
Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Isomorphism
[Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard]

Lucia Moura

Winter 2009

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Introduction

Isomorphism of Combinatorial Objects
In general, isomorphism is an equivalence relation on a set of objects.
When generating combinatorial objects, we are often interested in
generating inequivalent objects:

Generate exactly one representative of each isomorphism
class.

(We don’t want to have isomorphic objects in our list.)

For example, when interested in graphs with certain properties, the labels
on the vertices may be irrelevant, and we are really interested on the
unlabeled underlying structure.

Isomorphism can be seen as a general equivalence relation, but for
combinatorial objects, isomorphism is defined through the existence of an
appropriate bijection (isomorphism) that shows that two objects have the
same structure.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Introduction

What are the issues in Isomorphism Computations?

Isomorphism: decide whether two objects are isomorphic.
Some approaches:

I Compute an isomorphism invariant for an object
If two objects disagree on the invariant, then the objects are NOT
isomorphic; the converse is not true.

I Compute a certificate for an object
Two objects are isomorphic if and only if they agree on the certificate.

I Put an object on canonical form
Two objects are isomorphic if and only if they have the same canonical
form.

Automorphism group generators: compute generators of the
automorphism group of an object.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Introduction

We can go a long way with coloured graphs

We will concentrate on graphs and coloured graphs (= a graph plus a
partition of the vertex set).

Most combinatorial objects can be represented as coloured graphs.

We then reduce the isomorphism of more general combinatorial
objects to the isomorphism of coloured graphs.

Brendan McKay’s nauty software (short for “no automorphism, yes?”,
available online) is an extremely efficient package/C procedure for
isomorphism of graphs and coloured graphs. It is based on
backtracking and partition refinement ideas and uses the same
framework we will study here to compute certificates for graphs.

In the next lecture notes chapter “Isomorph-free exhaustive
generation”, we will use isomorphism computations studied in this
chapter as black boxes.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Graph isomorphism definitions

Example 1: isomorphic graphs

1

2 3

4

5

a b

d

e c

G1 and G2 are isomorphic, since there is a bijection f : V1 → V2 that
preserve edges:

1 → c
2 → e
3 → d
4 → a
5 → b

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Graph isomorphism definitions

Example 2: non-isomorphic graphs

1 2

3 4
1

2

3

4

G3 and G4 are not isomorphic:
Any bijection would not preserve edges since G3 has no vertex of degree 3,
while G4 does.
(the degree sequence of a graph (in sorted order) is invariant under
isomorphism)

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Graph isomorphism definitions

Definition of graph isomorphism and automorphism

Definition

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a
bijection f : V1 → V2 such that

{f(x), f(y)} ∈ E2 ⇐⇒ {x, y} ∈ E1.

The mapping f is said to be an isomorphism between G1 and G2.
If f is an isomorphism from G to itself, it is called an automorphism.

The set of all automorphisms of a graph is a permutation group (which is
a group under the “composition of permutations” operation). See chapter
6 for more on groups and permutation groups.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Graph isomorphism definitions

Computational complexity of graph isomorphism

The problem of determining if two graphs are isomorphic is in general
difficult, but most researchers believe it is not NP-complete.

Some special cases can be solved in polynomial time, such as: graphs with
maximum degree bounded by a constant and trees.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

An example of invariant

Let DS = [deg(v1), deg(v2), . . . , deg(vn)] be the degree sequence of a
graph; let SDS = [d1, d2, . . . , dn] be its degree sequence in sorted order.

1

2

345

6

7 8 9
DS = [2, 4, 1, 1, 1, 4, 1, 1, 1]

SDS = [1, 1, 1, 1, 1, 1, 2, 4, 4]

SDS is the same for all graphs that are isomorphic to G.

So, SDS is an invariant (under isomorphism).

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Definition of Invariant

Definition

Let F be a family of graphs. An invariant on F is a function φ with
domain F such that φ(G1) = φ(G2) if G1 is isomorphic to G2.

If φ(G1) 6= φ(G2) we can conclude G1 and G2 are not isomorphic.
If φ(G1) = φ(G2), we still need to check whether they are isomorphic.

Invariants can help us to quickly determine when two structures are
not isomorphic, and so avoiding a full isomorphism test.

Examples of invariants: number of vertices and edges, degree
sequence, number of components, etc.

To be useful, invariants should be quickly computable. “Number of
cliques” is an invariant, but not quickly computable.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Definition of Invariant

Definition

Let F be a family of graphs. An invariant on F is a function φ with
domain F such that φ(G1) = φ(G2) if G1 is isomorphic to G2.

If φ(G1) 6= φ(G2) we can conclude G1 and G2 are not isomorphic.
If φ(G1) = φ(G2), we still need to check whether they are isomorphic.

Invariants can help us to quickly determine when two structures are
not isomorphic, and so avoiding a full isomorphism test.

Examples of invariants: number of vertices and edges, degree
sequence, number of components, etc.

To be useful, invariants should be quickly computable. “Number of
cliques” is an invariant, but not quickly computable.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Definition of Invariant

Definition

Let F be a family of graphs. An invariant on F is a function φ with
domain F such that φ(G1) = φ(G2) if G1 is isomorphic to G2.

If φ(G1) 6= φ(G2) we can conclude G1 and G2 are not isomorphic.
If φ(G1) = φ(G2), we still need to check whether they are isomorphic.

Invariants can help us to quickly determine when two structures are
not isomorphic, and so avoiding a full isomorphism test.

Examples of invariants: number of vertices and edges, degree
sequence, number of components, etc.

To be useful, invariants should be quickly computable. “Number of
cliques” is an invariant, but not quickly computable.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Definition of Invariant

Definition

Let F be a family of graphs. An invariant on F is a function φ with
domain F such that φ(G1) = φ(G2) if G1 is isomorphic to G2.

If φ(G1) 6= φ(G2) we can conclude G1 and G2 are not isomorphic.
If φ(G1) = φ(G2), we still need to check whether they are isomorphic.

Invariants can help us to quickly determine when two structures are
not isomorphic, and so avoiding a full isomorphism test.

Examples of invariants: number of vertices and edges, degree
sequence, number of components, etc.

To be useful, invariants should be quickly computable. “Number of
cliques” is an invariant, but not quickly computable.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Invariant inducing function

Definition (vertex partition induced by a function)

Let F be a family of graphs on the vertex set V .
Let D : F × V → {0, 1, . . . , k}.
Then, the partition of V induced by D is

B = [B[0], B[1], . . . , B[k]]

where B[i] = {v ∈ V : D(G, v) = i}.

Definition (invariant inducing function)

If φD(G) = [|B[0]|, |B[1]|, . . . , |B[k]|] is an invariant (under isomorphism),
then we say that D is an invariant inducing function.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Example: invariant inducing function
D(G, u) = degree of vertex u in graph G.

1

2

345

6

7 8 9
Ordered partition induced by D:

B = [∅, {3, 4, 5, 7, 8, 9}, {1}, ∅, {2, 6}, ∅, ∅, ∅, ∅]

φD(G) = [0, 6, 1, 0, 2, 0, 0, 0, 0]

φD(G) is an invariant for F , the family of all graphs on V .
So, D is an invariant inducing function.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Using more than one invariant inducing function

1

2

3 4

5 6

7 8
9

10 11

12

a b

c

d

e

h

i j

k

l

g

f
G1: G2:

D1(G, v) = tuple representing the # of neighbours for each degree
Ex.: D1(G1, 4) = [0030 · · · 0]; D1(G2, b) = [0030 · · · 0];
D1(G1, 8) = [2010 · · · 0]

D2(G, v) = # of triangles in G passing through v.
Ex.: D2(G1, 4) = 1; D1(G2, b) = 0.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Partition refinement using two invariant inducing functions
Compute an (ordered) vertex partition where the corresponding tuple of
sizes is an invariant under isomorphism.
If two graphs disagree on the tuple of sizes, then they are not isomorphic.
Otherwise, we can use the ordered partition to reduce the number of
permutations considered.

Initial partition: X0(G1) = [{1, 2, . . . , 12}] X0(G2) = [{a, b, . . . , l}]
Partition refinement of X0 induced by D1:
X1(G1) = [{1, 9, 10, 11, 12}, {2}, {3, 4, 5, 6}, {7, 8}]
X1(G2) = [{a, f, g, k, l}, {b}, {c, d, h, i}, {e, f}]
Partition refinement of X1 induced by D2:
X2(G1) = [{1, 9, 10, 11, 12}, {2}, {3, 4}, {5, 6}, {7, 8}]
X2(G2) = [{a, f, g, k, l}, {b}, {c, d}, {h, i}, {e, j}]
G1 and G2 are still compatible; but we only need to check bijections
that map vertices from X2(G1)[i] into vertices of X2(G2)[i],
1 ≤ i ≤ 5.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

D1(G, v) = # of neighbours for each degree

[0010 · · · 0] = D1(G1, 1) = D1(G1, 9) = D1(G1, 10) = D1(G1, 11) = D1(G1, 12)
[1020 · · · 0] = D1(G1, 2)
[0030 · · · 0] = D1(G1, 3) = D1(G1, 4) = D1(G1, 5) = D1(G1, 6)
[2010 · · · 0] = D1(G1, 7) = D1(G1, 8)

[0010 · · · 0] = D1(G2, a) = D1(G2, f) = D1(G2, g) = D1(G2, k) = D1(G2, l)
[1020 · · · 0] = D1(G2, b)
[0030 · · · 0] = D1(G2, c) = D1(G2, d) = D1(G2, h) = D1(G2, i)
[2010 · · · 0] = D1(G2, e) = D1(G2, f)

Partition refinement of X0 induced by D1:

X1(G1) = [{1, 9, 10, 11, 12}, {2}, {3, 4, 5, 6}, {7, 8}]
X1(G2) = [{a, f, g, k, l}, {b}, {c, d, h, i}, {e, f}]

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

X1(G1) = [{1, 9, 10, 11, 12}, {2}, {3, 4, 5, 6}, {7, 8}]
X1(G2) = [{a, f, g, k, l}, {b}, {c, d, h, i}, {e, f}]

D2(G, v) = # of triangles in G passing through v.

D2(G1, v) = 0, if v ∈ {1, 5, 6, 7, 8, 9, 10, 11, 12}
= 1, if v ∈ {2, 3, 4}

D2(G2, v) = 0, if v ∈ {a, e, f, g, h, i, j, k, l}
= 1, if v ∈ {b, c, d}

Partition refinement of X1 induced by D2:

X2(G1) = [{1, 9, 10, 11, 12}, {2}, {3,4}, {5, 6}, {7, 8}]
X2(G2) = [{a, f, g, k, l}, {b}, {c,d}, {h, i}, {e, j}]

G1 and G2 are still compatible!

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing Invariants

Looking at the partition of the vertex set obtained by the two invariant
induction functions:
X2(G1) = [{1, 9, 10, 11, 12}, {2}, {3,4}, {5, 6}, {7, 8}]
X2(G2) = [{a, f, g, k, l}, {b}, {c,d}, {h, i}, {e, f}]

We only need to check bijections between sets in corresponding cells
(colours):

{1, 9, 10, 11, 12} ↔ {a, f, g, k, l}
{2} ↔ {b}

{3,4} ↔ {c,d}
{5, 6} ↔ {h, i}
{7, 8} ↔ {e, f}

of bijections to test: 5!× 1!× 2!× 2!× 2! = 960.
Without partition refinement, we would have to test 12! bijections!

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Generating all isomorphisms

Backtracking algorithm to find all isomorphisms

We use a set I of invariant inducing functions, and then apply
backtracking in order to generate all valid bijections.

f=[]

f=[a] f=[f] f=[g] f=[k] f=[l]

f=[g,b] f=[k,b] f=[l,b]f=[f,b]f=[a,b]

f=[a,b,c] f=[a,b,d]

f=[a,b,c,d] f=[a,b,d]

f=[a,b,c,d,h] f=[a,b,c,d,i]
prune since {4,5} not in E1, but {d,i} in E2

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Generating all isomorphisms

Algorithm Iso(I, G1, G2) (global n,W,X, Y)
procedure GetPartitions()

X[0]← V (G1); Y [0]← V (G2); N ← 1;
for each D ∈ I do

for i← 0 to N − 1 do
Partition X[i] into sets X1[i], X2[i], . . . , Xmi [i],

where x, x′ ∈ Xj [i] ⇐⇒ D(x) = D(x′)
Partition Y [i] into sets Y1[i], Y2[i], . . . , Yni [i],

where y, y′ ∈ Yj [i] ⇐⇒ D(y) = D(y′)
if mi 6= ni then exit; (G1 and G2 are not isomorphic)
Order Y1[i], Y2[i], . . . , Ymi [i] so that for all j

D(x) = D(y) whenever x ∈ Xj [i] and y ∈ Yj [i]
if ordering is not possible then exit; (not isomorphic)

Order the partitions so that:
|X[i]| = |Y [i]| ≤ |X[i+ 1]| = |Y [i+ 1]| for all i

N ← N + (m0 − 1) + . . .+ (mN−1 − 1);
return (N);

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Generating all isomorphisms

procedure FindIsomorphism(l)
if l = n then output (f);
j ←W [l];
for each y ∈ Y [j] do

OK ← true;
for u← 0 to l − 1 do

if ({u, l} ∈ E(G1) and {f [u], y} 6∈ E(G2)) or
({u, l} 6∈ E(G1) and {f [u], y} ∈ E(G2)) then OK ← false;

if OK then f [l]← y;
FindIsomorphism(l + 1);

main
N ←GetPartitions();
for i← 0 to N do for each x ∈ X[i] do W [x]← i;
FindIsomorphism(0);

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing certificates

Certificates

Definition

A certificate Cert() for a family F of graphs is a function such that for
G1, G2 ∈ F , we have

Cert(G1) = Cert(G2) ⇐⇒ G1 and G2 are isomorphic

Next, we show how to compute certificates in polynomial time for the
family of trees.

Consequently, graph isomorphism for trees can be solved in polynomial
time!

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing certificates

Certificates for Trees

Algorithm to compute certificates for a tree:

1 Label all vertices with string 01.

2 While there are more than 2 vertices in G:
for each non-leaft x of G do

1 Let Y be the set of labels of the leaves adjacent to x and the label of x
with initial 0 and trailing 1 deleted from x;

2 Replace the label of x with the concatenation of the labels in Y , sorted
in increasing lexicographic order, with a 0 prepended and a 1 appended.

3 Remove all leaves adjacent to x.

3 If there is only one vertex x left, report x’s label as the certificate.

4 If there are 2 vertices x and y left, concatenate x and y in increasing
lexicographic order, and report it as the certificate.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing certificates

Example 1:

tree to certificate

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing certificates

Example 2:

tree to certificate

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing certificates

Example 1: certificate to tree

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Computing certificates

Example 2:

certificate to tree

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Certificates for general graphs

Let G = (V,E). Consider all permutations π : V → V .
Each π determines an adjacency matrix:

Aπ[u, v] = 1, if {π(u), π(v)} ∈ E
0, otherwise.

Look at the relevant entires of Aπ and form a number Numπ.
We will use these Numπ to define a certificate...

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Example: adjacency matrices for isomorphic graphs

G = (V = {1, 2, 3}, E = {{1, 2}, {1, 3}})

π : Aπ : Numπ π : Aπ : Numπ

[1, 2, 3]
- 1 1
- - 0
- - -

110 [1, 3, 2]
- 1 1
- - 0
- - -

110

[2, 1, 3]
- 1 0
- - 1
- - -

101 [2, 3, 1]
- 0 1
- - 1
- - -

011

[3, 1, 2]
- 1 0
- - 1
- - -

101 [3, 2, 1]
- 0 1
- - 1
- - -

011

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs: idea 1

We could define the certificate to be

Cert1(G) = min{Numπ(G) : π ∈ Sym(V)}.

Cert1(G) is difficult to compute.

Cert1(G) has as many leading 0’s as possible.

So, k is as large as possible, where k is the number of all-zero
columns above the diagonal.

So, vertices {1, 2, . . . , k} form a maximum independent set in G (or
equivalently a maximum clique in the complement graph G).

So, computing Cert1(G) as defined above is NP-hard.

But it is believed that determining if G1 ∼ G2 (G1 isomorphic to G2)
is not NP-complete.

So, it is possible that the approach of computing Cert1(G) to solve
the graph isomorphism problem is more work than necessary.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Defining a certificate for general graphs

So, instead, we will define the certificate as follows:

Cert(G) = min{Numπ(G) : π ∈ ΠG},

where ΠG is a set of permutations determined by the structure of G but
not by any particular ordering of V .

This is what we do next.

The main idea is to do partition refinement, and use backtracking
whenever we reach an equitable partition (partition that can’t be further
refined). The minimum above is taken over permutations considered in
this backtracking tree.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Discrete and equitable partitions

Definition

A partition B is a discrete partition if |B[j]| = 1 for all j, 0 ≤ j ≤ k.
It is a unit partition if |B| = 1.

Definition

Let G = (V,E) be a graph and NG(u) = {x ∈ V : {u, x} ∈ E}.
A partition B is an equitable partition with respect to the graph G if for
all i and j

|NG(u) ∩B[j]| = |NG(v) ∩B[j]|

for all u, v ∈ B[i].

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Given B an ordered equitable partition with k blocks, we can define MB

to be a k × k matrix where MB[i, j] = |N(G(v)) ∩B[j]| where v ∈ B[i].
(Since B is equitable any choice of v produces the same result)
Define Num(B) := sequence of k(k − 1)/2 elements above diagonal
written column by column.
B = [{0}, {2, 4}, {5, 6}, {7}, {1, 3}] is an equitable partition w.r.to G:

MB =


0 0 0 1 2
0 0 1 0 2
0 1 1 1 0
1 0 2 0 0
1 2 0 0 0


and Num(B) = [0, 0, 1, 1, 0, 1, 2, 2, 0, 0].

0 1

2

3

45

6

7

If B is a discrete partition then B corresponds to a permutation
π : B[i] = {π[i]}, in which case Num(B) = Numπ(G), adjusting so that
Num(B) is interpreted as the sequence of bits of a binary number.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Partition Refinement

Definition

An ordered partition B is a refinement of the ordered partition A if

1 every block B[i] of B is contained in some block A[j] of A; and

2 if u ∈ A[i1] and v ∈ A[j1] with i1 ≤ j1, then u ∈ B[i2] and v ∈ B[j2]
with i2 ≤ j2.

The definition basically says that B must refine A and preserve its order.
A = [{0, 3}, {1, 2, 4, 5, 6}]
B = [{0, 3}, {1, 5, 6}, {2, 4}] is a refinement of A,
B′ = [{1, 5, 6}, {2, 4}, {0, 3}] is not a refinement of A (blocks out of order)
Let A be an ordered partition and T be any block of A.
Define DT : V → {0, 1, . . . , n− 1}, DT (v) = |NG(v) ∩ T |.
This function can be used to refine A.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Computing and equitable partition
1 Set B equal to A.
2 Let S be a list containing the blocks of B.
3 While (S 6= ∅) do
4 remove a block T from the list S
5 for each block B[i] of B do
6 for each h, set L[h] = {v ∈ B[i] : DT (v) = h}
7 if there is more than one non-empty block in L then
8 replace B[i] with the non-empty blocks in L

in order of the index h, h = 0, 1, . . . , n− 1.
9 add the non-empty blocks in L to the end of the list S

Notes:
In step 4 we ignore blocks of S if the block has already been partitioned in B.
The procedure will produce an equitable partition.

The ordering at step 8 is chosen in order to make Num(B) smaller.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Algorithm for partition refinement

Algorithm 7.5 Refine(n,G, A,B) (global L,U, S, T,N)
procedure SplitAndUpdate(n,G, B, j)

L← empty list
for each u ∈ B[j] do { h← |T ∩NG(u)|; L[h]← L[h] ∪ {u}; }
m← 0
for h← 0 to n− 1 do if L[h] 6= ∅ then m← m+ 1
if m > 1 then

for h← |B| − 1 downto j + 1 do B[m− 1 + h]← B[h]
k ← 0
for h← 0 to n− 1 do

if L[h] 6= ∅ then B[j + k]← L[h]; S[N + k]← L[h];
U ← U ∪ L[h]; k ← k + 1;

j ← j +m− 1
N ← N +m

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Algorithm for partition refinement (cont’d)

main
B ← A
for N ← 0 to |B| do S[N]← B[N]
U ← V
while N 6= 0 do

N ← N − 1
T = S[N]
if T ⊂ U then

U ← U \ T
j ← 0
while j < |B| and |B| < n do

if |B| 6= 1 then SplitAndUpdate(n,G, B, j)
j ← j + 1

if |B| = n then exit

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Example 7.7

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Partition refinement and certificates for general graphs

Example 7.8: incomplete - needs to explore possibles discrete partitions that refine

equitable...

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Defining a certificate: backtracking + partition refinement
We will examine Algorithm 7.8: Cert1(G), which will calculate:

Cert(G) = min{Numπ(G) : π ∈ ΠG},
where ΠG is a set of permutations determined by the structure of G but
not by any particular ordering of V .
The main idea is to use backtracking combined with partition refinement.
At each node, we do partition refinement until we reach an equitable
partition; at this point, if the partition is not discrete, we branch on
elements of the first block whose size is greater than one.
Each element of this block gives rise to a branch where this element will
be chosen to be first in the discrete partition.
The minimum above is taken over permutations considered in the
backtracking tree that we have just defined (not over all possible
permutations); these permutations are determined by the graph structure
and not by any particular ordering of V .

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Algorithm for computing a certificate for general graphs

Algorithm 7.8: Cert1(G) external Canon1()
P ← [{0, 1, . . . , n}]
Canon1(G, P) (Main algorithm: get Best for canonical adjacency matrix)
(Next steps: Convert matrix for Best into number (certificate) C:
C := NumBest(G) = min{Numπ(G) : π ∈ Π(G)})

k ← 0; C ← 0
for j ← n− 1 downto 1 do

for i← j − 1 downto 0 do
if {Best[i], Best[j]} ∈ E(G) then C ← x+ 2k

k ← k + 1
return (C)

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Algorithm 7.7: Canon1(G, P) external Refine(), Compare()
Refine(n,G, P,Q)
Find the index l of the first block of Q with |Q[l]| > 1
Res← Better
if BestExist then for i← 0 to l − 1 do π1[i]← qi, where Q[i] = {qi}

Res← Compare(G, π1, l)
if Q has n blocks then

if not BestExist then
BestExist← true; for i← 0 to n− 1 do Best[i]← qi, where Q[i] = {qi}

else if Res = Better then Best← π1

else if Res 6= Worse then
ChoicesLeft← Q[l]; AllChoices← Q[l] (branch on refinement of Q[l])
for j ← 0 to l − 1 do R[j]← Q[j]
for j ← l + 1 to size(Q) do R[j + 1]← Q[j]
while ChoicesLeft 6= ∅ do

u← any element of ChoicesLeft
R[l]← {u}; R[l + 1]← AllChoices \ {u}
Canon1(G, R)
ChoicesLeft← ChoicesLeft \ {u}

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

This algorithm compares the first l numbers of permutations π and Best,
to decide whether π may lead to lexicographical smaller number than
Best.

Algorithm 7.6: Compare(G, π, l)
for j ← 1 to l − 1 do

for i← 0 to j − 1 do
x← AG [Best[i], Best[j]]
y ← AG [π[i], π[j]]
if x < y then return (Worse)
if x > y then return (Better)

return (Equal)

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Pruning with Automorphisms
Let G = (V,E) and π ∈ Sym(V), a permutation on V .
Recall that π is an automorphism of G if it is an isomorphism from G to
itself.
Let A be the adjacency matrix of G and let Aπ the the adjacency matrix
of G with respect to a permutation π, that is, Aπ[i, j] = A[π[i], π[j]], for
all i, j. Then, π is an automorphism of G if and only if Aπ = A.

Theorem

If Numπ1(G) = Numµ(G) then π2 = π1µ
−1 is an automorphism of G.

Proof. Aπ2 [i, j] = Aπ1µ−1 [i, j]

= A[π1µ
−1[i], π1µ

−1[j]]
= Aπ1 [µ−1[i], µ−1[j]] = Aµ[µ−1[i], µ−1[j]]
= A[µµ−1[i], µµ−1[j]] = A[i, j].

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

How to prune with automorphisms?

1 When algorithm Compare returns “equal”, we record one more
automorphism.

2 When branching on the backtracking tree, use known automorphisms
for further pruning.
Example:
Node N0: 1|3|567|024
Children:
N1: 1|3|5|67|024
N2: 1|3|6|57|024
N3: 1|3|7|56|024
If g1 = (24)(56) and g2 = (04)(57) are automorphisms, then
prune N2, since g1(N1) = N2 and
prune N3, since g2(N1) = N3.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

What do we need to compute efficiently in order to prune
with automorphisms?

Store/update information on the automorphisms found so far:
if g1, g2, . . . , gk have been found, store the subgroup S of Aut(G)
generated by g1, g2, . . . , gk.

Quickly determine if partitions
R = q0|q1| · · · |ql−1|u|Q[l]− u| · · · | and
R′ = q0|q1| · · · |ql−1|u′|Q[l]− u′| · · · | are equivalent, that is,
determine if there exists g ∈ S such that g(R) = R′.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Reviewing some group theory

Definition

A group is a set G with operation ∗ such that

1 there exists an identity I ∈ G such that g ∗ I = g for all g ∈ G, and

2 for all g ∈ G there exists an inverse g−1 ∈ G such that g−1 ∗ g = I.

A subgroup S of G is a subset S ⊆ G that is a group.

Theorem (Lagrange)

Let G be a finite group. If H is a subgroup of G then

1 G can be written as G = g1H ∪ g2H ∪ . . . ∪ grH for some
g1, g2, . . . , gr ∈ G (where the unions are disjoint)

2 |H| divides |G|.
We say that T = {g1, g2, . . . , gr} is a system of left coset
representatives or a left transversal of H in G.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Permutation groups and automorphism group

Theorem

Sym(X), the set of all permutations on X, is a group under the operation
of composition of functions.

Theorem

Aut(G), the set of automorphisms of a graph G, is a group under the
operation of composition of functions.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Schreier-Syms representation of a permutation group
Let G be a permutation group on X = {0, 1, . . . , n− 1}, and let

G0 = {g ∈ G : g(0) = 0}
G1 = {g ∈ G0 : g(1) = 1}

...

Gn−1 = {g ∈ Gn−2 : g(n− 1) = n− 1} = I

G ⊇ G0 ⊇ G1 ⊇ G2 · · · ⊇ Gn−1 = I are subgroups.
For all i ∈ {0, 1, 2, . . . , n− 1} (taking G−1 = G),
let orb(i) = {g(i) : g ∈ Gi−1} = {xi,1, xi,2, . . . , xi,ni} and
Ui = {hi,1, hi,2, . . . , hi,ni} such that hi,j(i) = xi,j .
Theorem. Ui is a left transversal of Gi in Gi−1.
The data structure: [U0, U1, . . . , Un−1] is called the Schreier-Syms
representation of the group G.
Any g ∈ G can be uniquely written as g = h0,i0 ∗ h1,i1 ∗ · · · ∗ hn−1,in−1 .

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Useful algorithms from Chapter 6

procedure Enter(n, g, [U0, U1, . . . , Un−1])
Input: n, permutation g, and [U0, U1, . . . , Un−1],

the Schreier-Syms representation of G.
Output: [U ′0, U

′
1, . . . , U

′
n−1], the Schreier-Syms

representation of G′, the group generated
by G and g.

Changing the base: modify the Schreier-Syms representation to work on a
base permutation β.
Redefine Gi = {g ∈ Gi−1 : g(β(i)) = β(i)}.
[β, [U0, U1, . . . , Un−1]] is the (modified) Schreier-Syms representation.

procedure ChangeBase(n, [β, [U0, U1, . . . , Un−1]], β′)
Input: n, [β, [U0, U1, . . . , Un−1]], new basis β′

Ouput: [β′, [U ′0, U
′
1, . . . , U

′
n−1]]

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Algorithm 7.10: Cert2(G, ~G) external Canon2()

Comment: Set ~G to the identity group with base I.
for j ← 0 to n− 1 do Uj ← I;
~G← (I; [U0,U1, . . . ,Un−1]
P ← [{0, 1, 2, . . . , n− 1}]
Canon2(G, ~G, P) (Main algorithm: get Best for canonical adjacency matrix)
(Next steps: Convert matrix for Best into number (certificate) C:
C := NumBest(G) = min{Numπ(G) : π ∈ Π(G)})

k ← 0; C ← 0
for j ← n− 1 downto 1 do

for i← j − 1 downto 0 do
if {Best[i], Best[j]} ∈ E(G) then C ← x+ 2k

k ← k + 1
return (C)

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Algorithm 7.9: Canon2(G, ~G, P) external Refine(), Compare(), Enter2(), ChangeBase()
Refine(n,G, P,Q)
Find the index l of the first block of Q with |Q[l]| > 1
Res← Better
if BestExist then for i← 0 to l − 1 do π1[i]← qi, where Q[i] = {qi}

Res← Compare(G, π1, l)
if Q has n blocks then

if not BestExist then
BestExist← true; for i← 0 to n− 1 do Best[i]← qi, where Q[i] = {qi}

else if Res = Better then Best← π1

else if Res = Equal then for i← 0 to n− 1 do π2[π1[i]]← Best[i]
Enter2(π2, ~G)

else if Res 6= Worse then...
(continue in the next page)

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

(continuing Canon2())

else if Res 6= Worse then
ChoicesLeft← Q[l]; AllChoices← Q[l]
for j ← 0 to l − 1 do R[j]← Q[j]
for j ← l + 1 to size(Q) do R[j + 1]← Q[j]
while ChoicesLeft 6= ∅ do

u← any element of ChoicesLeft
R[l]← {u}; R[l + 1]← AllChoices \ {u}
Canon2(G, ~G,R)
for j ← 0 to l do

β′[j]← r, where R[j] = {r}
for each y 6∈ {β′[0], β′[1], . . . , β′[l]} do

j ← j + 1
β′[j]← y

ChangeBase(n, ~G, β′)
for each g ∈ Ul do

ChoicesLeft← ChoicesLeft \ {g(u)}

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Backtracking for a certificate for general graphs

Using known automorphisms

If we know some or all automorphisms of G we can input the
Schreier-Syms representation of the group generated by these
automorphisms to the algorithm Canon2.
For the previous example, if we input Aut(G), the backtracking tree would
have only 10 nodes instead of 16 (see page 273).

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Combinatorial Objects as Coloured Graphs

Representing other combinatorial objects as coloured
graphs

A coloured graph is a graph G plus an ordered partition P of the vertex
set. For an ordered partition P = [P [1], P [2], . . . , P [l]] of V (G), we write
P (v) for the index of the block of P that vertex v occurs, i. e. P (x) = i if
x ∈ P [i].
Isomorphism of graphs naturally extends to isomorphism of coloured
graphs: an isomorphism of coloured graphs must map vertices of each
colour onto vertices of the same colour.

Definition

Two graphs coloured graphs (G1, P1) and (G2, P2) are isomorphic if there
is an isomorphism f : V (G1)→ V (G2) of G1 and G2 such that
P1(u) = P2(f(u)) for all u ∈ V (G).

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Combinatorial Objects as Coloured Graphs

Isomorphism of set systems
Let (V,B) be a set system (also called incidence structures or hypergraphs)
Define a bipartite graph GV,B with vertex set V ∪ B and with an edge
connecting x ∈ V to B ∈ B if and only if x ∈ B.
This is usually called the point-block incidence graph.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Combinatorial Objects as Coloured Graphs

Isomorphism of set systems (continued)

Then, (V1,B1) ∼ (V2,B2) if and only if GV1,B1 ∼ GV2,B2 with respect to
initial partitions P1 = [V1,B1] and P2 = [V2,B2], respectively.
We can extract the automorphism group of (V,B) from the automorphism
group of GV,B. The automorphism group of (V,B) is the automorphism
group of GV,B restricted to V .

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Combinatorial Objects as Coloured Graphs

Isomorphism of codes

Definition

A q-ary code C of length n is a nonempty subset of Znq ; i.e. C is a set of
vectors/words x of length n with components xi ∈ Zq.

Example: C = {0000, 0011, 0201, 0110} ⊆ Z4
3 is a ternary code with 4

words of length 4.

Coding theory is essential for many engineering and computer science
applications as well as a topic of purely mathematical interest.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Combinatorial Objects as Coloured Graphs

Codes as coloured graphs (see Österg̊ard, Disc. Appl. Math 120 (2002))

For a q-ary code C ⊆ Znq defined coloured graph CG(C):

vertex set: C ∪ {1, 2, . . . , n} × Zq,
edge set: {{x, (i, xi)} : x ∈ C, i ∈ {1, 2, . . . , n}} ∪ {{(j, a), (j, b)} :
j ∈ {1, 2, . . . , n}, a, b ∈ Zq},
vertex colouring: (C, {1, 2, . . . , n} × Zq)

Example: what is the code this graph corresponds to?

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

Introduction Invariants Computing Certificates Other Combinatorial Objects

Combinatorial Objects as Coloured Graphs

Other combinatorial objects
See Kaski & Österg̊ard book (2007) transforming other combinatorial
objects into different coloured graphs:

set systems/incidence structures using incidence (bipartite) graphs as
seen before;

Steiner triple systems using block intersection graphs (for v > 15, the
systems is reconstructible from this graph);

hadamard matrices,

other types of codes.

The advantage of using coloured graphs for isomorphism of other
structures is to use the power of available tools for graph isomorphism
such as “partition refinement+backtracking” algorithms in general (such
as Cert1 and Cert2), and nauty software specifically.
However, in some situations, a tailored approach that works directly with
the object can be more efficient.

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Österg̊ard] Lucia Moura

	Introduction
	Introduction
	Graph isomorphism definitions

	Invariants
	Computing Invariants
	Generating all isomorphisms

	Computing Certificates
	Computing certificates
	Partition refinement and certificates for general graphs
	Backtracking for a certificate for general graphs

	Other Combinatorial Objects
	Combinatorial Objects as Coloured Graphs

