
MIXED COVERING ARRAYS ON GRAPHS

AND
TABU SEARCH ALGORITHMS

Latifa Zekaoui

September 2006

A Thesis submitted to the

Ottawa-Carleton Institute for Computer Science

at the University of Ottawa

in partial fulfillment of the requirements

for the degree of

Master’s of Science (Computer Science)

c© Copyright 2006

by Latifa Zekaoui, Ottawa, Canada

Abstract

Mixed covering arrays on graphs and tabu search algorithms

Latifa Zekaoui, Master’s 2006

Ottawa-Carleton Institute for Computer Science

University of Ottawa

Covering arrays are combinatorial objects that have been successfully applied in

the design of test suits for testing software, networks and circuits. Mixed covering

arrays on graphs are new generalizations of both mixed covering arrays and covering

arrays on graphs.

In this thesis, we give new theoretical results and constructions for mixed covering

arrays on graphs. First, we extend to the mixed case the work done by Meagher

and Stevens [31], which uses graph homomorphisms for covering arrays on graphs.

Second, we study covering arrays on special classes of graphs. In particular, we solve

to optimality the case in which G is a tree, a cycle or a bipartite graph, as well as

give results for wheels and cubic graphs. We also provide general graph operations

that preserve the size of a balanced covering array.

In the second part of the thesis, we do a complete experimental study of two

tabu search algorithms for covering array construction. POT is a variation of the

algorithm given by Stardom [40] while PAT is an implementation of the algorithm

proposed by Nurmela [35]. We conclude that they provide effective methods for

constructing covering arrays of moderate size. In particular, POT and PAT improve

upper bounds for 18 sets of parameters for covering arrays.

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Lucia Moura, for her guid-

ance, encouragement and support throughout the whole process of this research and

for helping me shape my vague ideas into coherent research.

I would also like to thank the other members of the examination committee, Brett

Stevens and Alan Williams, for their feedback and suggestions on this thesis.

I wish to extend my sincere gratitude to my parents, Farida and Abdelhamid Zekaoui,

whose love and patience pushed me to be the best that I can and provided me with

the necessary skills to achieve this goal.

I am grateful to my husband, Gihad Abdul-Rahim, for believing in me and for his

continuous love and support throughout this journey.

Many thanks to Sofiane, Walid and Dyna for their encouragement and support.

Finally, I would like to thank the School of Information Technology and Engineer-

ing at the University of Ottawa for their financial support and also acknowledge the

generous support of the National Science and Engineering Research Council.

iii

Contents

Acknowledgements iii

1 Introduction 1

1.1 Contributions on mixed covering arrays on graphs 2

1.2 Contributions on tabu search algorithms for covering arrays 4

1.3 Overview of the thesis organization 5

2 Background on Covering Arrays 7

2.1 Covering Arrays . 7

2.2 Mixed Covering Arrays . 10

2.3 Covering Arrays on Graphs and Graph Homomorphism 11

3 Mixed Covering Arrays on Graphs 15

3.1 Mixed covering arrays on graphs . 15

3.2 Weight-restricted graph homomorphisms 17

3.3 Optimal Mixed Covering Arrays on Graphs 20

3.3.1 Basic Graph Operations . 22

3.3.2 n-chromatic graphs for n = 2, 3, 4, 5. 24

3.3.3 Trees . 24

3.3.4 Cycles . 25

3.3.5 Bipartite Graphs . 26

3.3.6 Wheels . 27

3.3.7 Cubic Graphs . 30

iv

4 Tabu Search Methods for Covering Arrays 31

4.1 General Tabu Algorithm . 31

4.2 Data structures and basic procedures 33

4.3 Point Tabu Search (POT) . 39

4.4 Pair Tabu Search (PAT) . 42

5 Experiments and Results for POT and PAT 46

5.1 Experiment Description . 46

5.2 Parameter tune up and algorithm behaviour study 47

5.2.1 Parameter tune up for POT 49

5.2.2 Parameter tune up for PAT 53

5.2.3 Tabu Search Behaviour on the Test Bed 58

5.3 Algorithm Comparison . 63

5.4 New Results . 68

5.5 Experimental Conclusion . 71

6 Conclusion 73

A Colbourn’s tables of CA upper bounds 77

Bibliography 94

v

List of Tables

1 Test bed for tune up with reduced test bed in bold 48

2 Legend for the tables that follow . 49

3 POT Maximum number of iterations tune up with fixed L = 5 50

4 POT Tabu Lifetime tune up . 52

5 POT Test Bed with I=200K & L=4 & R=10 (Part I) 54

6 POT Test Bed with I=200K & L=4 & R=10 (Part II) 55

7 PAT Maximum Iterations & Tabu Lifetime Tune Up (Part I) 56

8 PAT Maximum Iterations & Tabu Lifetime Tune Up (Part II) 57

9 PAT Test Bed with I=500K & R=10 (Part I) 59

10 PAT Test Bed with I=500K & R=10 (Part II) 60

11 POT vs PAT with R=10 . 61

12 Algorithm Comparison 1: Best upper bounds 66

13 Algorithm Comparison 1: Time for POT vs PAT 66

14 Algorithm Comparison 2: Best upper bounds 66

15 Algorithm Comparison 2: Time for POT vs PAT 67

16 Algorithm Comparison 3: best upper bounds 67

17 Algorithm Comparison 3: Time for POT vs PAT 68

18 New results for POT with I=500K, L=5, sM=1, R=1 69

19 New results for PAT with I=106, L=2 and R = 10 70

20 Class 1: PAT with I=500K, L=2, R=5 71

21 Class 2: PAT with I=500K, L=2, R=5 71

22 Summary of results found by POT or PAT 72

vi

List of Figures

1 Illustrating the fact: Kω(G)(g1, . . . , gω(G))
w→ G

w→ Kχ(G)(gk−χ(G)+1, . . . , gk)

18

vii

Chapter 1

Introduction

Covering arrays have been extensively studied and have been the topic of interest and

focus of many researchers. These interesting mathematical structures are generaliza-

tions of the well-known orthogonal arrays [25].

Let n, k, g be positive integers. A covering array, denoted by CA(n, k, g), is an

n × k array with entries from Zg such that every pair of columns has every possible

pair in Zg×Zg appearing in some row. The number of rows in such an array is called

its size. Given k and g, the covering array number, denoted by CAN(k, g), is the

minimum n for which there exists a CA(n, k, g). A CA(n, k, g) of size n = CAN(k, g)

is called optimal. The question one would like an answer for is “What is the smallest

n such that a CA(n, k, g) exists?”. Although, the question posed seems simple, it is

a very complicated and difficult problem to construct covering arrays of optimal size.

Covering arrays have applications in many areas. They are used for testing soft-

ware [6, 9, 16, 17], circuits [38] and networks [45]. They have also been applied to

problems in other domains, such as material science [2], genomics [39] and statistical

design of experiments [37].

Covering arrays are particularly useful in the design of test suites [6, 7, 20, 45, 46].

The testing application is based on the following translation. The system to be tested

has k parameters, each of which can take one out of g possible values. We wish to

build a test set that tests all pairwise interactions of parameters with the minimum

number n of tests. Exhaustively testing every possible parameter combination would

1

CHAPTER 1. INTRODUCTION 2

be impossible due to time and cost constraints, as the number of possible combina-

tions is exponential in k. Covering arrays provide compact test suites that guarantee

pairwise coverage of parameters.

The main contributions of this thesis are a theoretical study of a new generaliza-

tion of covering arrays and an experimental study of two tabu search algorithms for

covering array construction. We outline each of these contributions in Sections 1.1

and 1.2, respectively, and give an overview of the thesis in Section 1.3.

1.1 Contributions on mixed covering arrays on graphs

Several generalizations of covering arrays have been proposed in order to address

different requirements of the testing application (see [11, 24]). Mixed covering arrays

are a generalization of covering arrays that allows for different alphabets in different

columns. This meets the requirement that different parameters in the system may

take a different number of possible values. Constructions for mixed covering arrays

are given in [15, 33]. Another generalization of covering arrays are covering arrays on

graphs. In these arrays, only specified pairs of columns need to satisfy the pairwise

coverage requirements and these pairs are recorded in a graph structure [29, 31].

This is useful in situations in which some pairs of parameters do not interact; in these

cases, we do not insist that these interactions be tested, which allows reductions in

the number of required tests. This has been applied in the context of software testing

by observing that we only need to test interactions between parameters that jointly

affect one of the output values [4].

In the first part of the thesis, we study mixed covering arrays on graphs which

generalize both mixed covering arrays and covering arrays on graphs. The addition

of a graph structure to covering arrays makes it possible to use methods from graph

theory to study these structures. Covering arrays on graphs were first studied by

Serroussi and Bshouty [38], who showed that finding an optimal covering array on

a graph is NP-hard for the binary case. Only more recently, covering arrays on

general alphabets have been systematically studied. They were introduced in Steven’s

thesis [42] and Stevens and Meagher [29, 31] studied covering arrays on graphs in more

CHAPTER 1. INTRODUCTION 3

detail and gave some powerful results.

Let G be a graph with k vertices v1, v2, . . . , vk with respective vertex weights

g1 ≤ g2 ≤ · · · ≤ gk. A mixed covering array on G, denoted by CA(n, G,
∏k

i=1 gi), is

an n× k array such that column i corresponds to vi, cells in column i are filled with

elements from Zgi
and every pair of columns i, j corresponding to an edge {vi, vj}

in G has every possible pair from Zgi
× Zgj

appearing in some row. The number of

rows in such an array is called its size. Given a weighted graph G, a mixed covering

array on G with minimum size is called optimal. In this thesis, we extend the work

done by Meagher and Stevens [31] for covering arrays on graphs to the mixed case.

We define a weight-restricted graph homomorphism and use it to give bounds on the

mixed covering array number. We briefly define the special class of graphs called

the mixed qualitative independence graphs. We use them to relate the existence of

mixed covering arrays on graphs to the mixed qualitative independence graphs via

weight-restricted graph homomorphisms, which allows us to derive general bounds

for the mixed covering array number. In addition to generalizing the work in [31],

we study covering arrays on special classes of graphs. We give graph operations that

allow us to add vertices to a graph, while preserving the size of a balanced covering

array on the graph. If G is n-colourable, for n = 2, 3, 4, 5, we show that in many cases

the product of the largest two alphabets is an upper bound on the mixed covering

array number. For the case in which G is a tree, a cycle or a bipartite graph, we get a

stronger result, namely that its mixed covering array number is the largest product of

alphabets connected by an edge. All the results mentioned up to this point appeared

in our paper [30]. In addition, we determine the covering array numbers for wheels

with uniform alphabet sizes and give an upper bound on the mixed covering array

number for cubic graphs.

CHAPTER 1. INTRODUCTION 4

1.2 Contributions on tabu search algorithms for

covering arrays

In the second part of the thesis, we study and implement tabu search algorithms for

covering array construction. The tabu search algorithm is a metaheuristic method

that was proposed by Glover [21]; a detailed account is given by Glover and La-

guna [22]. Metaheuristic algorithms are capable of solving a wide range of combi-

natorial problems quickly and effectively, using generalized heuristics which can be

tailored to suit the problem at hand. Heuristic search algorithms try to find a certain

combinatorial structure or solve an optimization problem by the use of heuristics. A

heuristic search is a method of performing a minor modification of a given solution in

order to obtain a different solution. Some examples of heuristic search algorithms are

hill climbing, simulated annealing and tabu search. Different variations of the tabu

search algorithm have been proposed by Nurmela [35] and Stardom [40] in order to

obtain upper bounds on the size of covering arrays.

We implement two tabu search algorithms which we call the point tabu search

(POT) and the pair tabu search (PAT). POT algorithm is a variation of the tabu

search algorithm proposed by Stardom [40]; we call it point tabu search because the

basic tabu move is to switch a point in the array. PAT is an implementation of the

algorithm proposed by Nurmela [35]; we call it pair tabu search because the basic

tabu move aims at covering a new pair in the array. The main objective of this part

of the thesis is to provide a detailed description of an efficient implementation of these

algorithms, and to perform a complete experimental analysis of these methods.

We give a description of POT and PAT that includes data structures used and

algorithm analysis which goes into much more detail than the original references. Our

POT algorithm runs in O(nk2g) per tabu move, while PAT runs in O(nk) per tabu

move.

The objective of the experimental study is to examine the algorithms’ behaviour

individually, to try to improve on the implementation efficiency by tuning up param-

eters, to perform a detailed comparison between POT and PAT and to determine

how they compare with other algorithms, and to find new upper bounds for covering

CHAPTER 1. INTRODUCTION 5

array numbers. We tune up the input parameters for both POT and PAT using a test

bed of 30 test cases designed by us. We run our algorithms on a test bed acquired

from Cohen’s PhD thesis [9], which involves a comparison against many algorithms

found in the literature that were used in the construction of fixed and mixed covering

arrays. We also attempt to improve on upper bounds reported in recent tables by

Colbourn [10] that summarize the best known bounds for covering arrays using all

known constructions. We also report on a few new upper bounds for mixed covering

arrays with parameter values close to those of an orthogonal array. We conclude that

POT is comparable to PAT in terms of percentage success of finding covering arrays,

although PAT is substantially faster than POT for most of our test cases. POT and

PAT achieve most of the best known upper bounds reported in Cohen’s test bed and

even improve on 13 bounds from Colbourn’s tables; in addition, PAT improves on 5

mixed covering array bounds.

1.3 Overview of the thesis organization

In Chapter 2, we give the necessary background on covering arrays and discuss some

basic constructions as well as some generalizations. In particular, we discuss mixed

covering arrays, and covering arrays on graphs and their relation to graph homomor-

phism. In Chapter 3, we study mixed covering arrays on graphs which generalize

both mixed covering arrays and covering arrays on graphs. This chapter consists

of original contributions towards constructions of these objects, which appeared in

our paper [30]. As described previously, these contributions generalize the work of

Meagher and Stevens [31], and provide additional optimal constructions for covering

arrays on special classes of graphs. In Chapter 4, we discuss the two tabu search

methods that we implemented, namely POT and PAT. We introduce tabu search in

general, and give POT and PAT along with their pseudocode, data structures used

and complexity analysis. In Chapter 5, we conduct a thorough experimental analysis

of POT and PAT. We compare the effectiveness of each algorithm against one another

and against some other algorithms for which data is provided in the literature. We

also report on new improved upper bounds for covering array numbers found by our

CHAPTER 1. INTRODUCTION 6

algorithms. Finally, in Chapter 6, we conclude by outlining the main findings in this

thesis and pointing out some future work. In the Appendix, we include tables of the

best known upper bounds on the size of covering arrays, as reported by Colbourn [10].

Chapter 2

Background on Covering Arrays

In this chapter, we review covering array definitions and basic constructions as well

as their associated generalizations.

2.1 Covering Arrays

Covering arrays have been studied extensively in the past few years [11] and their

primary application is in software [6, 14, 16, 17], hardware [14], network [39] and

circuit [33] testing.

Two length-n vectors x, y with entries from Zg and Zh, respectively, are qualita-

tively independent if for any pair (a, b) ∈ Zg × Zh, there exists i ∈ {1, 2, . . . , n} such

that (xi, yi) = (a, b). Covering Arrays are arrays whose columns are qualitatively

independent.

Definition 2.1.1. (Covering Arrays) Let n, k, g be positive integers. A covering ar-

ray, denoted by CA(n, k, g), is an n× k array A with entries from Zg such that any

two distinct columns of A are qualitatively independent.

The parameter n is called the size of the array. Given k and g, the covering

array number, denoted by CAN(k, g), is the minimum n for which there exists a

CA(n, k, g). A CA(n, k, g) of size n = CAN(k, g) is called optimal. An obvious lower

7

CHAPTER 2. BACKGROUND ON COVERING ARRAYS 8

bound for the size of a covering array is g2 in order to guarantee that two of the

columns be qualitatively independent.

Example 2.1.2. The following array is an optimal CA(5, 4, 2):

0 0 0 0

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


Let us see a software application of covering arrays. The model most commonly

used is that of a computer program or little snippet of code. The program has k

input parameters and each can take one of g possible values. To perform a full

coverage of the parameter space, one would have to test every possible combination

of the input parameters. As g and k grow, the number of possible combinations gk

become infeasible to test. Cohen et al. [6] show by the use of empirical data that the

vast majority of defects are due to the interaction between two parameters. Using

covering arrays to build test suites ensures pairwise coverage and leads to quicker

testing methodologies.

A lot of research has been developed and is being conducted to determine the

minimum size of covering arrays for different parameter values as well as to develop

constructions to build these interesting mathematical structures. Although, the prob-

lem of finding CAN(k, g) for general k and g is not an easy problem, the determi-

nation of CAN(k, 2) has been completely solved by Katona [26] and Kleitman and

Spencer [27], independently. The construction is very simple. It specifies that given

n, in order to build a CA(n, k, 2) with maximum k, we form a matrix in which the

columns consist of all distinct binary n-tuples of weight dn
2
e that have a 0 in the first

position. The next theorem guarantees that this is in indeed a covering array, and

gives a maximum k.

Theorem 2.1.3. (Katona [26], Kleitman & Spencer [27]) Let k be a positive integer,

then

CAN(k, 2) = min

{
n :

(
n− 1

dn
2
e

)
≥ k

}
.

CHAPTER 2. BACKGROUND ON COVERING ARRAYS 9

Another useful construction for covering arrays makes use of combinatorial designs

called orthogonal arrays. An orthogonal array, denoted OA(k, g), is a g2 × k array,

A, with entries from a Zg such that any two distinct columns of A are qualitatively

independent. Orthogonal arrays yield optimal covering arrays, since they have g2

rows, which match the lower bound for CAN(k, g).

Proposition 2.1.4. If an OA(k, g) exists then CAN(k, g) = g2.

The following theorem ensures the existence of orthogonal arrays with g + 1

columns when g is a prime power.

Theorem 2.1.5. (Bush [1]) For a prime power g, there exists an OA(g + 1, g).

The maximum number of columns possible in an orthogonal array is k = g + 1.

When covering arrays with larger k are needed, other constructions are required.

The blocksize recursive construction is a construction that concatenates copies

of existing smaller covering arrays to build a larger covering array with the same

alphabet size as can be seen in the next theorem.

Theorem 2.1.6. (Cohen & Fredman [8], Poljak & Tuza [36], Stevens & Mendel-

sohn [41], Williams [46]) If there exists a CA(m, j, g) and a CA(n, k, g), then there

exists a CA(m + n, jk, g).

Sketch of the proof. Let A be a CA(m, j, g) and B be a CA(n, k, g). We build

C, a CA(m + n, jk, g). In order to build the first k columns of C, the larger covering

array, we need to repeat the first column of A, k times, and concatenate each of these

columns with all the columns from the array B. Similarly, repeat each other column

of A, k times, and concatenate to it a full copy of B. It can be verified that this

constructs a CA(m + n, jk, g). 2

For fixed g, CAN(k, g) has been asymptotically determined as k grows.

Theorem 2.1.7. (Gargano, Korner & Vaccaro [20]) Let g be a positive integer. The

following asymptotic result holds:

lim
k→∞

CAN(k, g) =
g

2
log2 k

CHAPTER 2. BACKGROUND ON COVERING ARRAYS 10

This result is not constructive, so it sheds no light on how to construct optimal

covering arrays. Several generalizations of covering arrays have been proposed in order

to address different requirements of the testing applications [11, 24]. In Section 2.2

and 2.3, we discuss two of these generalizations.

2.2 Mixed Covering Arrays

A mixed covering array is a generalization of a covering array that allows for different

alphabets in different columns. This was introduced to remove the limitation that all

parameters had to have the same number of possible values since different parameters

in the system will often take on a different number of possible values . This is a more

realistic approach in a software application context.

Definition 2.2.1. (Mixed Covering Array) Let n, k, g1, . . . , gk be positive integers. A

mixed covering array, denoted by CA(n,
∏k

i=1 gi), of type
∏k

i=1 gi, is an n × k array

A with entries from Zgi
in column i, such that any two distinct columns of A are

qualitatively independent.

The parameter n is called the size of the array. Given k and gi for 1 ≤ i ≤ k,

the covering array number, denoted by CAN(
∏k

i=1 gi), is the minimum n for which

there exists a CA(n,
∏k

i=1 gi). A CA(n,
∏k

i=1 gi) of size n = CAN(
∏k

i=1 gi) is called

optimal. An obvious lower bound for the size of a covering array is gigj, where gi

and gj are the largest two alphabets, in order to guarantee that the corresponding

columns be qualitatively independent.

Example 2.2.2. The following array is an optimal CA(6, 4, 2331).

0 0 0 0

1 1 1 0

0 1 1 1

1 0 0 1

0 0 1 2

1 1 0 2



CHAPTER 2. BACKGROUND ON COVERING ARRAYS 11

Constructions of mixed covering arrays are discussed in [15] and [33]. Next, we

list some results that are used in the thesis.

Theorem 2.2.3. (Moura et al. [33])(Increasing one of the alphabet sizes) Let e ≥ 0,

1 ≤ i ≤ k, g1 ≤ g2 ≤ · · · ≤ gk, and k′ = max {j : 1 ≤ j ≤ k, j 6= i}. Then,

CAN(g1g2 . . . (gi + e) . . . gk) ≤ CAN(g1g2 . . . gk) + egk′.

Theorem 2.2.4. (Moura et al. [33])(Decreasing one of the alphabet sizes) Let e ≥ 0

and 1 ≤ i ≤ k. Then, CAN(g1g2 . . . (gi − e) . . . gk) ≤ CAN(g1g2 . . . gi . . . gk).

Theorem 2.2.5. (Moura et al. [33]) Let g1 ≤ g2 ≤ g3 ≤ g4 ≤ g5 and gi ≥ 2. For

k ≤ 4, we have CAN(
∏k

i=1 gi) = gk−1gk except in the following cases: CAN(24) = 5

and CAN(64) = 37. For k = 5, if g4 6= 6, 10, then CAN(
∏5

i=1 gi) = g4g5 except in

the following cases: CAN(25) = 6, CAN(35) = 11 and CAN(2134) = 10.

2.3 Covering Arrays on Graphs and Graph Homo-

morphism

Covering arrays on graphs are generalizations of covering arrays that only require that

specified pairs of columns need to be qualitatively independent and these pairs are

recorded in a graph structure [29, 31]. This is useful in situations in which some pairs

of parameters do not interact; in these cases, we do not insist that these interactions

be tested, which allows reductions in the number of required tests. This has been

applied in the context of software testing by observing that we only need to test

interactions between parameters that jointly affect one of the output values [4].

Definition 2.3.1. (Covering Array on a Graph) Let n and g be positive integers

and G be a graph with k vertices. A covering array on G, denoted by CA(n, G, g),

is an n × k array with the following properties: 1) the cells in column i are filled

with elements from a g-ary alphabet, which is usually taken to be Zg; 2) column

i corresponds to a vertex vi ∈ V (G); and 3) pairs of columns that correspond to

adjacent vertices of G are qualitatively independent.

CHAPTER 2. BACKGROUND ON COVERING ARRAYS 12

Given a graph G and a positive integer g, the covering array number CAN(G, g)

is the minimum n for which there exists a CA(n, G, g). A CA(n, G, g) of size n =

CAN(G, g) is called optimal.

Example 2.3.2. The following is an optimal CA(4, 4, 24) for the graph below. Since

vertices A and D are not adjacent in the graph, their corresponding columns need not

be qualitatively independent.

0 0

1
1 1

1
0

0

0
A:2

C:2 D:2
1

B C D
B:2

1 00
1 0

1

A

Before we discuss known results for covering arrays on graphs, we need to review

some graph theoretical definitions and results.

A mapping φ from V(G) to V(H) is a graph homomorphism from G to H (or simply

a homomorphism) if for all u, v ∈ V (G), the vertices φ(u) and φ(v) are adjacent

in H whenever u and v are adjacent in G. For graphs G and H, if there exists a

homomorphism from G to H we write G→ H.

The complete graph on n vertices, Kn, is the graph with n vertices and with an

edge between any two distinct vertices. A proper colouring of G with n colours is a

map from V (G) to a set of n colours such that no two adjacent vertices are mapped

to the same colour. A proper colouring of a graph G with n colours is equivalent to a

homomorphism from G to Kn. The chromatic number of a graph G, denoted χ(G),

is the smallest n such that G → Kn. A clique in a graph G is a set C of vertices

from V (G) such that any two distinct vertices in C are adjacent in G. A clique of

cardinality n in G is equivalent to a homomorphism from Kn to G. The clique number

of a graph G, denoted by ω(G), is the largest n such that Kn → G. For graphs G

and H, if there is a homomorphism G → H then χ(G) ≤ χ(H) and ω(G) ≤ ω(H).

Also, for all graphs G, ω(G) ≤ χ(G).

CHAPTER 2. BACKGROUND ON COVERING ARRAYS 13

Next, we give some results by Meagher and Stevens [31] that relate graph homo-

morphisms with covering arrays on graphs. In section 3.2, we generalize these results

to mixed covering arrays on graphs.

Theorem 2.3.3. (Meagher and Stevens [31]) Let g be a positive integer and G and

H be graphs. If there exists a graph homomorphism φ : G→ H, then

CAN(G, g) ≤ CAN(H, g).

For any graph G, there are homomorphisms between the following graphs

Kω(G) → G→ Kχ(G).

These homomorphisms can be used to find bounds on CAN(G, g).

Corollary 2.3.4. (Meagher and Stevens [31]) For all positive integers g and all graphs

G,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g).

A k-partition of an n-set is a set of k disjoint non-empty classes whose union is

the n-set. Let P n
k denote the set of all k-partitions of an n-set. We say that a vector

x ∈ Zn
g corresponds to a g-partition P = {P1, P2, . . . , Pg} of an n-set if

xi = a if and only if i ∈ Pa, for all 1 ≤ i ≤ n, 1 ≤ a ≤ g.

Throughout this thesis, we denote by xp the vector corresponding to partition P .

We say that partitions P and Q are qualitatively independent if their corresponding

vectors xP and xQ are qualitatively independent.

Definition 2.3.5. (Qualitative Independence Graph) Let n and g be positive integers

with n ≥ g2. Define the qualitative independence graph, QI(n, g), to be the graph

whose vertex set is the set of all g-partitions of an n-set with the property that every

class of the partition has size at least g. Vertices are adjacent if and only if the

corresponding partitions are qualitatively independent.

The next theorem relates the existence of covering arrays on graphs to the mixed

qualitative independence graphs via graph homomorphisms.

CHAPTER 2. BACKGROUND ON COVERING ARRAYS 14

Theorem 2.3.6. (Meagher and Stevens [31]) For a graph G and positive integers g

and n, there exists a CA(n, G, g) if and only if there exists a graph homomorphism

G→ QI(n, g).

We can therefore rewrite the previous result in terms of covering array numbers.

Corollary 2.3.7. (Meagher and Stevens [31]) For any graph G, and any positive

integer g,

CAN(G, g) = min
n∈N
{n : G→ QI(n, g)}.

Since a homomorphism G → H implies χ(G) ≤ χ(H) and ω(G) ≤ ω(H), the

following corollary is a direct consequence of Theorem 2.3.6.

Corollary 2.3.8. (Meagher and Stevens [31]) Let G be a graph and n, g be positive

integers. If there exists a CA(n, G, g), then

χ(G) ≤ χ(QI(n, g)) and ω(G) ≤ ω(QI(n, g)).

Chapter 3

Mixed Covering Arrays on Graphs

In this chapter, we study mixed covering arrays on graphs, which generalize both

covering arrays on graphs and mixed covering arrays.

We extend results given in Section 2.3 for covering arrays on graphs to the mixed

case. We give graph operations that allow us to add vertices to a graph, while

preserving the size of a balanced covering array on the graph. If G is n-colourable,

for n = 2, 3, 4, 5, we show that in many cases the product of the largest two alphabets

is an upper bound on the mixed covering array number. For the case in which G is

a tree, a cycle or a bipartite graph, we get a stronger result, namely that its mixed

covering array number is the largest product of alphabets connected by an edge. The

contents of this chapter appear in our paper [30], except for extra results for wheels

and cubic graphs.

3.1 Mixed covering arrays on graphs

Mixed covering arrays on graphs allow for different alphabets in different columns

as well as ensure that only specified pairs of columns need to be qualitatively inde-

pendent. The first property meets the requirement that different parameters in the

system may take a different number of possible values, while the second property is

useful in situations in which some pairs of parameters do not interact.

The parameters for mixed covering arrays on graphs are given by a vertex-weighted

15

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 16

graph. A vertex-weighted graph or simply a weighted graph is a graph with a weight

assigned to each vertex. A weighted graph is given by a triple (V (G), E(G), wG(·))
where V (G) is the vertex set, E(G) is the edge set and wG : V (G) → N+ is the

weight function. We assume that the vertices are labelled so that the weights are

nondecreasing, that is, wG(vi) ≤ wG(vj), for all 1 ≤ i ≤ j ≤ |V (G)|. When there is

no ambiguity on which graph we are using, we can write w(·) in place of wG(·).

Definition 3.1.1. (Mixed Covering Array on a Graph) Let G be a weighted graph

with k vertices and weights g1 ≤ g2 ≤ · · · ≤ gk, and let n be a positive integer. A

mixed covering array on G, denoted by CA(n, G,
∏k

i=1 gi), is an n × k array with

the following properties: 1) the cells in column i are filled with elements from a gi-

ary alphabet, which is usually taken to be Zgi
; 2) column i corresponds to a vertex

vi ∈ V (G) with wG(vi) = gi; and 3) pairs of columns that correspond to adjacent

vertices of G are qualitatively independent. Given a weighted graph G with weights

g1, g2, . . . , gk, the mixed covering array number on G, denoted by CAN(G,
∏k

i=1 gi),

is the minimum n for which there exists a CA(n, G,
∏k

i=1 gi). A CA(n, G,
∏k

i=1 gi) of

size n = CAN(G,
∏k

i=1 gi) is called optimal.

A mixed covering array, denoted by CA(n,
∏k

i=1 gi), is a CA(n, Kk,
∏k

i=1 gi), where

Kk is the complete graph on k vertices with weights gi, for 1 ≤ i ≤ k. A covering

array on a graph, denoted by CA(n, G, g), is a CA(n, G, gk) where k = |V (G)|.

Example 3.1.2. The following is an optimal CA(6, 4, 2331) for the graph below.

0 0

1
1 1

1
0

0

0
A:2

C:2 D:2

1 0 1
10 1
0

A B C D
B:3

1
10
0

2
2

0
1

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 17

3.2 Weight-restricted graph homomorphisms

In this section, we generalize the results by Meagher and Stevens [31] given in sec-

tion 2.3.

Let G and H be weighted graphs. A mapping φ from V (G) to V (H) is a weight-

restricted graph homomorphism from G to H if φ is a graph homomorphism from G

to H such that wG(v) ≤ wH(φ(v)), for all v ∈ V (G). For weighted graphs G and H,

if there exists a weight-restricted homomorphism from G to H then we write G
w→ H.

In the next proof, we use the concept of dropping the alphabet size of a particular

column of a mixed covering array (from Theorem 2.2.4). Let h ≥ g. To drop the

alphabet size from h to g in a column of a covering array, we replace all symbols

from Zh\Zg in the column by arbitrary symbols from Zg. Any pair of qualitatively

independent columns of the covering array prior to the dropping operation will remain

qualitatively independent.

Theorem 3.2.1. Let G and H be weighted graphs with weights g1, g2, . . . , gk and

h1, h2, . . . , h`, respectively. If there exists a weight-restricted graph homomorphism φ

: G
w→ H then CAN(G,

∏k
i=1 gi) ≤ CAN(H,

∏`
j=1 hj).

Proof. Let CH be a CA(n, H,
∏`

j=1 hj). The covering array CH is used to construct

CG, a CA(n, G,
∏k

i=1 gi). Let i ∈ {1, 2, . . . , k} be the index of a column of CG, and

let vi be the corresponding vertex in G. Column i of CG is constructed from the

column corresponding to φ(vi) in CH by dropping its alphabet from wH(φ(vi)) to

wG(vi). Now, for any edge {vi, vj} in G, the pair {φ(vi), φ(vj)} is an edge in H and

columns of CH corresponding to φ(vi) and φ(vj) are qualitatively independent. Since

dropping the alphabet size preserves qualitative independence, columns i and j of CG

are qualitatively independent.

The weight-restricted homomorphism defined above gives more than just an upper

bound on the size of a mixed covering array on a graph, it also describes a construction

for the array.

The next corollary generalizes Corollary 2.3.4 to the mixed case. The complete

weighted graph on n vertices Kn(g1, . . . , gn) is a complete graph on n vertices with

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 18

weights g1, . . . , gn on the vertices. For any graph G, there exist homomorphisms

between the following graphs Kω(G)→G→Kχ(G). These homomorphisms can be ex-

tended to weight-restricted homomorphisms and we get the following lower and upper

bounds on CAN(G,
∏k

i=1 gi).

Corollary 3.2.2. Let G be a weighted graph with k vertices and g1 ≤ g2 ≤ · · · ≤ gk

be positive weights. Then,

CAN(Kω(G),

ω(G)∏
i=1

gi) ≤ CAN(G,
k∏

j=1

gj) ≤ CAN(Kχ(G),
k∏

`=k−χ(G)+1

g`).

Proof. Let G be a weighted graph with positive weights g1 ≤ g2 ≤ · · · ≤ gk. From

Section 2.3, we know there exists a graph homomorphism φ : Kω(G) → G. Assign

weights g1, . . . , gω(G) to Kω(G) so that wKω(G)
(u) ≤ wKω(G)

(v) whenever wG(φ(u)) ≤
wG(φ(v)). Since the gi’s are ordered by weight, it is clear that φ is a weight-restricted

homomorphism. Similarly, from Section 2.3, there exists a graph homomorphism

ϕ : G → Kχ(G). Assign weights gk−χ(G)+1, . . . , gk to Kχ(G) so that wKχ(G)
(ϕ(u)) ≤

wKχ(G)
(ϕ(v)) whenever wG(u) ≤ wG(v). It is clear that ϕ is a weight-restricted

homomorphism.

55

4
4

2 5

5

1

2

1

Figure 1: Illustrating the fact: Kω(G)(g1, . . . , gω(G))
w→ G

w→ Kχ(G)(gk−χ(G)+1, . . . , gk)

Definition 3.2.3. (Mixed Qualitative Independence Graph) Let n and g1 < · · · < g`

be positive integers. The mixed qualitative independence graph QI(n,
∏`

i=1 gi) is the

graph whose vertex set is P n
g1
∪ P n

g2
∪ · · · ∪ P n

g`
and two vertices are adjacent if and

only if their corresponding partitions are qualitatively independent.

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 19

Note that for all i ∈ {1, . . . , `}, the graph QI(n, gi) is an induced subgraph of

QI(n,
∏`

i=1 gi) and if ` = 1 then QI(n,
∏`

i=1 gi) = QI(n, g1).

Lemma 3.2.4. Let n and g1 < g2 < · · · < g` be positive integers and let ri = |P n
gi
|.

Then, CAN(QI(n,
∏`

i=1 gi),
∏`

i=1 gri
i) ≤ n.

Proof. Build a CA(n, QI(n,
∏`

i=1 gi),
∏`

i=1 gri
i), by assigning to the column corre-

sponding to vertex v (partition Pv), the vector xPv .

The next theorem relates the existence of mixed covering arrays on graphs to the

mixed qualitative independence graphs via weight-restricted graph homomorphisms.

Theorem 3.2.5. For a weighted graph G and positive integers n and g1, g2, . . . , gk,

there exists a CA(n, G,
∏k

i=1 gi) if and only if there exists a weight-restricted graph

homomorphism G
w→ QI(n,

∏k
i=1 gi).

Proof. Assume that there exists a CA(n, G,
∏k

i=1 gi); call it C. For any v in V (G),

denote by xv ∈ Zn
gi

the column in C corresponding to v and by Pv the partition

corresponding to xv. Consider a mapping φ : V (G) → V (QI(n,
∏k

i=1 gi)) such that

φ(v) = Pv. The map φ is a weight-restricted homomorphism. To see this, let v, u ∈
V (G) be adjacent vertices. Since C is a mixed covering array on G, columns xv and

xu are qualitatively independent, thus the corresponding partitions Pv and Pu are

qualitatively independent and adjacent in QI(n,
∏k

i=1 gi).

Conversely, assume there is a weight-restricted graph homomorphism φ : G
w→

QI(n,
∏k

i=1 gi). We build C, a CA(n, G,
∏k

i=1 gi), as follows. For each v ∈ V (G), φ(v)

corresponds to a partition Pv. Take the column corresponding to v to be xPv , the

vector corresponding to Pv. If the vertices v, u ∈ V (G) are adjacent in G then the

partitions Pv = φ(v), Pu = φ(u) are qualitatively independent, thus the corresponding

columns xPv , xPu are qualitatively independent.

Corollary 3.2.6. Let G be a weighted graph with distinct weights g1, g2, . . . , gr, re-

peated s1, s2, . . . , sr times, respectively. Then,

CAN(G,
r∏

i=1

gsi
i) = min

n∈N
{n : G

w→ QI(n,
r∏

i=1

gi)}.

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 20

The next corollary can be used to find a lower bound on the mixed covering array

number. Specifically, we conclude that CAN(G,
∏r

i=1 gsi
i) > n whenever ω(G) >

ω(QI(n,
∏r

i=1 gi)) or χ(G) > χ(QI(n,
∏r

i=1 gi)).

Corollary 3.2.7. Let n be a positive integer and let G be a weighted graph with

distinct weights g1, g2, . . . , gr, repeated s1, s2, . . . , sr times, respectively. Then, if there

exists a CA(n, G,
∏r

i=1 gsi
i) then

χ(G) ≤ χ(QI(n,
r∏

i=1

gi)) and ω(G) ≤ ω(QI(n,

r∏
i=1

gi)).

Proof. By Theorem 3.2.5, there exists a weight-restricted homomorphism from G to

QI(n,
∏r

i=1 gi). A weight-restricted homomorphism is a homomorphism, therefore we

get that χ(G) ≤ χ(QI(n,
∏r

i=1 gi)) and ω(G) ≤ ω(QI(n,
∏r

i=1 gi)) by the properties

of homomorphisms.

3.3 Optimal Mixed Covering Arrays on Graphs

In this section, we give constructions of mixed covering arrays on graphs, several of

which are optimal.

A length-n vector with alphabet size g is balanced if each symbol occurs bn/gc
or dn/ge times. A balanced covering array is a covering array in which every row is

balanced. Balanced covering arrays are of special interest, as Meagher [29] conjectures

that there always exists an optimal covering array that is balanced and proves that

this is true for g = 2.

Lemma 3.3.1. For a balanced length-n vector x on Zg and for any h ≤ n
g

there exists

a balanced length-n vector y on Zh such that x and y are qualitatively independent.

Proof. Let n = gq + r, with 0 ≤ r < g. Since x is balanced, we assume w.l.o.g. that

the first g − r symbols each occur q times in x and the last r symbols occur q + 1

times. Further, we assume w.l.o.g. that the letters occur in their natural order. That

is,

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 21

x(i) =


⌊

i
q

⌋
for 0 ≤ i < (g − r)q,⌊

i+(g−r)
q+1

⌋
for (g − r)q ≤ i < n.

Let y ∈ Zn
g be the vector such that y(i) = i mod h, for all i ∈ [0, n − 1]. Clearly,

y is balanced. We will now show that x and y are qualitatively independent. For

s ∈ {0, 1, . . . , g−1}, there exists some j ∈ [0, n−1] such that x(j) = x(j +1) = . . . =

x(j + q − 1) = s. Since h ≤ n
g
, we have q ≥ h. Thus, all symbols in Zh occur among

y(j), y(j + 1), . . . , y(j + q − 1). Therefore, {(x(i), y(i)) : j ≤ i ≤ j + q − 1} = {(s, t) :

t ∈ Zh}. Since we can do this for all s ∈ {0, 1, . . . , g − 1}, all pairs from Zg × Zh are

covered by some common coordinate of x and y.

Lemma 3.3.2. Let x1 ∈ Zn
g1

and x2 ∈ Zn
g2

be balanced vectors, then for any h such

that hg1 ≤ n and hg2 ≤ n, there exists a balanced vector y ∈ Zn
h such that x1 and y

are qualitatively independent and x2 and y are qualitatively independent.

Proof. Define a bipartite multi-graph H as follows: H has g1 vertices in the first part,

P ⊆ V (H) and g2 vertices in the second part Q ⊆ V (H). Let Pa = {i : x1(i) = a},
for a = 1, . . . , g1, be the vertices of P , while Qb = {i : x2(i) = b}, for b = 1, . . . , g2,

be the vertices of Q. We also have that |Pa| ≥
⌊

n
g1

⌋
and |Qb| ≥

⌊
n
g2

⌋
since the

vectors are balanced. For each i = 1, . . . , n there exists exactly one Pa ∈ P with

i ∈ Pa and exactly one Qb ∈ Q with i ∈ Qb. For each such i, add an edge between

vertices corresponding to Pa and Qb and label it i. Since |Pa| ≥
⌊

n
g1

⌋
and |Qb| ≥⌊

n
g2

⌋
, the minimum degree of a vertex in H is δ = min{

⌊
n
g1

⌋
,
⌊

n
g2

⌋
}. By a dual of

Konig’s theorem, there are min{
⌊

n
g1

⌋
,
⌊

n
g2

⌋
} classes of edge-disjoint vertex covers. In

particular, since h ≤ min{
⌊

n
g1

⌋
,
⌊

n
g2

⌋
}, we have h edge-disjoint vertex covers. These

h edge-disjoint vertex covers form a partition R of [1, n], which we use to build a

balanced vector y ∈ Zn
h. Each edge-disjoint vertex cover corresponds to a symbol in

Zh and each edge corresponds to an index from [1,n]. For each edge i in an edge-

disjoint vertex cover associated with a ∈ Zh, define y(i) = a. Fill the remaining

positions in the vector y in such a way that y remains balanced. Next, we need to

show that the partitions P and R are qualitatively independent. For any c ∈ Zh,

the class Rc corresponds to an edge-disjoint vertex cover of H, this means that for

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 22

any a ∈ Zg1 , there exists an edge i in the edge-disjoint vertex cover incident to Pa.

By the definition of R, we have i ∈ Rc. Since the edge labelled i is incident with

the vertex corresponding to Pa, we also know that i ∈ Pa. This means that for any

a ∈ Zg1 , c ∈ Zh, there exists an i ∈ [1, n] such that i ∈ Pa and i ∈ Rc, or in other

words, x1(i) = a and y(i) = c. So, x1 and y are qualitatively independent. Similarly,

we can show that x2 and y are qualitatively independent.

3.3.1 Basic Graph Operations

Let G be a weighted multigraph with k vertices. Label the vertices v0, v1, . . . , vk−1

and for each vertex vi the associated weight is denoted by wG(vi). Let the prod-

uct weight of G, denoted PW (G), be PW (G) = max{wG(vi) wG(vj) : {vi, vj} ∈
E(G)}. All the definitions for graphs extend naturally to multigraphs. Note that

CAN(G,
∏k

i=1 wG(vi)) ≥ PW (G).

We define three graph operations: one-vertex edge hooking, edge duplication and

weight-restricted edge subdivision. A one-vertex edge hooking in a multigraph G is

the operation that inserts a new edge where one end is in V (G) and the other is a

new vertex. An edge duplication involves the creation of an edge that is parallel to

an existing edge in G, that is, we are creating a multigraph with an existing edge

appearing twice. An edge subdivision is the operation that replaces an edge by a path

with two edges. A weight-restricted edge subdivision is an edge subdivision such that

if v is the new vertex in G adjacent to vertices s and t then wG(v)wG(s) ≤ PW (G)

and wG(v)wG(t) ≤ PW (G).

Proposition 3.3.3. (One-vertex Edge Hooking) Let n be a positive integer and G

be a weighted multigraph with k vertices. Let G′ be the weighted multigraph obtained

from G by a one-vertex edge hooking of a new vertex v with a new edge {u, v}, and

w(v) such that w(u)w(v) ≤ n. Then, there exists a balanced CA(n, G,
∏k

i=1 gi) if and

only if there exists a balanced CA(n, G′, w(v)
∏k

i=1 gi).

Proof. The direct implication is the only non-trivial one. Let CG be a balanced

CA(n, G,
∏k

i=1 gi). The balanced covering array CG will be used to construct a CG′
,

a balanced CA(n, G′, w(v)
∏k

i=1 gi). Using Lemma 3.3.1, we know that we can build

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 23

a balanced length-n vector, call it x, corresponding to vertex v such that x is quali-

tatively independent with the length-n vector y corresponding to vertex u in G. The

array CG′
is built by appending column x to CG. Since the only new edge is {u, v},

and x and y are qualitatively independent, CG′
is a balanced mixed covering array

on G′.

Proposition 3.3.4. (Edge Duplication) Let G be a weighted graph with k vertices

and let G′ be the weighted multigraph obtained from G by duplicating one of its edges.

Then, there exists a balanced CA(n, G,
∏k

i=1 gi) if and only if there exists a balanced

CA(n, G′,
∏k

i=1 gi).

Proof. The extension of the definition of mixed covering arrays on graphs to mixed

covering arrays on multigraphs does not affect the size of a mixed covering array

obtained by duplicating edges. The balanced mixed covering array on G is the same

balanced mixed covering array on G′.

Proposition 3.3.5. (Weight-Restricted Edge Subdivision) Let G be a weighted multi-

graph with k vertices. Let G′ be the weighted multigraph obtained from G by a weight-

restricted edge subdivision creating the new vertex v that is adjacent to vertices s and

t in G, with w(v) such that max{w(v)w(s), w(v)w(t)} ≤ n. If there exists a balanced

CA(n, G,
∏k

i=1 gi) then there exists a balanced CA(n, G′, w(v)
∏k

i=1 gi).

Proof. Let CG be a balanced CA(n, G,
∏k

i=1 gi). The balanced covering array CG

is used to construct CG′
, a balanced CA(n, G′, w(v)

∏k
i=1 gi). By Lemma 3.3.2, we

know that we can build a balanced length-n vector, call it x, corresponding to vertex

v such that x is qualitatively independent with the length-n vector y corresponding

to vertex s in G and with the length-n vector z corresponding to vertex t in G. CG′

is built by appending column x to CG. Since {v, s} and {v, t} are the only new edges

and x and y are qualitatively independent and x and z are qualitatively independent,

CG′
is a balanced mixed covering array on G′.

The next theorem can be used to derive an algorithm that reverses the basic

operations on a graph, obtaining a simpler graph to be used in a covering array

construction.

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 24

Theorem 3.3.6. Let G be a weighted multigraph and G′ a weighted multigraph ob-

tained from G via a sequence of weight-restricted edge subdivisions, one-vertex edge

hooking and edge duplication. Let vk+1, vk+2, . . . , v` be the vertices in V (G′)\V (G) with

weights gk+1, gk+2, . . . , g`, respectively. If there exists a balanced CA(n, G,
∏k

i=1 gi)

then there exists a balanced CA(n, G′,
∏`

i=1 gi).

Proof. The result is derived by iterating the three previous propositions.

3.3.2 n-chromatic graphs for n = 2, 3, 4, 5.

Combining Corollary 3.2.2 with Theorem 2.2.5, we get the following theorem.

Theorem 3.3.7. Let G be a weighted graph with k vertices with weights g1 ≤ g2 ≤
. . . ≤ gk. If one of the following holds:

1) χ(G) = 2, 3,

2) χ(G) = 4 and
∏k

i=k−3 gi /∈ {24, 64}, or

3) χ(G) = 5 and
∏k

i=k−4 gi /∈ {25, 35, 234} and gk−1 /∈ {4, 6, 10},

then CAN(G,
∏k

i=1 gi) ≤ gk−1gk.

Proof. Let G be a weighted graph with k vertices. Then by Corollary 3.2.2, we have

CAN(G,
∏k

i=1 gi) ≤ CAN(Kχ(G),
∏k

l=k−χ(G)+1 gl). Moreover, by Theorem 2.2.5 for

p = 2, 3; p = 4 and
∏k

i=k−3 gi /∈ {24, 64}; or p = 5 and
∏k

i=k−4 gi /∈ {25, 35, 234} and

gk−1 /∈ {4, 6, 10}, we have CAN(Kp,
∏k

l=k−p+1 gl) = gk−1gk.

3.3.3 Trees

Theorem 3.3.8. Let T be a weighted tree with k vertices with weights g1, g2, . . . , gk.

Then, CAN(T,
∏k

i=1 gi) = PW (T).

Proof. We can build T by starting with an edge {vi, vj} such that PW (T) = gi × gj,

and by applying successive one-vertex edge hooking in the proper order so as to obtain

T . Since, the covering array number on the first edge is PW (T), and it continues to

be the same at each new edge, we have CAN(T,
∏k

i=1 gi) = PW (T).

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 25

3.3.4 Cycles

In this section, we solve the problem for cycles. Let C be a cycle with two largest

weights gk−1 and gk. Note that if PW (C) = gk−1gk, since cycles are 3-colourable, The-

orem 3.3.7 solves the problem via the colouring construction (graph homomorphism

to K3). So, the non-trivial case we solve in this section is when PW (C) < gk−1gk.

We give two proofs. The first one uses the alternate construction and the second

one uses graph operations introduced in section 3.3.1.

Theorem 3.3.9. Let C be a weighted cycle of length k. There exists a balanced mixed

covering array CA(n, C,
∏k

i=1 wC(vi)) with n = PW (C). Moreover, this covering

array is optimal.

Proof. 1: Alternate construction

Let C be a weighted cycle with k vertices. Label the vertices v1, v2, . . . , vk and for

each vertex vi the associated weight is denoted by wC(vi). Set n = PW (C). We

will give a construction for A, a CA(n, C,
∏k

i=1 wC(vi)). Consider the path v1 to vk−1.

Pick node v1 to be the root. Let the column in C corresponding to v1 to be a balanced

vector of length n with weight wC(v1). For 2 ≤ i ≤ k − 1, vi is the adjacent vertex

to vi−1; then by Lemma 3.3.1, there exists a balanced length-n vector with weight

wC(vi) which is qualitatively independent with vi−1 since wC(vi)wC(vi−1) ≤ n. This

vector will be the column corresponding to vi in A. Finally, from Lemma 3.3.2, it

is possible to construct a vector which is qualitatively independent with both vectors

v1 and vk−1. We use this vector to be the column corresponding to vk in A.

Proof. 2: Construction using graph operations

Let {vk−1, vk} be an edge in C with w(vk−1)w(vk) = PW (C). Note that in this proof

we do not assume that w(vk−1) and w(vk) are the two largest weights. We build a

balanced CA(n, C,
∏k

i=1 wC(vi)) with n = PW (C) using the basic graph operations

from Section 3.3.1. Let G1 be the weighted graph with the single weighted edge

{vk−1, vk}. From Lemma 3.3.1, there exists a balanced CA(n, G1, w(vk−1)w(vk)). Let

G2 be the graph obtained from G1 by edge duplication. From Proposition 3.3.4 there

exists a balanced CA(n, G2,
∏k

i=k−1 wC(vi)). For 3 ≤ j ≤ k, let Gj be the graph

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 26

obtained from Gj−1 by applying a weight-restricted edge subdivision with vertex

vj−2, a minimum-weight vertex among the remaining vertices, and inserting vj−2

in the appropriate position based on the original cycle configuration. Note that

Gk = C. From Proposition 3.3.5, for all j = 3, . . . , k, if PW (Gj) ≤ PW (C), then

there exists a balanced CA(PW (C), Gj, wC(vk−1)wC(vk)
∏j−2

i=1 wC(vi)). In particular,

there exists a balanced CA(PW (C), C,
∏k

i=1 wC(vi)). All we need to prove is that

PW (Gj) ≤ PW (C) for all j ∈ {3, . . . , k}.
To prove this we assume by contradiction that for some j ∈ {3, . . . , k}, PW (Gj) >

PW (C). Thus, at some intermediate step, we have an edge {u, v} in the cycle we are

building with w(u) = g and the w(v) = h where gh > PW (C). We know from the

definition of PW (C) that the vertices u, v are not adjacent in the original cycle. Let

up1p2 . . . piv be the path in the original cycle that connects u to v and does not contain

the edge {vk−1, vk}. Then, the vertex p1 is not in the cycle Gj we are constructing.

Since gw(p1) ≤ PW (C) < gh, we have w(p1) < h. This is a contradiction since we

have inserted the vertices with the smallest weight first.

This covering array is optimal since PW (C) is a lower bound for the size of a

covering array on C.

3.3.5 Bipartite Graphs

In this section, we give a construction for optimal mixed covering arrays on bipartite

graphs. A bipartite graph is one whose vertex set can be partitioned into two sets

A and B, so that each edge has one end in A and one end in B. Note that if the

two largest alphabets in the bipartite graph, denoted by gk and gk−1, are connected

by an edge, then we can build an optimal mixed covering array of size gkgk−1 via

a weight-restricted homomorphism to K2. The non-trivial case solved by the next

theorem is when PW (G) < gkgk−1.

Theorem 3.3.10. Let G be a weighted bipartite graph with k vertices. Then, there

exists a balanced CA(n, G,
∏k

i=1 wG(vi)) with n = PW (G). Moreover, this covering

array is optimal.

Proof. Let G be a bipartite graph with bipartitions A and B. Denote the vertices of

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 27

A by a1, a2, . . . , a|A| and their corresponding weights by wG(ai) where i ∈ {1, . . . , |A|}.
Similarly, denote the vertices of B by b1, b2, . . . , b|B| and their corresponding weights

by wG(bi) where i ∈ {1, . . . , |B|}. Set n = PW (G). We give a construction for a

CA(n, G,
∏k

i=1 wG(vi)) and call this covering array C.

For all vertices ai ∈ A, where i ∈ {1, . . . , |A|}, let xai
be the column in C cor-

responding to ai. Set the jth entry of xai
to be equivalent to j mod wG(ai). For a

vertex bi ∈ B, where i ∈ {1, . . . , |B|}, let xbi
be the column in C corresponding to bi.

Set the jth entry of xbi
to be

xbi
(j) =


⌊

jj
n

wG(bi)

k
⌋

if 0 ≤ j < wG(bi)
⌊

n
wG(bi)

⌋
,

j mod wG(bi) otherwise.

We will now show that for any two adjacent vertices a and b that the columns

xa and xb in C corresponding to a and b are qualitatively independent. Since G

is bipartite, we can assume that a ∈ A and b ∈ B. Further, wG(a)wG(b) ≤ n.

Thus
⌊

n
wG(b)

⌋
≥ wG(a). For s ∈ {0, 1, . . . , wG(b)− 1}, s occurs in positions j, . . . , j +⌊

n
wG(b)

⌋
− 1 of xb for some j ∈ [0, wG(bi)

⌊
n

wG(bi)

⌋
]. The entries of xa in positions

` ∈ {j, . . . , j +
⌊

n
wG(b)

⌋
− 1} are ` mod wG(a). Since

⌊
n

wG(b)

⌋
≥ wG(a), all symbols in

the alphabet corresponding to a will occur in these
⌊

n
wG(b)

⌋
positions. This means we

cover all possible pairs with s. Since we can do this for all s ∈ {0, 1, . . . , wG(b)− 1},
all pairs are covered between xa and xb.

This covering array is optimal, since PW (G) is a lower bound on the size of a

covering array on G.

3.3.6 Wheels

In this section, we determine the covering array numbers for wheels with uniform

alphabet sizes and give an upper bound in the mixed case. Let t ≥ 3. A t−wheel,

denoted by Wt, has t vertices forming a cycle in addition to one more vertex in the

centre that is adjacent to every other vertex in the cycle. A t−wheel is odd if t is odd

and even if t is even. It is easy to see that the χ(Wt) = 3, for t even and χ(Wt) = 4,

for t odd.

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 28

We first look at the most difficult special cases of g = 6 and g = 2. Meagher and

Stevens [31] found a CA(36, W5, 6
6) by computer, given next.

Example 3.3.11. The following is the transpose of CA(36, W5, 6
6)

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 5 2 1 3 4 4 2 5 3 1 0 1 4 3 2 0 5 3 0 1 4 5 2 2 1 0 5 4 3 5 3 4 0 2 1

0 2 1 4 3 5 2 5 1 4 0 3 2 0 5 3 1 4 1 2 5 3 0 4 0 1 5 3 4 2 5 0 1 4 2 3

0 2 4 1 3 5 4 3 0 2 1 5 1 4 0 2 5 3 2 5 1 0 3 4 2 3 4 1 5 0 2 5 1 0 3 4

0 4 1 5 2 3 2 5 3 0 1 4 4 3 5 2 0 1 5 1 2 4 3 0 1 0 4 3 5 2 3 2 0 1 4 5

Lemma 3.3.12. Let t ≥ 5, t odd. Then, there exists a graph homomorphism φ :

Wt → W5.

Proof. Label the middle vertex of W5, w0 and the vertices along the cycle w1, w2, . . . , w5.

Also, label the middle vertex of Wt, v0 and the vertices along the cycle v1, v2, . . . , vt.

Define φ as follows:

φ(vi) =


wi if 0 ≤ i ≤ 5,

w1 if i even and 6 ≤ i ≤ t,

w2 if i odd and 6 ≤ i ≤ t.

It is easy to verify that φ is indeed a graph homomorphism.

The next theorem solves the case of g = 6.

Theorem 3.3.13.

CAN(Wt, 6
t+1) =

{
37 if t = 3,

36 if t ≥ 4.

Proof. For t = 3, W3 = K4, so CAN(W3, 6
4) = CAN(4, 6) = 37 (see [33]). For

t ≥ 4 and even, χ(Wt) = 3, so there exists a graph homomorphism to K3. Then,

CAN(Wt, 6
t+1) ≤ CAN(K3, 6

3) = 36. By Lemma 3.3.12 there exists a φ : Wt → W5

graph homomorphism for t ≥ 5 and odd and by Example 3.3.11, CAN(W5, 6
6) = 36.

Thus, for t ≥ 5 and odd, CAN(Wt, 6
t+1) ≤ CAN(W5, 6

6) = 36.

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 29

Next, we analyze the case for g = 2.

Theorem 3.3.14.

CAN(Wt, 2
t+1) =

{
5 if t ≥ 3, t odd

4 if t ≥ 4, t even.

Proof. We have that QI(4, 2) is the even wheel, W2, which has χ(QI(4, 2)) = 3. We

can thus deduce using Theorem 2.3.6 and Corollary 2.3.8 that there does not exist a

CA(4, Wt, 2
t+1) for t ≥ 3 and t odd since χ(Wt) = 4 in this case and we can not have

a graph homomorphism from Wt to QI(4, 2). Hence, CAN(Wt, 2
t+1) > 4 for t ≥ 3

and t odd. For t = 3, W3 = K4, so CAN(W3, 2
4) = CAN(4, 2) = 5. There exists a

graph homomorphism φ : Wt → W3 for t ≥ 3 and odd. Hence, 4 < CAN(Wt, 2
t+1) ≤

CAN(W3, 2
4) = 5 for t ≥ 3 and t odd. For t ≥ 4 and t even, there exists a graph

homomorphism φ : Wt → K3. Therefore, CAN(Wt, 2
t+1) ≤ CAN(K3, 2

3) = 4 for

t ≥ 4 and t even.

Theorem 3.3.15. Let Wt be a weighted wheel with t+1 vertices with weights 1 < g1 ≤
g2 ≤ · · · ≤ gt+1. Then, CAN(Wt,

∏t+1
i=1 gi) ≤ gtgt+1 except for

∏t+1
i=1 gi /∈ {64}∪{2t+1 :

t ≥ 3, t odd}.

Proof. We will look at five different cases.

Case 1: Let us look at the largest four alphabets, gt+1gtgt−1gt−2 /∈ {24, 64}. We have

that if t is even then the wheel is 3−chromatic and if t is odd then it is 4−chromatic.

By parts 1 and 2 of Theorem 3.3.7, we get that the CAN(Wt,
∏t+1

i=1 gi) ≤ gtgt+1.

Case 2: Let us look at the case when
∏t+1

i=1 gi ∈ {6t+1 : t ≥ 4}. By Theorem 3.3.13,

we have that CAN(Wt, 6
t+1) = 36. Thus, CAN(Wt,

∏t+1
i=1 gi) ≤ gtgt+1.

Case: 3: Let us look at the case when
∏t+1

i=1 gi ∈ {2t+1 : t ≥ 4, t even}. By Theo-

rem 3.3.14, we have that CAN(Wt, 2
t+1) = 4 ≤ gtgt+1.

Case 4: We will now discuss the first exception where
∏t+1

i=1 gi ∈ {64}. The colouring

construction of the 3−wheel leads to a homomorphism to K4. It is a well-known fact

that CAN(K4, 6
4) = 37. The covering array number can not be 36 because there

exists no orthogonal latin squares of order 6. Thus, CAN(W3, 6
4) = 37.

Case 5: Finally, we will discuss that second exception where
∏t+1

i=1 gi ∈ {2t+1 : t ≥ 3, t

CHAPTER 3. MIXED COVERING ARRAYS ON GRAPHS 30

odd}. This is a direct result of Theorem 3.3.14. Thus, CAN(Wt, 2
t+1) = 5 for t ≥ 3

and t odd.

The next corollary summarizes the result for the wheel.

Corollary 3.3.16.

CAN(Wt, g
t+1) =

{
g2 + 1, if (g = 6, t = 3) or (g = 2, t odd),

g2, otherwise

3.3.7 Cubic Graphs

In this section, we give an upper bound on the covering array number for mixed

cubic graphs. Cubic graphs are connected graphs having the property that each node

has degree exactly three. We give a well-known colouring result for cubic graphs

and then the corollary that results immediately from that theorem combined with

Theorem 3.3.7.

Theorem 3.3.17. [23] Every cubic graph is vertex colourable with three colors, except

for the tetrahedron that requires four colors.

Corollary 3.3.18. Let G be a weighted cubic graph with k vertices with weights

1 < g1 ≤ g2 ≤ · · · ≤ gk. Then, CAN(G,
∏k

i=1 gi) ≤ gk−1gk except for the tetrahedron

when
∏4

i=1 gi ∈ {24} ∪ {64}. Moreover, CAN(G, 24) = 5 and CAN(G, 64) = 37.

Chapter 4

Tabu Search Methods for Covering

Arrays

In this section, we describe the general tabu search framework, as well as the point

and pair tabu algorithms that we implemented to find covering arrays. These are

implementations of methods by Stardom [40] and Nurmela [35], respectively. We

provide a detailed description of the algorithm and data structures, as well as their

asymptotic running times.

4.1 General Tabu Algorithm

The tabu search algorithm (TS), as originally proposed by Glover [21], is a meta-

heuristic method belonging to the class of local search techniques. Tabu search is an

algorithm that tries to find a certain combinatorial structure by the use of a heuris-

tic. A heuristic method performs a minor modification, which for the tabu search

we call a tabu move, of a given solution in order to obtain a different solution. The

actual modifications involves a search of the neighborhood space. A fitness function

is used to evaluate a solution and the objective is to explore the search space to find

as fit a solution as possible. Nurmela [35] and Stardom [40] have both successfully

implemented different variations of this algorithm in order to find new upper bounds

for covering arrays.

31

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 32

Next, we define some notation to properly give an overview of the tabu search

algorithm as described in [28]. Let X be a specified finite set, usually called the

universe. An element X ∈ X is said to be a feasible solution if certain constraints

are satisfied. If X is any object in the search space, then the set of states which can

be obtained by applying a particular move from a given set of moves to the state X

is called the neighborhood, N(X), of X. By repeating this process for a succession of

objects, a search algorithm is capable of examining a large number of states in the

search space. We consider a minimization problem. Therefore, a fittest solution is a

feasible solution X for which the cost, denoted C(X), is as small as possible.

The algorithm GenericTabuSearch gives the main steps for the general TS

algorithm. The heuristic of the TS algorithm is to replace X with an element Y ∈
N(X)\{X} such that Y is feasible, and C(Y) is minimum among all feasible elements

in N(X)\{X}. In this way, C(X) decreases throughout the search whenever possible,

but the TS allows us to escape from a local minimum by selecting a less fit neighbour.

However, this introduces the risk of cycling, for instance by going back to the local

minimum in the next step. To avoid cycling recent moves are declared “tabu”. The

tabu list is used to ensure that a move that is performed is not undone at the next

iterations in order to avoid cycling. Let us define the function change(Y,X) which

specifies the changes that are made to a feasible solution X in order to obtain a

feasible solution Y . Thus, after any move X → Y , change(Y,X) is designated as

forbidden and added to the tabu list. Changes that are in the tabu list remain

prohibited for some time, known as the tabu lifetime. Therefore, the heuristic will

only choose elements that are not in the tabu list. The algorithm will typically

run until either a minimum solution has been reached or a predetermined maximum

number of iterations has been exceeded or we can not move anymore because the

neighborhood is empty.

The TS algorithm has 2 input parameters, I and L. The parameter I is used to

specify the maximum number of iterations that are performed in the algorithm, while

L is the tabu lifetime. Optionally, a lower bound, lb, on C(.) could be provided, for

detecting optimality. In GenericTabuSearch, we chose to provide a lower bound

for the cost function as a third stopping criteria.

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 33

Algorithm: GenericTabuSearch(I, L, lb)
iter ← 1
Randomly select a solution X ∈ X .
Xbest ← X
if (C(X) == lb)

return (X, 0)
while (iter ≤ I){

N ← (N(X) \ {X}) \ {F : change(X, F) ∈ TabuList[d], iter − L ≤ d ≤ iter − 1}
for each (Y ∈ N)

if (Y is infeasible)
N ← N \ {Y }

if (N = ∅)
return (Xbest, iter)

find Y ∈ N such that C(Y) is minimum among elements in N
TabuList[iter] ← change(Y,X)
X ← Y
if (C(X) < C(Xbest)){

Xbest ← X
if (C(X) == lb)

return (X, iter)
}
iter++
}
return (Xbest, iter)

4.2 Data structures and basic procedures

In this section, we discuss the basic data structures that are common to both our

implementations of the tabu algorithms that we later call POT and PAT. A covering

array is represented by a k × n array X storing the transpose of the actual covering

array. We store the alphabet size for each row of X in a one-dimensional array,

denoted alphabet[r], where 0 ≤ r ≤ k − 1. So, X[r][c] ∈ {0, 1, . . . , alphabet[r] − 1}.
The cost of X is the number of uncovered pairs in X. When the cost becomes zero,

we have a covering array, since all the pairs are covered. We utilize a 4-dimensional

array, coverage, to effectively represent the pair coverage of our current array X. The

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 34

element coverage[i][j][a][b] specifies the number of times the pair (a, b) is covered at

rows (i, j) for some column in X.

For PAT, we also have a list data structure that keeps track of all the pairs of the

covering array that are still uncovered. The element (i, j, a, b) in this list indicates that

the pair (a, b) at rows (i, j) is not covered in any column of X. This list is implemented

as an array UncoveredList of size
(

k
2

)
× g2 that stores elements of the form (i, j, a, b)

in positions 0, 1, . . . , u− 1, where u is the current number of uncovered pairs. Along

with the uncovered list data structure, we also have a reverse index structure. The

entry indexOnUncoveredList[i][j][a][b] gives the position in UncoveredList where

(i, j, a, b) can be found or -1 if not uncovered. This data structure allows for addition

and removal of an uncovered pair to be done in constant time.

In POT and PAT algorithms, change(X, Y) corresponds to the unique position

(r, c) such that X[r][c] 6= Y [r][c]. For the TS algorithm, we need to consult the tabu

list at each step to ensure a change is not tabu. In order to efficiently use it, we have 2

data structures to represent the tabu list. The first is a linked list, tabuList, of size L,

storing the pairs (r, c) of forbidden positions in the array. At each iteration, one more

is added to the end of tabuList, and one is deleted from the beginning of tabuList

provided it has been in the list for L iterations. We also have a 2-dimensional array,

TABU [r][c], which is a k × n array. The element TABU [r][c] = 1, if (r, c) is in the

tabuList, and 0 otherwise. This data structure allows checking whether a move is

tabu or not to be done in constant time.

Next, we describe auxiliary procedures that use the data described in order to

implement basic operations used in PAT and POT. Procedure EvalChange(i, c, a)

evaluates the change in cost of changing a single element of the array X[i][c] ← a,

while EvalChangePair(i, j, c, a, b) evaluates the change in cost of changing the pair

X[i][c]← a and X[j][c]← b. Uncovering a pair in our array yields a plus one change

in the cost while covering a new pair yields a minus one change. Both procedures

have running time O(k).

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 35

Procedure 1: EvalChange(i, c, a)

global: k,X, coverage

effect = 0

for (int z = 0, z < k, z++)

if (z! = i)

if (coverage[z][i][X[z][c]][X[i][c]] == 1) ** Uncover a pair **

effect++

if (coverage[z][i][X[z][c]][a] == 0) ** Cover a new pair **

effect- -

return effect

Procedure 2: EvalChangePair(i, j, c, a, b)

global: k,X, coverage

effect = 0

for (int z = 0, z < k, z++)

if (z! = i) and (z! = j)

if (coverage[z][i][X[z][c]][X[i][c]] == 1) ** Uncover a pair in row i **

effect++

if (coverage[z][j][X[z][c]][X[j][c]] == 1) ** Uncover a pair in row j **

effect++

if (coverage[z][i][X[z][c]][a] == 0) ** Cover a new pair using row i **

effect- -

if (coverage[z][j][X[z][c]][b] == 0) ** Cover a new pair using row j **

effect- -

if (coverage[i][j][X[i][c]][X[j][c]] == 1) ** Uncover a pair in row i and j **

effect++

if (coverage[i][j][a][b] == 0) ** Cover a new pair using rows i and j **

effect- -

return effect

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 36

Procedure MakeChange(i, c, a) performs the change X[i][c] ← a, while proce-

dure MakeChangePair(i, j, c, a, b) performs the changes X[i][c]← a and X[j][c]←
b. They also update the corresponding data structures, such as coverage, UncoveredList

and indexOnUncoveredList. Updates on the last two structures are done via calls to

procedures addUncovered and removeUncovered; each of these procedures run

in constant time. MakeChange(i, c, a) and MakeChangePair(i, j, c, a, b) run in

O(k). It is easy to check this, since each operation on their main loop runs in constant

time.

Procedure 3: MakeChange(i, c, a)

global: k,X, coverage

for (int z = 0, z < k, z++){
if (z! = i){

if (coverage[z][i][X[z][c]][X[i][c]] == 1)

addUncovered(z, i, X[z][c], X[i][c])

coverage[z][i][X[z][c]][X[i][c]] - -

coverage[z][i][X[z][c]][a] ++

if (coverage[z][i][X[z][c]][a] == 1) {
removeUncovered(z, i, X[z][c], a)

}
}

}
X[i][c]← a

Procedure 4: MakeChangePair(i,j,c,a,b)

global: k,X, coverage

for(int z = 0, z < k, z++){
if (z! = i) and (z! = j){

if (coverage[z][i][X[z][c]][X[i][c]] == 1)

addUncovered(z, i, X[z][c], X[i][c])

if (coverage[z][j][X[z][c]][X[j][c]] == 1)

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 37

addUncovered(z, j, X[z][c], X[j][c])

coverage[z][i][X[z][c]][X[i][c]] - -

coverage[z][j][X[z][c]][X[j][c]] - -

coverage[z][i][X[z][c]][a] ++

coverage[z][j][X[z][c]][b] ++

if (coverage[z][i][X[z][c]][a] == 1)

removeUncovered(z, i, X[z][c], a)

if (coverage[z][j][X[z][c]][b] == 1)

removeUncovered(z, j, X[z][c], b)

}
}
if (coverage[i][j][X[i][c]][X[j][c]] == 1)

addUncovered(i, j,X[i][c], X[j][c])

coverage[i][j][X[i][c]][X[j][c]] - -

coverage[i][j][a][b] ++

if (coverage[i][j][a][b] == 1)

removeUncovered(i, j, a, b)

X[i][c]← a

X[j][c]← b

Procedure 5: addUncovered(x, y, a, b)

global: UncoveredList, indexOnUncoveredList, u

UncoveredList[u]← (x, y, a, b)

indexOnUncoveredList[x][y][a][b]← u

u + +

Procedure 6: removeUncovered(x, y, a, b)

global: UncoveredList, indexOnUncoveredList, u

p← indexOnUncoveredList[x][y][a][b]

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 38

UncoveredList[p]← UncoveredList[u− 1]

(x′, y′, a′, b′)← UncoveredList[p]

u−−
indexOnUncoveredList[x][y][a][b]← −1

indexOnUncoveredList[x′][y′][a′][b′]← p

The next two procedures perform the updates in the two tabu list data structures.

They add the move to tabuList and remove the move that has been there more than

L (tabu lifetime) updates. In the case that we make two simultaneous changes in the

array, we must add two moves to the tabu list and therefore we randomly pick which

move goes first to the list. Both UpdateTabu(r, c) and UpdateTabuPair(i, j, c)

run in O(1).

Procedure 7: UpdateTabu(r, c)

global: tabuList, TABU, L

Add (r, c) to the tail of tabuList

TABU [r][c]← 1

if (Length(tabuList) > L)

Remove (x, y) from the head of the tabuList

TABU [x][y]← 0

Procedure 8: UpdateTabuPair(i, j, c)

global: tabuList, TABU, L

Generate a random real value a ∈ [0, 1]

if (a < 0.5){
Add (i, c) to the tail of tabuList

Add (j, c) to the tail of tabuList

}
else {

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 39

Add (j, c) to the tail of tabuList

Add (i, c) to the tail of tabuList

}
if (Length(tabuList) > L)

Remove (w, x) from the head of tabuList

if (Length(tabuList) > L)

Remove (y,z) from the head of tabuList

TABU [i][c]← 1

TABU [j][c]← 1

TABU [w][x]← 0

TABU [y][z]← 0

4.3 Point Tabu Search (POT)

The point tabu search (POT) algorithm is a variation of the algorithm proposed by

Stardom [40]. We call it point tabu search because the basic move is to switch a point

in the array. Stardom’s algorithm implements the tabu search algorithm as described

in Section 4.1 with the neighborhood of a particular array being all possible arrays

having one entry different. In effect, Stardom’s algorithm exhaustively searches the

neighborhood for the fittest solution, ensuring that the state chosen at each step is the

best neighboring option possible. The algorithm terminates when it finds a covering

array of cost zero or reaches the maximum number of iterations.

The POT algorithm (see pseudocode below) substitutes exhaustive neighborhood

search by inspecting a random sample of size M of the neighborhood. In addition,

our data structures and auxiliary procedures provide some optimization of Stardom’s

original implementation. POT algorithm’s input parameters are the tabu lifetime,

L, the maximum iteration, I, and the neighborhood size, M . At every iteration, we

generate a list of M possible neighbors and pick the one with the lowest cost. If there

are ties in the lowest cost, we break them randomly. The algorithm returns Xbest, a

covering array, or an array of smallest cost found.

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 40

Algorithm: POT(L, I, M)

globals: TABU

precondition: M ≤ (n× k)− L

iter ← 1

Randomly fill array X of size k × n

Xbest ← X

Costbest ← Cost(X)

if (Costbest == 0)

return (X, 0, 0)

while (iter ≤ I) {
BEGIN: Get Point Tabu’s Best in Neighborhood

B ← ∅
m← 1

effectbest ←∞
while (m ≤M) {

Generate a random pair (r, c)

if (TABU [r][c] ==0) {
Generate a random value a from {0, . . . , g − 1}\{X[r][c]}
m← m + 1

effect = EvalChange(r, c, a)

if (effect < effectbest) {
B ← {(r, c, a)}
effectbest ← effect

}
else if (effect == effectbest)

B ← B ∪ {(r, c, a)}
}

}
END: Get Point Tabu’s Best in Neighborhood

Cost← Cost + effectbest

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 41

Pick (r, c, a) randomly from B

MakeChange(r, c, a)

UpdateTabu(r, c)

if (Cost < Costbest)

Xbest ← X

Costbest ← Cost

if (Cost == 0)

return (Xbest, 0, iter)

iter ← iter + 1

}
return (Xbest, Costbest, iter − 1)

We now analyze the running time for a single POT Tabu move. Let us look inside

the while loop where we generate a sample of M possible candidates. Generating a

random pair is done in O(1) and checking if the pair is tabu is also done in O(1).

Generating the value that will be placed at position (r, c) of our array has running time

O(1). We mentioned earlier that the evaluation of the change in cost using procedure

EvalChange(r, c, a) has running time O(k). Finally, checking if the effect of change

in the cost is the best so far is done in O(1). Therefore, the total running time for

generating a neighbor inside the second while loop is O(k). However, since we require

that we generate exactly M neighbors, this process typically requires more than M

iterations since we are keeping only the neighbors that are not tabu and trials are done

at random. Indeed, since the probability of selecting a non-tabu pair (r, c) is kn−L
kn

, the

expected number of iterations until M non-tabu pairs are generated is (kn−L
kn

)−1×M .

Since L is a constant, the expected number of iterations for the second while loop is

O(M). Therefore, the expected total running time for the first while loop is O(Mk).

After the while loop, the selection of best POT tabu move is done at random, which

takes O(1). Procedures MakeChange(r, c, a) and UpdateTabu(r, c) have running

times O(k) and O(1), respectively. Finally, updating the cost is done in O(1). Overall,

the average running time for a POT move is O(Mk). In our implementation, we have

chosen M = cnk(g − 1), for some constant c ≤ 1, a proportion c of the total number

of neighbors. In this case, the average running time for a POT move is O(nk2g).

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 42

4.4 Pair Tabu Search (PAT)

The pair tabu search (PAT) algorithm is our implementation of the algorithm pro-

posed by Nurmela [35]. We call it pair tabu search because the basic move aims

at covering a new pair in array X. Nurmela’s algorithm and PAT (see pseudocode

below) attempt to find a covering array, CA(n, k, g), by selecting an uncovered pair

(i, j, a, b) at random from uncovered list at each iteration and trying to cover it. The

neighborhood consists of all arrays that cover that particular pair, and is obtained

by switching one or two array values. The algorithm gives priority to the neighbors

that only require a single change such as either changing X[i][c] = a or X[j][d] = b

for some columns c, d in the array. If a one element change is not possible, we con-

sider the neighbors that require a change in two elements resulting in X[i][c] = a

and X[j][c] = b for some column c. The change in cost corresponding to each move

is calculated and the move leading to the minimum cost is selected, provided that

the move is not tabu. In the case when we have ties, we break them randomly. The

algorithm terminates when the cost is zero, i.e. all pairs are now covered, or when

it reaches the maximum number of iterations, thus returning the best array it has

found so far. The PAT algorithm’s input parameters are the tabu lifetime, L, and

the maximum iteration, I.

Algorithm: PAT(L, I)

global: TABU , UncoveredList, u

iter ← 1

Randomly fill array X of size k × n

Xbest ← X

Costbest ← Cost(X)

if (Costbest == 0)

return (X, 0, 0)

while (iter ≤ I){
BEGIN: Get Pair Tabu’s Best in Neighborhood

B ← ∅

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 43

success ← false

while(! success) {
effectbest ←∞
Select p randomly from {0, 1, . . . , u− 1}
(i, j, a, b)← UncoveredList[p]

for (int z = 0, z < n, z++){
if (X[i][z] == a) and (TABU[j][z] == 0)

effect ← EvalChange(j, z, b)

if (effect < effectbest) {
B ← {(j, z, b)}
effectbest ← effect

}
else if (effect == effectbest)

B ← B ∪ {(j, z, b)}
if (X[j][z] == b) AND (TABU[i][z] == 0)

effect ← EvalChange(i, z, a)

if (effect < effectbest) {
B ← {(i, z, a)}
effectbest ← effect

}
else if (effect == effectbest)

B ← B ∪ {(i, z, a)}
}
if (B 6= ∅) {

Cost← Cost+effectbest

Pick (r, c, a) randomly from B

MakeChange(r, c, a)

success ← true

UpdateTabu(r, c)

}
else {

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 44

effectbest ←∞
for (int z = 0,z < n, z++) {

if((TABU[i][z] == 0) AND (TABU[j][z] == 0))

effect ← EvalChangePair(i, j, z, a, b)

if (effect < effectbest){
B ← {(i, j, z, a, b)}
effectbest ← effect

}
else if (effect == effectbest)

B ← B ∪ {(i, j, z, a, b)}
}
if (B 6= ∅) {

Cost← Cost+effectbest

Pick (i, j, c, a, b) randomly from B

MakeChangePair(i, j, c, a, b)

success ← true

UpdateTabuPair(i, j, c)

}
}

}
END: Get Pair Tabu’s Best in Neighborhood

if (Cost < Costbest) {
Xbest ← X

Costbest ← Cost

if (Cost == 0)

return (Xbest, 0, iter)

}
iter ← iter + 1

}
return (Xbest, Costbest, iter − 1)

CHAPTER 4. TABU SEARCH METHODS FOR COVERING ARRAYS 45

We now analyze the running time for a single PAT tabu move. Let us look at the

piece of code inside the second while loop. The running time for checking whether

the algorithm can perform the move with a single element change is O(nk). This is

because we call procedure EvalChange twice and it has a running time of O(k) but

we repeat this for the n columns in X. If a single move is possible then making the

change is done in O(k) due to calling procedure MakeChange. If a single element

change is not possible, then we look at the possibility of making two changes and

the running time for this process is O(nk) since we call EvalChangePair for each

of the n columns in X. Now, in order to perform the change, the running time is

O(k) since we are calling MakeChangePair. Therefore, one iteration of the second

while loop takes O(nk). We now analyze the expected number of iterations of the

second while loop. Variable success is false at the end of the while loop if each one

of the n columns of X has a tabu position in row i or j. An upper bound for the

probability of failure is
(

L
nk

)n
, so the expected number of iterations until a success

is at most

(
1

1−(L
nk)

n

)
. Since L is a constant, the expected number of iterations in

the second while loop is O(1). So, the second while loop can be executed with an

expected total time of O(nk). After the second while loop, the cost updates take

O(1) steps. Therefore, the expected cost of a PAT tabu move is O(nk).

Chapter 5

Experiments and Results for POT

and PAT

In this chapter, we do an experimental comparison of POT and PAT tabu search

algorithms described in the previous chapter. The objective of the experiments is not

only to know which algorithm’s performance prevails, but also to discover which set of

input parameters optimizes the effectiveness of our code and how our implementation

of POT and PAT compare with other algorithms from literature. Furthermore, we

are interested in producing improvements on known upper bounds.

5.1 Experiment Description

In our experiments, both POT and PAT build fixed and mixed covering arrays. They

are implemented in C and run on Solaris 5.9 (also known as Solaris 9) using a 900

MHz UltraSPARC III processors with 32 Gbytes of memory. The implementation

that we report on here uses a linked list for the data structure that keeps track

of uncovered pairs. This causes less efficient updates than the ones described in

Section 4.2. However, as we will see in the conclusion this only affects the specific

timing reports and not the relative comparison between POT and PAT.

Our experiment consists of three steps. The first step consists of a tune up of

the input parameters for both POT and PAT as well as a study of their behaviour

46

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 47

individually and against one another. In order to do this, we design a test bed of

30 test cases upon which we do our analysis for different parameter variations of our

algorithms. For the second step, we want to be able to compare the performance of

our algorithms with previous algorithms implemented for finding covering arrays. In

order to this, we require a test bed for which results have been reported in the past

for different algorithms. Cohen [9], in her PhD thesis, has tables of data collected

from a variety of algorithms which were implemented by various people including

herself comparing the best upper bounds found for both fixed and mixed covering

arrays. The algorithms implement a wide variety of greedy heuristics, hill climbing,

simulated annealing and previous implementations of tabu search. We choose these

tables to be used in order to compare POT and PAT with other approaches. We also

compare our results with the best known bounds reported in tables by Colbourn [10];

with the permission of the author, we include these tables in the Appendix. In the

final step, we pursue new upper bounds of two types. First, we check to see if our

tabu implementations could improve on the current state-of-the-art bounds reported

by Colbourn [10]. We look at Colbourn’s tables and target those regions where the

gaps are large. Those regions make ideal candidates for improvement on the bounds.

Second, we attempt to find new upper bounds for small mixed covering arrays with

parameters close to those of an orthogonal array.

5.2 Parameter tune up and algorithm behaviour

study

In this section, we run several combinations of parameters for POT and PAT algo-

rithms on the test bed given in Table 1. We select this test bed for the parameter

tune up, in order to cover a good variation in g and k values. The first entry in each

row of the table represents the largest orthogonal array known for the corresponding

g, k values, while the last entry in each row is substantially larger than the orthogonal

array size. This test bed is still too large for the large number of possible combina-

tions of input parameters. So, we choose a subset of 5 tests to do a preliminary, more

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 48

extensive tune up. We call this subset of the test bed, marked in bold in Table 1,

the reduced test bed. We chose one test for each of the smallest g’s that had a “rea-

sonable” size. The values 8 ≤ g ≤ 10 where excluded from the reduced test bed as

preliminary tests showed they were very hard. The input parameters for both POT

and PAT are the tabu lifetime L and the maximum number of iterations I, as well

as the neighborhood size M , for POT. To effectively determine the optimal choices

for L and I, L is initially fixed while I is varied, and then the reverse experiment is

performed. In the tune up experiments, we fix the upper bound for the size of the

desired covering array and the algorithms are run for a fixed number of times, R,

with different random seeds. The number of covering arrays found, the total time

and the total number of iterations the algorithms spend are recorded and tabulated

in the following sections. Once we decide on the best values for L and I, we run

the algorithms on the entire test bed and vary the neighborhood size for POT. In

Table 2, we give a legend for the headings of the tables used in the next sections.

We mark in bold face the winning rows in each table to facilitate the analysis of the

data. The criteria by which we decide that a particular row is a winner is described in

each section. We also use the short hand form 50K, 100K, 200K and 500K to denote

50000, 100000, 200000 and 500000 iterations, respectively.

Table 1: Test bed for tune up with reduced test bed in bold

g = 3 CA(9, 4, 3), CA(11, 5, 3), CA(14, 10, 3), CA(15,20,3), CA(20, 43, 3)
g = 4 CA(16, 5, 4), CA(19, 6, 4), CA(24, 10, 4),CA(27,14,4)
g = 5 CA(25, 6, 5), CA(29, 7, 5), CA(33,8,5), CA(44, 16, 5)
g = 6 CA(36, 3, 6), CA(37, 4, 6), CA(55, 11, 6),CA(63,16,6)
g = 7 CA(49, 8, 7), CA(61, 10, 7), CA(85,16,7), CA(89, 18, 7)
g = 8 CA(64, 9, 8), CA(78, 11, 8), CA(111, 17, 8)
g = 9 CA(81, 10, 9), CA(105, 13, 9), CA(129, 16, 9)
g = 10 CA(100, 4, 10), CA(101, 6, 10), CA(136, 15, 10)

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 49

Table 2: Legend for the tables that follow

Symbol Definition
CA(n, k, g) Covering array parameters
I Maximum number of iterations allowed
sM Neighborhood size setting for POT
L Tabu lifetime
R Total number of replications
No. CA Number of runs in which a CA was found
% CA Percentage of runs in which a CA was found
Avg. Iter/run Total number of iterations used / R
Avg. Time/run(sec) Total time used / R

5.2.1 Parameter tune up for POT

In this section, we tune up POT’s input parameter values. The input parameter

values are the tabu lifetime (L), the maximum number of iterations (I) and the

neighborhood size (M). The maximum number of iterations is a stopping criteria to

ensure that the tabu search does not look for a covering array forever, especially if

one does not exist for that particular upper bound. When running the algorithm, we

specify the size of the covering array we want to find and record the data for covering

array success, time and iterations spent.

POT Maximum Number of Iterations Tune Up

Based on Table 3, we study the trade off between the maximum number of iterations

and the number of replications on the reduced test bed. This was done to answer

questions such as “Is it better to run the algorithm for many iterations with fewer

replications?” or “ Is it better to run the algorithm for fewer iterations with more

replications?” So, we ran POT with I = 50K, 100K and 200K and with R = 40, 20

and 10, respectively. In this case the tabu lifetime was fixed to 5. In Table 3, we

bold faced the entries that are the winners in our opinion. We decide that an entry

is a winner if it yields the highest percentage of covering arrays found. If we have

ties in the number of covering arrays found then we looked at the average time per

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 50

Table 3: POT Maximum number of iterations tune up with fixed L = 5

CA(n,k,g) I R No. CA % CA Avg. Iter/run. Avg. Time/run(sec)
CA(15,20,3) 50K 40 23 58 35207 114
CA(15,20,3) 100K 20 15 75 49908 161
CA(15,20,3) 200K 10 9 90 55015 176
CA(27,14,4) 50K 40 10 25 44367 180
CA(27,14,4) 100K 20 10 50 69719 283
CA(27,14,4) 200K 10 5 50 119804 487
CA(33,8,5) 50K 40 17 43 37043 91
CA(33,8,5) 100K 20 13 65 60745 148
CA(33,8,5) 200K 10 8 80 74462 182
CA(63,16,6) 50K 40 36 90 24207 430
CA(63,16,6) 100K 20 20 100 27756 493
CA(63,16,6) 200K 10 10 100 24691 438
CA(85,16,7) 50K 40 13 33 44786 1265
CA(85,16,7) 100K 20 15 75 62563 1789
CA(85,16,7) 200K 10 10 100 77342 2211

run and chose the entry with the smallest time. The data collected below suggests

that running POT with the largest number of iterations and fewer replications yields

a higher rate of success in terms of finding more covering arrays. We could have

continued the analysis with other values by increasing I and reducing R further but

we stopped since I = 200K and R = 10 was adequate in achieving a high percentage

of success especially for the harder problems.

POT Tabu Lifetime Tune Up

In Table 4, we fix I = 200K and study the effect of varying the tabu lifetime on the

reduced test bed. We vary L = 3, 4, 5, 6, 7, use R = 10 and collect the associated data

for the reduced test bed. In the table, we mark in bold face the entries that are the

winners according to the criteria described before: a winner is an entry with largest

rate of success, using time for breaking ties. The winners are in order: L = 4, 3, 3, 5, 7.

Since no value of L stands out as an overall winner, we choose the one that gives 100%

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 51

success for most problems in the test bed. In this case, we observe that L = 4 gives

100% success for all the problems, although not always in the best time. For instance,

finding 100% success for CA(33, 8, 5) with L = 3 is faster than with L = 4, but L = 3

does not give us 100% success for finding a CA(85, 16, 7). Therefore, we use L = 4

for the rest of POT experiments.

POT Neighborhood Size Tune Up

After settling for a tabu lifetime value of L=4 and the maximum number of iterations

of I=200K, we explore variations in the neighborhood size (M) using the whole test

bed in Table 1. The neighborhood of a particular array X in POT consists of all

the possible arrays having one entry different when compared with X. Since we are

only looking at a random sample of these neighbors, the parameter M in POT was

introduced to specify the size of this sample. We decided to compare the strategies of

using fixed percentages of the maximum neighborhood size M = nk(g− 1). We used

M = M, 0.75M and 0.5M , which we denote as settings sM = 1,2,3, respectively, in

the tables.

In Tables 5 and 6, we once again bold face the row with winning M parameter

value, based on the highest percentage of success, with best time used for breaking

ties. We have entries that were found very quickly and are denoted by time 0 since

they only took milliseconds; in that case, we compare the average number of iterations

per run and pick the smallest value. The algorithm was not very successful at finding

covering arrays when g = 8, 9, 10 from our test bed and that is why no results are

being reported.

We notice from the tables that there is no one M setting that works for all test

cases, but rather it is dependent on the input parameters. When g = 3 and k ≤ 20,

having a larger neighborhood search space is more beneficial, while when g = 3 and

k = 43 having sM = 3 is better. For g = 4, sM = 1 is the winner for 3 out of

4 of the cases but sM = 2 seems a to be a good compromise choice for the last 2

cases. For g = 5, the best choice is sM = 2 for smaller k and sM = 3 for larger k.

Finally, it appears that sM = 3 works well for g = 6, 7. Therefore, when choosing

the neighborhood size, one has to examine the input parameters in order to try to

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 52

Table 4: POT Tabu Lifetime tune up

CA(n,k,g) I R L No. CA % CA Avg.Iter/run. Avg Time/run(sec)
CA(15,20,3) 200K 10 3 8 80 75162 242
CA(15,20,3) 200K 10 4 10 100 32174 103
CA(15,20,3) 200K 10 5 9 90 55015 176
CA(15,20,3) 200K 10 6 10 100 69494 224
CA(15,20,3) 200K 10 7 8 80 72474 234
CA(27,14,4) 200K 10 3 10 100 25559 103
CA(27,14,4) 200K 10 4 10 100 58241 236
CA(27,14,4) 200K 10 5 5 50 119804 483
CA(27,14,4) 200K 10 6 3 30 146854 597
CA(27,14,4) 200K 10 7 2 20 179523 730
CA(33,8,5) 200K 10 3 10 100 20430 49
CA(33,8,5) 200K 10 4 10 100 33198 80
CA(33,8,5) 200K 10 5 8 80 74462 180
CA(33,8,5) 200K 10 6 4 40 137165 335
CA(33,8,5) 200K 10 7 2 20 176577 431
CA(63,16,6) 200K 10 3 10 100 34620 613
CA(63,16,6) 200K 10 4 10 100 29359 520
CA(63,16,6) 200K 10 5 10 100 24691 438
CA(63,16,6) 200K 10 6 10 100 25122 445
CA(63,16,6) 200K 10 7 10 100 28046 497
CA(85,16,7) 200K 10 3 4 40 176563 5026
CA(85,16,7) 200K 10 4 10 100 92468 2637
CA(85,16,7) 200K 10 5 10 100 77342 2211
CA(85,16,7) 200K 10 6 10 100 62616 1788
CA(85,16,7) 200K 10 7 10 100 55248 1579

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 53

efficiently pick an appropriate value of M using the above classification as a guideline.

5.2.2 Parameter tune up for PAT

In this section, we tune up PAT’s input parameter values. The input parameter values

are the tabu lifetime (L) and the maximum number of iterations (I). When running

the algorithm, we specify the size of the covering array we want to find and record

the data for covering array success, time and iterations spent.

PAT Maximum number of Iterations and Tabu Lifetime Tune Up

In Table 7 and 8, we study the effect of varying the tabu lifetime and maximum

number of iterations simultaneously on the reduced test bed. So, we choose five

values for the tabu lifetime, L = 1, 2, 3, 4, 5 and two values for the maximum number

of iterations, I= 200K and 500K. We display in bold face the row with winning input

parameter values based on the one that yields the highest percentage of success. If

we have ties, then we break them by picking the entry that requires the least amount

of time per run. By looking at the data in Tables 7 and 8, one can see that running

PAT for the longer number of iterations, I = 500K, yields more covering arrays.

For example, for L = 2, finding a CA(27, 14, 4) using I = 500K instead of I =

200K increases the percentage of success from 70% to 100%. According to the data,

tabu lifetime of 2 achieves the most success especially for the harder problems. For

instance, we see that an increase in L from 2 to 3, reduces the percentage of success

from 100% to 20% when I =200K and from 100% to 40% when I = 500K for a

CA(33, 8, 5). PAT appears to be very sensitive to the tabu life time parameter.

PAT Tabu Lifetime Tune Up using the full test bed

In this section, we continue to run PAT on the entire test bed cases with I=500K

but with L=2,3,4, just to verify if the best choice for this data remains to be L = 2.

In Tables 9 and 10, you can see the test bed results. Here, we display in bold face

the rows that correspond to the tabu lifetime value that yields the highest percentage

of success. In the case when we have ties, we break them by picking the row that

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 54

Table 5: POT Test Bed with I=200K & L=4 & R=10 (Part I)

CA(n,k,g) sM No. CA % CA Avg.Iter/run. Avg Time/run(sec)
CA(9,4,3) 1 10 100 12 0
CA(9,4,3) 2 10 100 17 0
CA(9,4,3) 3 10 100 22 0
CA(11,5,3) 1 10 100 22 0
CA(11,5,3) 2 10 100 24 0
CA(11,5,3) 3 10 100 22 0
CA(14,10,3) 1 10 100 29032 26
CA(14,10,3) 2 8 80 93538 65
CA(14,10,3) 3 6 60 130359 62
CA(15,20,3) 1 10 100 32175 103
CA(15,20,3) 2 8 80 73447 179
CA(15,20,3) 3 8 80 99293 166
CA(20,43,3) 1 4 40 176625 3373
CA(20,43,3) 2 7 70 127089 1835
CA(20,43,3) 3 9 90 114166 1127

CA(16,5,4) 1 10 100 51 0
CA(16,5,4) 2 10 100 50 0
CA(16,5,4) 3 10 100 58 0
CA(19,6,4) 1 10 100 192 0
CA(19,6,4) 2 10 100 697 0
CA(19,6,4) 3 10 100 968 0
CA(24,10,4) 1 3 30 166272 341
CA(24,10,4) 2 7 70 156831 243
CA(24,10,4) 3 1 10 194275 204
CA(27,14,4) 1 10 100 58241 236
CA(27,14,4) 2 9 90 69706 213
CA(27,14,4) 3 7 70 134588 280

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 55

Table 6: POT Test Bed with I=200K & L=4 & R=10 (Part II)

CA(n,k,g) sM No. CA % CA Avg.Iter/run. Avg Time/run(sec)
CA(25,6,5) 1 10 100 351 0
CA(25,6,5) 2 10 100 213 0
CA(25,6,5) 3 10 100 163 0
CA(29,7,5) 1 10 100 1875 3
CA(29,7,5) 2 10 100 1804 2
CA(29,7,5) 3 10 100 10751 9
CA(33,8,5) 1 10 100 33198 80
CA(33,8,5) 2 10 100 36562 67
CA(33,8,5) 3 8 80 77388 96
CA(44,16,5) 1 10 100 16978 175
CA(44,16,5) 2 10 100 16713 130
CA(44,16,5) 3 10 100 14909 78

CA(36,3,6) 1 10 100 61 0
CA(36,3,6) 2 10 100 56 0
CA(36,3,6) 3 10 100 67 0
CA(37,4,6) 1 10 100 904 1
CA(37,4,6) 2 10 100 1176 1
CA(37,4,6) 3 10 100 2248 1
CA(55,11,6) 1 10 100 26113 213
CA(55,11,6) 2 10 100 23006 141
CA(55,11,6) 3 10 100 33041 137
CA(63,16,6) 1 10 100 29359 520
CA(63,16,6) 2 10 100 47675 636
CA(63,16,6) 3 10 100 24635 221

CA(49,8,7) 1 0 0 200000 1003
CA(49,8,7) 2 0 0 200000 757
CA(49,8,7) 3 0 0 200000 512
CA(61,10,7) 1 0 0 200000 1802
CA(61,10,7) 2 0 0 200000 1358
CA(61,10,7) 3 0 0 200000 915
CA(85,16,7) 1 10 100 9246 2636
CA(85,16,7) 2 10 100 10282 2707
CA(85,16,7) 3 10 100 9279 1339
CA(89,18,7) 1 9 90 93401 3382
CA(89,18,7) 2 10 100 59185 1613
CA(89,18,7) 3 10 100 62642 1146

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 56

Table 7: PAT Maximum Iterations & Tabu Lifetime Tune Up (Part I)

CA(n,k,g) I R L No. CA % CA Avg. Iter/R Avg. Time/R
CA(15,20,3) 200K 10 1 6 60 125372 50
CA(15,20,3) 200K 10 2 8 80 121979 48
CA(15,20,3) 200K 10 3 3 30 157582 63
CA(15,20,3) 200K 10 4 0 0 200000 80
CA(15,20,3) 200K 10 5 0 0 200000 80
CA(15,20,3) 500K 10 1 6 60 245372 97
CA(15,20,3) 500K 10 2 10 100 144139 57
CA(15,20,3) 500K 10 3 5 50 337376 135
CA(15,20,3) 500K 10 4 0 0 500000 200
CA(15,20,3) 500K 10 5 0 0 500000 200

CA(27,14,4) 200K 10 1 0 0 200000 65
CA(27,14,4) 200K 10 2 7 70 118206 37
CA(27,14,4) 200K 10 3 3 30 169687 54
CA(27,14,4) 200K 10 4 2 20 179123 56
CA(27,14,4) 200K 10 5 0 0 200000 63
CA(27,14,4) 500K 10 1 0 0 500000 162
CA(27,14,4) 500K 10 2 10 100 176610 55
CA(27,14,4) 500K 10 3 7 70 344087 109
CA(27,14,4) 500K 10 4 2 20 419122 132
CA(27,14,4) 500K 10 5 0 0 500000 158

CA(33,8,5) 200K 10 1 0 0 200000 31
CA(33,8,5) 200K 10 2 10 100 54978 8
CA(33,8,5) 200K 10 3 2 20 167953 25
CA(33,8,5) 200K 10 4 0 0 200000 30
CA(33,8,5) 200K 10 5 0 0 500000 30
CA(33,8,5) 500K 10 1 0 0 500000 78
CA(33,8,5) 500K 10 2 10 100 54978 8
CA(33,8,5) 500K 10 3 4 40 379386 57
CA(33,8,5) 500K 10 4 4 40 446918 67
CA(33,8,5) 500K 10 5 2 20 466485 240

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 57

Table 8: PAT Maximum Iterations & Tabu Lifetime Tune Up (Part II)

CA(n,k,g) I R L No. CA % CA Avg. Iter/R Avg. Time/R
CA(63,16,6) 200K 10 1 0 0 200000 163
CA(63,16,6) 200K 10 2 10 100 50763 40
CA(63,16,6) 200K 10 3 10 100 62670 50
CA(63,16,6) 200K 10 4 4 40 156611 125
CA(63,16,6) 200K 10 5 0 0 200000 160
CA(63,16,6) 500K 10 1 0 0 500000 407
CA(63,16,6) 500K 10 2 10 100 50763 40
CA(63,16,6) 500K 10 3 10 100 62670 50
CA(63,16,6) 500K 10 4 7 70 265957 213
CA(63,16,6) 500K 10 5 2 20 484272 388

CA(85,16,7) 200K 10 1 0 0 200000 221
CA(85,16,7) 200K 10 2 7 70 122074 133
CA(85,16,7) 200K 10 3 6 60 134862 146
CA(85,16,7) 200K 10 4 3 30 162083 178
CA(85,16,7) 200K 10 5 1 10 183282 199
CA(85,16,7) 500K 10 1 0 0 500000 555
CA(85,16,7) 500K 10 2 9 90 181345 198
CA(85,16,7) 500K 10 3 9 90 229159 248
CA(85,16,7) 500K 10 4 4 40 354749 385
CA(85,16,7) 500K 10 5 1 10 453282 491

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 58

represents the least amount of time. If it is not clear from the average time per

run which is faster, since some entries only take a few milliseconds, we compare the

average number of iterations per run. For example, we have a tie in percentage of

success for a CA(29, 7, 5) with L = 2 and L = 3. If we look at the time, we also have

a tie of 1 second. In this case, we go ahead and compare the average iterations per

run and deduce that L = 2 is better since it requires fewer number of iterations per

run on average. Indeed, L=2 is the best choice for the PAT algorithm on our test

bed according to the winners from Tables 9 and 10 for most cases. Once again, as

was the case with POT, PAT was not very successful at finding covering arrays when

g = 8, 9, 10, the harder problems from our test bed and that is why no results are

reported.

5.2.3 Tabu Search Behaviour on the Test Bed

In this section, we study the behaviour of POT versus PAT in terms of time and

percentage of success. In Table 11, we record the best results for the entire test bed

for POT and PAT. When we have ties, we choose the first entry that appears in the

table. We omit the entries for g ≥ 8 since both POT and PAT are not successful

at obtaining those cases in our test bed. The parameters for PAT are I = 500K

and L =2, while for POT, we have I = 200K, L = 4 and M varies according to

the settings sM in Table 11. We record the percentage of success of finding covering

arrays with R = 10 and the average time per run. We omit the average iterations per

run since in this case, POT and PAT are different implementations and comparing

iterations counts is not meaningful. We also add a column that specifies the ratio of

POT’s average time per run to PAT’s average time per run to analyze which algorithm

is faster. From the data in Table 11, we see that POT and PAT have comparable

percentages of success for finding covering arrays but it is clear from the time ratio

that PAT is much faster than POT. For instance, both POT and PAT are 100%

successful at finding a CA(89, 18, 7) but in this case PAT is about 19 times faster

than POT. We also observe that they tend to behave similarly with respect to an

increase in k. As, k increases for a fixed g, both algorithms experience an increase in

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 59

Table 9: PAT Test Bed with I=500K & R=10 (Part I)

CA(n,k,g) L No. CA % CA Avg.Iter/run. Avg Time/run(sec)
CA(9,4,3) 2 10 100 13 0
CA(9,4,3) 3 10 100 13 0
CA(9,4,3) 4 10 100 14 0
CA(11,5,3) 2 10 100 24 0
CA(11,5,3) 3 10 100 24 0
CA(11,5,3) 4 10 100 24 0
CA(14,10,3) 2 9 90 71099 7
CA(14,10,3) 3 10 100 72118 7
CA(14,10,3) 4 10 100 120113 12
CA(15,20,3) 2 10 100 144139 57
CA(15,20,3) 3 5 50 337376 135
CA(15,20,3) 4 0 0 500000 200
CA(20,43,3) 2 6 60 333678 622
CA(20,43,3) 3 0 0 500000 934
CA(20,43,3) 4 0 0 500000 925

CA(16,5,4) 2 10 100 66 0
CA(16,5,4) 3 10 100 68 0
CA(16,5,4) 4 10 100 68 0
CA(19,6,4) 2 10 100 219 0
CA(19,6,4) 3 10 100 540 0
CA(19,6,4) 4 10 100 669 0
CA(24,10,4) 2 10 100 118995 19
CA(24,10,4) 3 4 40 408933 67
CA(24,10,4) 4 0 0 500000 82
CA(27,14,4) 2 10 100 176610 55
CA(27,14,4) 3 7 70 344087 109
CA(27,14,4) 4 2 20 419122 132

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 60

Table 10: PAT Test Bed with I=500K & R=10 (Part II)

CA(n,k,g) L No. CA % CA Avg.Iter/run. Avg Time/run(sec)
CA(25,6,5) 2 10 100 396 0
CA(25,6,5) 3 10 100 407 0
CA(25,6,5) 4 10 100 501 0
CA(29,7,5) 2 10 100 7312 1
CA(29,7,5) 3 10 100 11275 1
CA(29,7,5) 4 10 100 16820 2
CA(33,8,5) 2 10 100 549778 8
CA(33,8,5) 3 4 40 379386 57
CA(33,8,5) 4 4 40 446918 67
CA(44,16,5) 2 10 100 14157 8
CA(44,16,5) 3 10 100 41096 24
CA(44,16,5) 4 6 60 284528 168

CA(36,3,6) 2 10 100 49 0
CA(36,3,6) 3 10 100 46 0
CA(36,3,6) 4 10 100 51 0
CA(37,4,6) 2 8 80 100614 5
CA(37,4,6) 3 9 90 51022 2
CA(37,4,6) 4 10 100 841 0
CA(55,11,6) 2 10 100 43176 16
CA(55,11,6) 3 10 100 123360 46
CA(55,11,6) 4 7 70 361801 137
CA(63,16,6) 2 10 100 50763 40
CA(63,16,6) 3 10 100 62670 50
CA(63,16,6) 4 7 70 265957 213

CA(49,8,7) 2 0 0 500000 153
CA(49,8,7) 3 0 0 500000 153
CA(49,8,7) 4 0 0 500000 153
CA(61,10,7) 2 0 0 500000 220
CA(61,10,7) 3 0 0 500000 220
CA(61,10,7) 4 0 0 500000 221
CA(85,16,7) 2 9 90 181345 198
CA(85,16,7) 3 9 90 229159 248
CA(85,16,7) 4 4 40 354749 385
CA(89,18,7) 2 10 100 44761 61
CA(89,18,7) 3 10 100 65864 89
CA(89,18,7) 4 10 100 105844 144

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 61

Table 11: POT vs PAT with R=10

CA(n,k,g) sM %POT %PAT POT time/R PAT time/R POT:PAT
CA(9,4,3) 1 100 100 0 0 -
CA(11,5,3) 1 100 100 0 0 -
CA(14,10,3) 1 100 100 26 7 3.7
CA(15,20,3) 1 100 100 103 57 1.8
CA(20,43,3) 3 90 60 1127 622 1.8
CA(16,5,4) 1 100 100 0 0 -
CA(19,6,4) 1 100 100 0 0 -
CA(24,10,4) 2 70 100 243 19 12.8
CA(27,14,4) 1 100 100 236 55 4.3
CA(25,6,5) 3 100 100 0 0 -
CA(29,7,5) 2 100 100 2 1 2
CA(33,8,5) 2 100 100 67 8 8.4
CA(44,16,5) 3 100 100 78 8 9.8
CA(36,3,6) 2 100 100 1000 0 -
CA(37,4,6) 1 100 100 1 0 -
CA(55,11,6) 3 100 100 137 16 8.5
CA(63,16,6) 3 100 100 221 40 5.5
CA(49,8,7) 1 0 0 1003 153 6.5
CA(61,10,7) 1 0 0 1802 220 8.2
CA(85,16,7) 3 100 90 1339 198 6.8
CA(89,18,7) 3 100 100 1146 61 18.9

time as well. Overall, PAT is better than POT for this test bed.

One might think the reason that POT’s running time is poor compared to PAT’s

is due to its higher iteration complexity caused by our choices of large neighborhood

sizes, which are proportional to M . An experimental study is conducted to show

that decreasing POT’s neighborhood size in such a way as to make POT and PAT

more comparable in terms of their complexity per tabu move increases POT’s total

running time drastically and causes POT to converge more slowly towards a covering

array. We verify this using the next table and using test bed data where g = 5, 6.

For each CA(n, k, g,), we run POT with M = M, 0.5M and M
ng

, which we denote

as settings sM = 1, 3, 4, respectively. We show in bold the data for M = M
ng

, which

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 62

is the entry for which POT’s neighborhood size is of the same order as PAT’s. The

other parameters are fixed as I = 200K, L = 4 and R = 10. We conclude that not

only is PAT better than POT in its complexity per iteration but also at reducing the

number of iterations.

Negative effect of decreasing POT’s neighborhood size to PAT’s size

CA(n,k,g) sM No. CA % CA Avg.Iter/run. Avg Time/run(sec)

CA(25,6,5) 1 10 100 351 0

CA(25,6,5) 3 10 100 163 0

CA(25,6,5) 4 10 100 15395 2

CA(29,7,5) 1 10 100 1875 3

CA(29,7,5) 3 10 100 10751 9

CA(29,7,5) 4 5 50 110392 32

CA(33,8,5) 1 10 100 33198 80

CA(33,8,5) 3 8 80 77388 96

CA(33,8,5) 4 0 0 20000 82

CA(44,16,5) 1 10 100 16978 175

CA(44,16,5) 3 10 100 14909 78

CA(44,16,5) 4 1 10 181507 217

CA(36,3,6) 1 10 100 61 0

CA(36,3,6) 3 10 100 67 0

CA(36,3,6) 4 10 100 929 0

CA(37,4,6) 1 10 100 904 1

CA(37,4,6) 3 10 100 2248 1

CA(37,4,6) 4 10 100 67146 14

CA(55,11,6) 1 10 100 26113 213

CA(55,11,6) 3 10 100 33041 137

CA(55,11,6) 4 0 0 20000 157

CA(63,16,6) 1 10 100 29359 520

CA(63,16,6) 3 10 100 24635 221

CA(63,16,6) 4 2 20 188428 320

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 63

5.3 Algorithm Comparison

In this section, we compare upper bounds on the covering array number found by

POT and PAT with upper bounds published in the literature. We need a test bed

that compares a wide variety of algorithms for both fixed and mixed covering arrays.

Cohen [9], in her PhD thesis, implements four algorithms and performs a compar-

ison of her results against other published results for fixed and mixed cases for a

variety of algorithms. Therefore, we choose the same data set used by Cohen to

do our comparison of POT and PAT with other algorithms. The implementations

used in the comparison are Automatic Efficient Test Generator (AETG) [6, 7], com-

mercial AETG product (AP), Combinatorial Test Services (CTS) [24], In Parameter

Order (IPO) [44, 48], Test Case Generator (TCG) [49], TConfig [47], Stardom’s simu-

lated annealing (SSA) [40], Nurmela’s tabu search algorithm(TS) [35] and M. Cohen’s

greedy algorithms TCG and AETG (mTCG, mAETG), simulated annealing (SA) and

hill climbing (HC) [9]. In Tables 12, 14 and 16, columns 2-8, 2-11 and 2-6 respectively,

are original columns from Cohen’s tables while column 7, labelled COL, in Table 16

represents the best upper bound found reported by Colbourn [10]. We add the last

two columns in all the tables which represent the covering array sizes found using

POT and PAT algorithms. The bold face entries in each table highlight the best

upper bounds.

For this section, we run POT and PAT algorithms in optimization mode. We

provide the algorithms with an upper and lower bound (ub, lb) for the covering array

size as well as the number of replications (R). In optimization mode, the algorithm

attempts to find covering arrays of size n, where n starts at the upper bound and

is decreased by one, each time the search is successful, until it hopefully reaches the

lower bound. For each n, the experiment is attempted at most R times with different

random seeds. Whenever a covering array of size n is found, it considers a success and

moves to the next smallest n; if no covering array was found after R replications for

this n, the whole algorithm stops. We give the pseudocode for this algorithm next.

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 64

Algorithm: optimizationMode(ub, lb, R, k, g)

n← ub

success ← true

while((n >= lb) and (success)) {
replications ← 0

success ← false

while ((replications < R) and (! success)) {
Try to find a CA(n, k, g) using tabu search (POT or PAT)

replications++

if (found) {
record n, total time and iterations over all replications for the same n

success ← true

n−−
}

}
}

In our tests, we run the algorithm in optimization mode picking upper and lower

bounds based on data reported in previous experiments. More specifically, if b is the

best upper bound found by previous results reported in a line of Table 12, 14 or 16,

we use ub = b + 2 and lb = b − 2. We do this in order to ensure that we are able to

find a covering array even if it is not the best known so far and we try to improve

on the best known bound once a covering array of the best known size is found.

In certain cases, we had to increase the upper bound to b + 8 for harder problems

such as finding a CA(n, 20, 10) and CA(n, 100, 4). When running our algorithms in

optimization mode, we are primarily interested in the smallest value of n obtained by

each algorithm, which we report in Tables 12, 14 and 16 under the headings POT and

PAT. In addition, we tabulate in Tables 13, 15 and 17 all covering array sizes found

along with their corresponding times and total iterations in order to do a further

comparison between POT and PAT.

The parameters for POT and PAT were set at their default values, based on the

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 65

findings in Section 5.2. More specifically, for POT we used L = 4 and I = 200K,

while for PAT we used L = 2 and I = 500K. The choice of M for POT was done in an

adhoc manner, inspired by the findings from Section 5.2. This parameter is reported

in the column labelled sM in Tables 13,15, and 17.

Looking at Table 12, we have a test set that consists of 4 mixed covering arrays.

Cohen’s implementation of simulated annealing achieves the best bounds in the table

for all four entries and so does our PAT algorithm. Our POT algorithm is successful

in achieving 3 out of the 4 best known bounds but only finds a CA(22, 514431125).

We see in Table 13, that PAT is much faster at find covering arrays than POT

at every step, except in one of the cases; POT only requires 66 seconds to find a

CA(42, 716151453823) while PAT needs 478 seconds. In most cases, PAT only requires

a few milliseconds to find the covering arrays.

In Table 14, we have 4 fixed covering arrays and 2 mixed cases. The last two

covering arrays in the table are relatively harder problems and we are not successful at

finding the best upper bound reported by other algorithms. We are able to improve on

the best bound reported for a CA(n, 415317229); the best bound was n = 29 found by

Nurmela’s tabu search algorithm, but we improved on that with our implementation

of the same algorithm and achieved a size n = 28. PAT appears to be better than

POT for these particular cases as it achieves better bounds in most cases, and in less

time, as it can be seen in Table 15.

Based on Table 16, we see three things. First, that POT achieves two new bounds,

a CA(84, 16, 7) and CA(110, 16, 8) and PAT one new bound, a CA(110, 16, 8). We

also notice that for this test set, POT is as good or more successful than PAT for

finding bounds, although it requires a little more time. The fourth column in Table

16 reports on results by Cohen’s simulated annealing [9] which achieved most of the

best upper bounds prior to POT, but we see that POT performs better for this set

of data by improving on 3 out of 4 bounds.

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 66

Table 12: Algorithm Comparison 1: Best upper bounds
TCG AETG AP mTCG mAETG HC SA POT PAT

CA(n, 513822) 20 19 21 18 20 16 15 15 15
CA(n, 716151453823) 45 45 53 42 44 42 42 42 42

CA(n, 514431125) 30 30 33 25 28 23 21 22 21
CA(n, 6151463823) 33 34 39 32 35 30 30 30 30

Table 13: Algorithm Comparison 1: Time for POT vs PAT
POT POT PAT PAT

sM N time iter time iter
CA(n, 513822) 1 17 0 218 0 120

16 1 832 0 258
15 264 206631 0 447

CA(n, 716151453823) 3 44 14 1067 0 120
43 44 3436 0 226
42 66 5265 478 1000302

CA(n, 514431125) 1 23 220 32791 0 568
22 2311 366184 0 2062
21 - - 7 18832

CA(n, 6151463823) 2 32 34 3927 0 176
31 108 12912 0 296
30 941 123744 0 497

Table 14: Algorithm Comparison 2: Best upper bounds
IPO AETG TConfig CTS AP TS mTCG mAETG HC SA POT PAT

CA(n,4,3) 9 9 9 9 10 NA 9 9 9 9 9 9
CA(n,13,3) 17 15 15 15 22 NA 17 17 16 16 15 15

CA(n,415317229) 34 41 40 39 41 29 34 37 30 30 30 28
CA(n,41339235) 26 28 30 29 30 21 26 27 21 21 22 21

CA(n,100,4) 53 NA 43 43 52 NA 56 56 47 45 46 45
CA(n,20,10) 212 180 231 210 230 NA 213 198 189 183 188 185

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 67

Table 15: Algorithm Comparison 2: Time for POT vs PAT
POT POT PAT PAT

sM N time iter time iter
CA(n,4,3) 1 11 0 15 0 24

10 0 24 0 34
9 0 34 0 43

CA(n,13,13) 1 17 0 47 0 89
16 0 89 0 141
15 4 2790 0 300

CA(n,415317229) 2 31 5970 38194 1 438
30 48582 328483 3 964
29 - - 15 5112
28 - - 49 160878

CA(n,41339235) 3 23 305 3083 1 292
22 2128 22777 2 605
21 - - 5 1348

CA(n,100,4) 2 46 10524 28933 - -
45 - - 949 57868

CA(n,20,10) 3 188 31202 213845 - -
185 - - 53220 262067

Table 16: Algorithm Comparison 3: best upper bounds
CA(n,k,g) SSA mAETG SA CTS AP COL POT PAT
CA(n,16,6) 65 70 62 88 80 63 62 63
CA(n,16,7) 88 94 87 91 110 85 84 85
CA(n,16,8) 113 120 112 120 128 111 110 110
CA(n,17,8) 116 123 114 120 128 111 112 112

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 68

Table 17: Algorithm Comparison 3: Time for POT vs PAT
POT POT PAT PAT

CA(n,k,g) sM N time iter time iter
CA(n,16,6) 1 64 141 7989 7 9673

63 584 33062 74 92701
62 2168 122728 - -

CA(n,16,7) 3 87 131 9002 7 6657
86 707 48518 20 18815
85 2683 183783 458 421618
84 18889 1293895 - -

CA(n,16,8) 1 113 371 17540 9 6689
112 1158 27957 40 28192
111 5040 121637 76 53695
110 20223 488151 1911 1367757

CA(n,17,8) 1 113 18159 378797 41 26008
112 25587 533800 524 329939

5.4 New Results

In this section, we provide tables with new upper bounds for covering arrays using

POT and PAT algorithms. In this step, we look at the two types of problems. First,

we investigate if our tabu implementations can improve on upper bounds for fixed

covering arrays reported by Colbourn [10]. We look at Colbourn’s tables and target

those regions where the gaps are large. More specifically, when these tables have

consecutive entries: CA(n1, k1, g) and CA(n2, k2, g), we try to find a CA(n2− 1, k1 +

1, g) where the difference between n1 and n2 or k1 and k2 is more than one. These

regions make ideal candidates for improvement on the bounds. Second, we attempt

to discover new upper bounds for small mixed covering arrays with parameters close

to those of an orthogonal array.

In Tables 18 and 19, we give the the best known upper bound extracted from [10]

denoted by ub and provide the upper bound that POT and PAT algorithms found,

denoted POT n and PAT n, respectively. We also provide the iteration and time

at which the covering array was found. The parameters used in the tests are given

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 69

Table 18: New results for POT with I=500K, L=5, sM=1, R=1

CA(n,k,g) ub POT n iter time(sec)
CA(n,21,3) 17 16 267621 990
CA(n,16,5) 44 43 292455 5443
CA(n,17,5) 45 44 373390 4291
CA(n,17,6) 64 63 422371 8268
CA(n,18,6) 70 65 145072 3244
CA(n,19,6) 70 66 62301 3041
CA(n,14,7) 81 80 164746 3387
CA(n,15,7) 83 82 153248 3657
CA(n,16,7) 85 84 755264 20838
CA(n,17,7) 87 86 279963 8007
CA(n,18,7) 89 88 134951 4811
CA(n,19,7) 91 90 140122 5694
CA(n,16,8) 111 110 488151 20223

in the caption of the tables. For the POT results in Table 18, we attempt manual

testing by providing n for the algorithm and checking to see if it finds it, in which

case we attempted a lower n. For PAT results in Table 19, we used the algorithm

in optimization mode, as described in Section 5.3. We run this algorithm starting

with an upper bound which is one less than the best known (ub), the lower bound

for the algorithm is two less than the best known upper bound, and the number of

replications is 10.

In most cases for POT in Table 18, the improved bound is one less than the best

bound reported in [10], except for CA(65, 18, 6) and CA(66, 19, 6) where the bound

was reduced by 5 and 4, respectively. We also observe that for the common covering

arrays in Tables 18 and 19, which are marked in bold in each table, PAT is much faster

at finding the improved bounds than POT. For example, POT took 20223 seconds to

find a CA(110, 16, 8) while PAT only needs a mere 371 seconds, PAT being roughly

54 times faster.

In the second type of experiments, we try to find new upper bounds for small mixed

covering arrays that have parameters close to those of orthogonal arrays, using PAT

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 70

Table 19: New results for PAT with I=106, L=2 and R = 10

CA(n,k,g) ub PAT n iter time(sec)
CA(n,18,6) 70 65 769098 777
CA(n,19,6) 70 66 585686 660

65 3889078 4390
CA(n,14,7) 81 80 6709736 5508
CA(n,15,7) 83 82 517620 488
CA(n,16,7) 85 84 1554019 1685
CA(n,17,7) 87 86 807431 983
CA(n,18,7) 89 88 318665 435

87 6903745 9423
CA(n,19,7) 91 90 685056 1051

89 169310 260
CA(n,16,8) 111 110 265331 371

algorithm. We have two classes of mixed arrays that we look at: CA(n, gg+1(g − 1))

and CA(n, gg+1(g + 1)), for g a prime power. For these covering arrays, we attempt

a different approach of optimization mode, which we call lower optimization mode.

We provide a lower bound and the algorithm tries to achieve that lower bound a

fixed number of times and if it is successful then it records the statistics and quits,

otherwise, it increases the lower bound by one and repeats the process. In lower

optimization mode, the algorithm keeps running until it finds a covering array for

that set of input parameter values.

For the first class of covering arrays, we decrease one of the alphabet sizes by one

from a CA(n, gg+2), so we provide a lower bound of g2 and check if PAT achieves this

bound, we also report the upper bound CAN(gg+2) for comparison purposes. For the

second class of covering arrays, we are increasing one of that alphabet sizes by one

in a CA(n, gg+2). In this case, we provide a lower bound which is the product of the

two largest alphabets and we report on the upper bound given by Theorem 2.2.3, a

construction that we use for increasing the largest alphabet size in the best known

CA(n, gg+2). In Tables 20 and 21, we see the lower bound (lb) provided for the

lower optimization mode, upper bound (ub) and the actual bound (PATn) that PAT

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 71

Table 20: Class 1: PAT with I=500K, L=2, R=5

lb ub PATn iter time(sec)
CA(n,3145) 16 19 18 5000061 289
CA(n,4156) 25 29 28 7501257 827
CA(n,6178) 49 61 66 3469155 1206
CA(n,7189) 64 78 90 26287408 14555

Table 21: Class 2: PAT with I=500K, L=2, R=5

lb ub PATn iter time(sec)
CA(n,4551) 20 23 20 355 0
CA(n,5661) 30 35 32 5007050 612

achieves as well as the total time and iteration. We bold face the entries in tables

where PAT returns a bound that is better than the upper bound reported. We see

from Table 20 that we improve the upper bound for 2 out of the 4 entries and improve

on the 2 entries from Table 21.

5.5 Experimental Conclusion

In this section, we give a brief overview of the entire chapter and summarize the

results obtained. Before doing that, we observe that the conclusions drawn from this

experiment would be the same if the more efficient implementation of UncoveredList

in Section 4.2 were used. Indeed, such an implementation would only affect the times

reported, while the number of iterations and percentage of success would remain the

same. In addition, PAT would have larger relative savings than POT, so we only

expect a possible increase in the time ratio by which PAT is faster than POT.

Based on our designed test bed of 30 cases for the parameter tune up of POT and

PAT, we deduce that POT is comparable to PAT in terms of the percentage of success

of finding covering arrays but PAT tends to be much faster with a rate varying from

roughly 2∼19 times faster.

CHAPTER 5. EXPERIMENTS AND RESULTS FOR POT AND PAT 72

Table 22: Summary of results found by POT or PAT

CA(n,k,g) Previous ub Algorithm
CA(16,21,3) 17 POT
CA(43,16,5) 44 POT
CA(44,17,5) 45 POT
CA(63,17,6) 64 POT
CA(65,18,6) 70 POT/PAT
CA(65,19,6) 70 PAT
CA(80,14,7) 81 POT/PAT
CA(82,15,7) 83 POT/PAT
CA(84,16,7) 85 POT/PAT
CA(86,17,7) 87 POT/PAT
CA(87,18,7) 89 PAT
CA(89,19,7) 91 PAT
CA(110,16,8) 111 POT/PAT

CA(28,415317229) 29 PAT
CA(18,3145) 19 PAT
CA(28,4156) 29 PAT
CA(20,4551) 23 PAT
CA(32,5661) 35 PAT

In analyzing Cohen’s tables with appended POT and PAT results, we observe

one more time that PAT is much faster than POT and that PAT is more successful

in the optimization mode at achieving better bounds than POT for the mixed case.

An exception is Table 16, where POT gives similar or better bounds than PAT for

CA(16, g) for g = 6, 7, 8. Our results are most comparable to Cohen’s simulated

annealing results. Out of the 14 test cases, PAT matches 7 of the simulated annealing

results, improves on 5 of them and does worse on 2 of them. Similar counts for

POT, gives 6 matches, 4 improvements and 4 worsenings, when compared to Cohen’s

simulated annealing. In Table 22, we summarize the new results found. We give the

covering arrays found, previous best known bound and specify the algorithm that

achieves that bound.

Chapter 6

Conclusion

In this thesis, we explore a new generalization of both mixed covering arrays and

covering arrays on graphs known as the mixed covering arrays on graphs. We also

examine two variations of the tabu search method to try and improve on covering

array bounds for both fixed and mixed covering arrays.

Constructions of mixed covering arrays on graphs is our first area of con-

tribution. We generalize results for covering arrays on graphs by Meagher and

Stevens [31] to the mixed case and also provide constructions for some special classes

of graphs. We give a construction of mixed covering arrays on graphs based on weight-

restricted graph homomorphism between two graphs which also provide bounds on

the mixed covering array number. For any graph G, there exist homomorphisms

between the following graphs Kω(G)→G→Kχ(G). We extend these homomorphisms

to weight-restricted homomorphisms which allow us to give lower and upper bounds

on CAN(G,
∏k

i=1 gi). In particular, let G be a weighted graph with k vertices and

g1 ≤ g2 ≤ · · · ≤ gk be positive weights; we prove that the CAN(Kω(G),
∏ω(G)

i=1 gi) ≤
CAN(G,

∏k
j=1 gj) ≤ CAN(Kχ(G),

∏k
`=k−χ(G)+1 g`). We also define a special class of

graphs, which we call the mixed qualitative independence graphs, which is partic-

ularly useful for studying covering arrays. We prove that for a weighted graph G

and positive integers n, g1, g2, . . . , gk, a CA(n, k,
∏k

i=1 gi) exists if and only if there is

a weight-restricted graph homomorphism from G to QI(n,
∏k

i=1 gi). In addition to

73

CHAPTER 6. CONCLUSION 74

giving a result for the existence of mixed covering arrays on graphs, the mixed qual-

itative independence graph allows us to define a lower bound on the mixed covering

array number on a graph based on the knowledge of both graphs’ clique or chromatic

numbers.

Defining the appropriate weight-restricted homomorphism is not always easy and

it has been shown that finding an optimal covering array on a general graph is NP-

hard for the binary case [38]. This motivates us to try to first construct mixed

covering arrays on special classes of graphs. In order to do this, we define some basic

graph operations: one-vertex edge hooking, edge duplication and weight-restricted

edge subdivision. When these operations are performed to a weighted graph, they

preserve the size of a balanced covering array on the graph. We use these operations

to give constructions of optimal mixed covering arrays for trees and cycles. Inde-

pendently from graph operations, we construct optimal mixed covering arrays for

bipartite graphs and provide an alternate construction for cycles. Moreover, if G is

n-colourable, for n = 2, 3, 4, 5, we show that in many cases the product of the largest

two alphabets is an upper bound on the mixed covering array number.

There are many areas that one can study and expand on, with regards to mixed

covering arrays on graphs. It is a new generalization and there is room for a lot of

work to be done in this area. An interesting problem to extend the work done in this

thesis would be to find optimal mixed covering arrays on cubic graphs and wheels

with non-uniform alphabet sizes. Another problem is to find other classes of graphs

for which their mixed covering array number is PW (G). A more ambitious direction

to explore is the design of recursive constructions of covering arrays on graphs based

on graph decompositions.

The second main contribution is in the area of tabu search algorithms for cov-

ering array construction. We implement a variation of Stardom’s tabu algorithm [40]

which we call POT, since the basic move in the algorithm is to switch a point in the

array. The variation is in the neighborhood selection. Stardom exhaustively searches

the whole neighborhood at every iteration, while in POT we select a random sam-

ple from the neighborhood. In several cases, such a reduction on the neighborhood

size proved to be advantageous. The second algorithm we implement is proposed

CHAPTER 6. CONCLUSION 75

by Nurmela [35] and we call it PAT, since the basic move aims at covering a new

pair in the array. We give efficient data structures and detailed pseudocode for our

implementations of POT and PAT and a thorough complexity analysis. POT has an

expected running time of O(nk2g) per tabu move while PAT has an expected running

time of O(nk) per tabu move.

In our experimental study, we provide an extensive comparison between POT

and PAT and we are able to improve on existing upper bounds for fixed and mixed

covering arrays. We also perform a comparison of POT and PAT against many

algorithms from the literature comparing the bounds each algorithm achieves. Based

on our experiments, we conclude that POT is comparable to PAT in terms of the

percentage of success of finding covering arrays, but PAT tends to be much faster.

This is partially due to the fact that the neighborhood space for PAT is much smaller

than POT and therefore one iteration for POT takes much longer than that for PAT.

However, we also observe that the total number of iterations for PAT tends to be

smaller than POT, which indicates that PAT’s moves are more effective at arriving

faster at a covering array. This notion is further supported by evidence that the total

time for POT increases when its neighborhood size is made comparable to PAT’s.

PAT also appears to be better than POT at finding better bounds for mixed covering

arrays. POT and PAT are comparable to algorithms in literature since they achieve

most of the best known upper bounds reported. Finally, POT and PAT are also

successful at finding improved upper bounds: 13 new results are found for fixed

covering arrays and 5 new ones for the mixed case.

We conclude this chapter with future work on the area of tabu search algorithms.

A possible extension of our tabu search implementations is to find covering arrays

on graphs and covering arrays with the disjoint row property specified. This can be

done by initializing the data structures as if some pairs had already been covered.

Another interesting variation on the tabu search method for covering arrays is the

test tabu search algorithm (TET). TET is a new technique partially explored by us

that makes a more drastic move at each iteration. The basic move is to add or remove

an entire test suite (row). The difficulty arises in that we try to simultaneously deal

with conflicting objectives, namely increasing coverage and decreasing the number of

CHAPTER 6. CONCLUSION 76

tests. Nonetheless, this is a promising direction for further research that could be

explored.

Appendix A

Colbourn’s tables of CA upper

bounds

In this section, we include tables produced by Colbourn [10], which give the best

known upper bounds for covering arrays. The author has authorized us to reproduce

the tables here; starting on the next paragraph until the end of the appendix we

extract the rest word by word from [10]. Note that the new results obtained by our

algorithms have not been incorporated here.

To determine the best known bound on CAN(k, g), look in the table for the

specified value of g. Entries in the table are of the form “k, nα. Select the smallest

k for which k ≥ k, and let n be the size tabulated for k. Then, CAN(k, g) ≤ n, and

the construction to establish this is specified by the authority α.

2 Theorem 2.2 [15] 3 Theorem 2.3 [15]

a 1-rotational [29, 32] b 1-rotational [15] and Colbourn (unpublished)

o orthogonal array [25] p projection [10]

s simulated annealing [9] t tabu search [35]

z composition ↓ symbol identification

d derivation

77

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 78

Covering array bounds for g = 3.

4 9o 5 11b 7 12s

9 13s 10 14s 20 15t

24 17t 30 18t 36 19t

43 20t 74 213 94 232

134 243 174 253 194 262

394 273 474 293 594 303

714 313 854 323 1474 333

1796 352 2364 362 3030 372

3766 382 6836 392 8238 412

10296 422 12372 432 14794 442

20000 452

Covering array bounds for g = 4.

5 16o 6 19a 7 21s

8 22s 10 24s 11 25s

12 26s 14 27s 24 283

29 313 30 323 34 333

38 343 40 353 49 363

54 373 59 383 69 393

116 403 140 433 144 443

164 453 184 463 192 473

236 483 260 493 284 503

332 513 560 523 676 553

696 563 792 573 888 583

928 593 1140 603 1256 613

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 79

Covering array bounds for g = 5.

6 25o 7 29b 8 33b

9 35s 10 37s 11 38s

12 40s 13 41s 14 42s

15 43s 16 44s 35 453

41 493 42 523 48 532

52 553 54 563 59 573

65 583 71 603 77 613

83 623 90 633 95 643

205 653 240 693 245 723

281 732 305 753 315 763

345 773 380 783 415 803

450 813 485 823 525 833

Covering array bounds for g = 6.

3 36o 4 37s 5 39s

6 41t 8 42t 9 46b

10 51b 11 55s 12 56s

13 58s 14 60s 15 61s

16 63s 17 64s 19 703

20 712 24 723 26 733

32 742 34 753 40 762

42 772 48 782 50 792

56 802 66 822 72 842

80 862 81 882 89 912

90 922 96 932 98 942

99 952 107 962 114 972

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 80

Covering array bounds for g = 7.

8 49o 10 61b 11 67b

12 73b 13 78s 14 81s

15 83s 16 85s 17 87s

18 89s 63 913 64 973

79 1033 80 1052 87 1093

99 1152 100 1172 103 1203

109 1212 112 1233 119 1253

120 1263 127 1273 135 1293

143 1313 497 1333 504 1393

623 1453 640 1473 686 1513

781 1572 800 1592 812 1623

860 1632 882 1653 938 1673

Covering array bounds for g = 8.

9 64o 11 78a 12 85b

13 92b 14 99b 15 106b

17 111s 18 115s 19 117s

80 1203 81 1273 90 1343

99 1362 107 1413 116 1483

121 1502 125 1553 132 1572

143 1622 151 1673 155 1692

160 1713 170 1733 712 1763

720 1833 808 1903 891 1923

952 1973 1032 2043 1089 2063

1112 2113 1188 2132 1273 2182

1331 2202 1344 2233 1380 2252

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 81

Covering array bounds for g = 9.

10 81o 13 105b 14 113b

15 121b 16 129b 17 137b

18 145b 99 1533 100 1613

129 1773 139 1853 140 1912

149 1933 168 2012 181 2092

182 2152 195 2172 196 2232

981 2253 990 2333 1000 2413

1278 2493 1377 2573 1400 2633

1476 2653 1665 2732 1794 2812

1820 2872 1933 2892 1960 2952

9720 2973 9810 3053 9900 3133

12663 3213 13644 3293 13860 3353

Covering array bounds for g = 10.

4 100o 6 101s 12 118o

13 120p 15 136b 16 145b

17 154b 18 163b 19 172b

20 174u 21 190b 24 1912

35 1923 36 2012 48 2082

71 2093 78 2112 143 2262

156 2282 169 2302 179 2442

195 2462 208 2552 224 2622

239 2712 255 2802 260 2842

271 2892 288 2982 415 3003

468 3023 572 3162 841 3172

936 3192 1014 3212 1694 3342

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 82

Covering array bounds for g = 11.

12 121o 16 161b 17 171b

18 181b 19 191b 20 201b

21 211b 22 221b 143 2313

144 2413 191 2713 192 2772

203 2813 215 2913 227 3013

255 3112 256 3172 271 3212

272 3272 288 3312 1705 3413

1716 3513 2277 3813 2304 3873

2420 3913 2563 4013 2706 4113

3041 4212 3072 4272 3232 4312

3264 4372 3435 4412 3456 4472

20000 4513

Covering array bounds for g = 12.

7 144o 14 166o 15 168p

18 199b 19 210b 20 221b

21 232b 22 243b 23 254b

24 265b 48 2763 49 2872

97 2983 105 3002 195 3202

210 3222 225 3242 251 3532

270 3552 285 3662 300 3772

323 3862 341 3972 360 4082

379 4192 666 4303 735 4323

1345 4522 1470 4542 1575 4562

2704 4742 2940 4762 3150 4782

3375 4802 3484 5072 3780 5092

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 83

Covering array bounds for g = 13.

14 169o 17 249↓ 18 251↓

19 252↓ 21 253b 22 265b

23 277b 24 289b 25 301b

26 313b 195 3253 196 3373

237 4053 252 4073 266 4083

293 4093 307 4213 321 4333

335 4453 349 4573 363 4693

2717 4813 2730 4933 3302 5613

3510 5633 3705 5643 4082 5653

4277 5773 4472 5893 4667 6013

4862 6133 5057 6253 20000 6373

Covering array bounds for g = 14.

5 196o 6 222↓ 17 251o

18 253↓ 19 254p 20 285↓

21 286p 23 300b 24 313b

25 326b 26 339b 27 352b

28 365b 29 378b 30 391b

31 404b 32 417b 36 4302

85 4332 90 4352 95 4362

102 4592 108 4612 114 4622

115 4822 288 4882 306 4902

323 4912 324 4922 342 4932

361 4942 380 5252 399 5262

414 5392 437 5402 456 5532

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 84

Covering array bounds for g = 15.

6 225o 17 253o 18 255p

19 286↓ 20 287p 21 354↓

22 355↓ 23 356↓ 24 357p

26 365b 27 379b 28 393b

29 407b 30 421b 36 4352

102 4632 108 4652 288 4912

306 4932 324 4952 340 5252

342 5262 360 5272 361 5572

380 5582 400 5592 408 5952

414 5962 432 5972 441 6032

468 6052 486 6192 504 6332

520 6372 522 6472 540 6512

Covering array bounds for g = 16.

17 256o 18 286o 19 288p

20 354o 21 356↓ 22 357↓

23 358p 28 421b 29 436b

30 451b 31 466b 32 481b

288 4963 289 5113 305 5263

323 5282 342 5582 361 5602

374 5973 391 5982 396 6272

414 6282 418 6292 437 6302

475 6613 492 6763 509 6913

532 6932 551 7082 570 7232

4880 7363 4896 7513 5168 7663

5491 7683 5814 7982 6137 8002

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 85

Covering array bounds for g = 17.

18 289o 20 356o 21 358↓

22 359p 31 497b 32 513b

33 529b 34 545b 323 5613

324 5773 359 6283 378 6303

396 6312 399 6952 420 6972

440 6982 441 6992 462 7002

484 7012 557 7693 575 7853

593 8013 611 8173 5797 8333

5814 8493 6443 9003 6783 9023

7128 9033 7161 9672 7539 9693

7920 9702 7938 9713 8316 9722

8712 9732 8800 10372 8820 10382

Covering array bounds for g = 18.

5 324o 20 358o 21 360p

24 518o 25 520↓ 26 521↓

27 522↓ 28 523↓ 29 524p

33 562b 34 579b 35 596b

36 613b 37 630b 38 647b

100 6642 105 6662 399 6982

420 7002 441 7022 479 8582

504 8602 520 8612 540 8622

560 8632 580 8642 588 8652

609 8662 659 9022 693 9042

714 9212 735 9382 756 9552

777 9722 798 9892 1995 10042

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 86

Covering array bounds for g = 19.

20 361o 24 520o 25 522↓

26 523↓ 27 524↓ 28 525p

29 616↓ 30 617↓ 31 618↓

32 619p 36 649b 37 667b

38 685b 399 7033 400 7213

479 8623 500 8643 520 8653

540 8663 560 8672 580 9583

600 9593 620 9603 640 9612

719 9913 739 10093 759 10273

784 10312 7961 10453 7980 10633

9557 12043 9975 12063 10374 12073

10773 12083 11200 12093 11571 13003

Covering array bounds for g = 20.

6 400o 7 438↓ 8 513d

24 522o 25 524↓ 26 525↓

27 526p 28 617↓ 29 618↓

30 619↓ 31 620p 32 719↓

33 720↓ 34 721↓ 35 722p

39 742b 40 761b 41 780b

42 799b 43 818b 44 837b

48 8562 49 8772 144 9022

150 9042 156 9052 162 9062

167 9402 175 9422 182 9432

189 9442 200 10172 208 10182

216 10192 575 10242 600 10262

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 87

Covering array bounds for g = 21.

7 441o 24 524o 25 526↓

26 527p 27 618↓ 28 619↓

29 620↓ 30 621p 31 720↓

32 721↓ 33 722↓ 34 723p

35 830↓ 36 831↓ 37 832↓

38 833p 42 841b 48 8613

49 8812 167 9443 175 9462

182 9472 575 10272 600 10292

624 10302 625 10312 650 10322

676 10332 696 11232 720 11242

728 11252 754 11262 780 11272

784 12172 812 12182 841 12192

Covering array bounds for g = 22.

5 484o 24 526o 25 528p

26 618o 27 620↓ 28 621↓

29 622p 30 721↓ 31 722↓

32 723↓ 33 724p 34 831↓

35 832↓ 36 833↓ 37 834p

45 946b 46 967b 120 9882

125 9902 575 10302 600 10322

625 10342 650 11242 672 11252

696 11262 700 11272 725 11282

728 12172 754 12182 756 12192

784 12202 812 12212 841 12222

858 13202 870 13212 899 13222

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 88

Covering array bounds for g = 23.

24 529o 26 620o 27 622↓

28 623p 30 723↓ 31 724↓

32 725p 34 833↓ 35 834↓

36 835p 38 951↓ 39 952↓

40 953p 41 1014↓ 42 1015p

575 10353 576 10573 623 11263

648 11283 672 11292 675 12172

702 12192 728 12202 729 12212

756 12222 784 12232 806 13212

832 13222 840 13232 868 13242

896 13252 900 14232 930 14242

961 14252 992 14262 1024 14272

Covering array bounds for g = 24.

9 576o 26 622o 27 624p

30 725↓ 31 726p 34 835↓

35 836p 38 953↓ 39 954p

40 1015↓ 41 1016p 80 11283

81 11512 233 11743 243 11762

675 12202 702 12222 729 12242

780 13232 806 13242 810 13252

837 13262 900 14262 930 14272

961 14282 1020 15362 1054 15372

1085 15382 1107 16162 1156 16462

1190 16472 1225 16482 1240 17172

1271 17182 2072 17263 2187 17283

APPENDIX A. COLBOURN’S TABLES OF CA UPPER BOUNDS 89

Covering array bounds for g = 25.

26 625o 30 727p 34 837p

38 955p 40 1017p 675 12253

676 12493 780 13272 900 14292

1020 15392 1040 16172 1156 16492

1200 17192 1292 17672 17525 18253

17550 18493 20000 19272

Bibliography

[1] K. Bush. “Orthogonal Arrays of Index Unity”, Annals of Mathematical

Statistics, 1952, 23: p. 426-434.

[2] J.N. Cawse (ed.). Experimental Design for Combinatorial and High

Throughput Materials Development, John Wiley & Sons, New York, 2003.

[3] M. Chateauneuf and D.L. Kreher. “On the state of strength three covering

arrays.” J. Comb. Designs, 2002, 10(4), p.217-238.

[4] C. Cheng, A. Dumitrescu and P. Schroeder. “Generating small combina-

torial test suites to cover input-output relationships”, Proc. of the Third

Intern. Conf. on Quality Software (QSIC 03), 2003, p. 76-82.

[5] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. “Method and

system for automatically generating efficient test cases for systems having

interacting elements”, United States Patent, Number 5,542,043, 1996.

[6] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. “The AETG

system: an approach to testing based on combinatorial design”, IEEE

Trans. on Software Engineering, 1997, 23, p. 437-444.

[7] D.M.Cohen, S.R. Dalal, J. Parelius and G.C. Patton. “The combinato-

rial design approach to automatic test generation”, IEEE Software, 1996,

13(5), p.83-88.

[8] D.M. Cohen and M.L. Fredman. “New techniques for designing qualita-

tively independent systems”, J. Combin. Des., 1998, 6(6): 411-16.

90

BIBLIOGRAPHY 91

[9] M.B. Cohen. “Designing test suites for software interaction testing”, PhD

thesis, University of Auckland, 2004.

[10] C.J. Colbourn. “Strength two covering arrays: Existence tables and Pro-

jection”, preprint (July 2006).

[11] C.J. Colbourn. “Combinatorial aspects of covering arrays”, Le Matem-

atiche (Catania), 2004, 58, p. 121-167.

[12] C.J. Colbourn and J.H. Dinitz, “Making the MOLS table”, In: Compu-

tational and Constructive Design Theory (W.D.Wallis, ed.) Kluwer Aca-

demic Press, 1996, p. 67-134.

[13] C.J. Colbourn and J.H. Dinitz. “The CRC handbook of combinatorial

designs”, CRC Press, Boca Raton, 1996.

[14] C. J. Colbourn, J.H. Dinitz, D.R.Stinson, ”Applications of Combinatorial

Designs to Communications, Cryptography, and Networking”, Surveys in

Combinatorics, 1999, p. 37-100.

[15] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. E. Shasha, G. B.

Sherwood, and J. L. Yucas, “ Products of mixed covering arrays of strength

two”, J. Combin. Des., 2006, 14, p. 124-138.

[16] S.R. Dalal, A. Jain, G.C. Patton, M. Rathi, and P. Seymour. “AETG

Web: A web-based service for automatic efficient test generation from

functional requirements”, Proc. 2nd IEEE Worksh. on Industrial Strength

Formal Specif. Techn., IEEE Press, 1998, p. 84-85.

[17] S.R. Dalal and C.L. Mallows. “Factor-covering designs for testing soft-

ware”, Technometrics, 1998, 40, p. 234-243.

[18] P. Erdos, C. Ko and R. Rado. “Intersection theorems for systems of finite

sets”, Quart. J. Math, Oxford Series, 1961, 12(2), p.313-320.

BIBLIOGRAPHY 92

[19] L. Gargano, J. Korner and U. Vaccaro. “Sperner Capacities”, Graphs Com-

bin., 1993, 9(1), p. 31-46.

[20] L. Gargano, J. Korner and U. Vaccaro. ”Capacities: from information to

extremal set theory,” J. Combin. Theory, 1994, (A)68: p. 296-316.

[21] F. Glover. “Tabu Search”, ORSA, J. Comput., 1989, 1, p.190-206.

[22] F. Glover and M. Laguna. “Tabu Search”, Kluwer Academic Publishers,

Boston, 1997.

[23] R. Greenlaw and R. Petreschi. “Cubic Graphs”, ACM Computing Sur-

veys,1995, 27(4): 471-495.

[24] A. Hartman and L. Raskin. “Problems and algorithms for covering arrays”,

Discrete Math., 2004, 284, p. 149-156.

[25] A.S. Hedayat, N.J.A. Sloane and J. Stufken. “Orthogonal Arrays”, Theory

and Applications, Springer, 1999.

[26] G. Katona. “Two applications(for search theory and truth functions) of

Sperner type theorems. Periodica Math., 1973, 3, p. 19-26.

[27] D. Kleitman and J. Spencer. “Families of k-independent sets”, Discrete

Math, 1973, 6, p. 255-262.

[28] D.L. Kreher and D.R. Stinson. “Combinatorial algorithms: Generation,

Enumeration and Search”, CRC Press, Boca Raton, 2000.

[29] K. Meagher, “Covering Arrays on Graphs: Qualitative Independence

Graphs and Extremal Set Partition Theory”, PhD thesis, University of

Ottawa, Ottawa, 2005.

[30] K. Meagher, L. Moura and L. Zekaoui, “Mixed Covering Arrays on

Graphs”, J. Combin. Des., to appear (submitted Nov./2005).

BIBLIOGRAPHY 93

[31] K. Meagher and B. Stevens, “Covering Arrays on Graphs,” J. Combin.

Theory. Ser., 2005, B 95, p. 134-151.

[32] K. Meagher and B. Stevens. “Group Construction of covering arrays”, J.

Combin. Des., 2005, 13, p.70-77.

[33] L. Moura, J. Stardom, B. Stevens and A. Williams, “Covering arrays with

mixed alphabet sizes,” J. Combin. Des., 2003, 11, p. 413-432.

[34] L. Moura, B. Stevens, E. Mendelsohn. ”Lower bounds for transversal cov-

ers”, Design Codes and Cryptography, 1998, 15(3), p.279-299.

[35] K.J. Nurmela. “Upper Bounds for covering arrays by Tabu Search”, Dis-

crete Applied Math., 2004, 138, p.143-152.

[36] S. Poljak and Z. Tuza. “On the maximum number of qualitatively inde-

pendent partitions and related problems,” J. Combin. Theory, 1989,(A)51,

p. 111-116.

[37] R.K. Roy. “Design of Experiments using the taguchi approach”, John Wi-

ley & sons, Inc, New York, 2001.

[38] G. Seroussi and N.H. Bshouty. “Vector sets for exhaustive testing of logic

circuits”, IEEE Trans. on Infor. Theory, 1988, 34, p. 513-522.

[39] D.E. Shasha, A.Y. Kouranov, L.V. Lejay, M.F. Chou, and G.M. Coruzzi.

“Using combinatorial design to study regulation by multiple input signals:

a tool for parsimony in the post-genomics era”, Plant Physiology, 2001,

127, p. 1590-1594.

[40] J. Stardom. “Metaheuristics and the search for covering and packing ar-

rays”, Master’s Thesis, Simon Fraser University, 2001.

[41] B. Stevens and E. Mendelsohn. “New recursive methods for transversal

covers”, J. Combin. Des., 1999, 7(3): 185-203.

BIBLIOGRAPHY 94

[42] B. Stevens. “Transversal Covers and Packings”, PhD thesis, University of

Toronto, Toronto, 1998.

[43] D. Stinson. “Combinatorial Designs: Constructions and Analysis”,

Springer Verlag, 2003.

[44] K.C Tai, and L. Yu. “A test generation strategy for pairwise testing”,

IEEE transactions of Software Engineering, 2002, 28, p.109-111.

[45] A.W. Williams and R.L. Probert. “A practical strategy for testing pair-

wise coverage of network interfaces”, Proc. Seventh Intern. Symp. on Soft-

ware Reliability Engineering, 1996, p. 246-54.

[46] A.W. Williams. “Determination of test configurations for pair-wise interac-

tion coverage”, In thirteenth Int. Conf. Testing Communication Systems,

2000, p.57-74.

[47] A.W. Williams. “Software Component Interaction Testing”, PhD thesis,

University of Ottawa, Ottawa, 2002.

[48] L. Yu and K.C. Tai. “In parameter-order: a test generation strategy for

pairwise testing”, In Proc Third IEEE Intl. High-Assurance Systems En-

gineering Symp, 1998, p.254-261.

[49] T. Yu-wen, and W.S. Aldwin. “Automating test case generation for the

new generation mission software system”, In Proc. IEEE Aerospace Conf.,

2000, p.431-437.

