and designs. In Proceedings

of the 7th Annual European Symposium on Algorithms, pages 462–475. Springer-

Verlag, 1999.

[35] Lucia Moura. Polyhedral Aspects of Combinatorial Designs. PhD thesis, University

of Toronto, 1999.

[36] G. L. Nemhauser and G. Sigismondi. A strong cutting plane/branch-and-bound

algorithm for node packing. J. Opl. Res. Soc., 43(5):443–457, 1992.

[37] G. L. Nemhauser and L. E. Trotter, Jr. Properties of vertex packing and indepen-

dence of system polyhedra. Mathematical Programming, 6:48–61, 1974.

[38] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-

mization. John Wiley and Sons, Ltd., New York, 1988.

[39] W. Keith Nicholson. Introduction to Abstract Algebra. Wiley-Interscience, New

York, second edition, 1999.

180

[40] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems. SIAM Review,

33(1):60–100, March 1991.

[41] Ch. Pietsch. On the enumeration of 2-(7, 3, λ) block designs. J. Comb. Math.

Comb. Comput., 16:103–114, 1994.

[42] E. A. Severn. Maximal Partial Steiner Triple Systems. PhD thesis, University of

Toronto, 1984.

[43] Douglas R. Stinson. Coverings. In Charles J. Colbourn and Jeffrey H. Dinitz,

editors, The CRC Handbook of Combinatorial Designs, pages 260–265. CRC Press,

Boca Raton, 1996.

[44] Douglas R. Stinson. Packings. In Charles J. Colbourn and Jeffrey H. Dinitz,

editors, The CRC Handbook of Combinatorial Designs, pages 409–413. CRC Press,

Boca Raton, 1996.

[45] Dana Wengrzik. Schnittebenenverfahren für blockdesign-probleme. Master’s the-

sis, Technische Universität Berlin, 1995.

[46] Laurence A. Wolsey. Integer Programming. John Wiley and Sons, Ltd., New York,

1998.

181

