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Knapsack

Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits p0, p1, . . . , pn−1

Weights w0, w1, . . . , wn−1

Knapsack capacity M

Find: and n-tuple [x0, x1, . . . , xn−1] ∈ {0, 1}n
such that P =

∑n−1
i=0 pixi is maximized,

subject to
∑n−1

i=0 wixi ≤M .
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Knapsack

Example

Objects: 1 2 3 4

weight (lb) 8 1 5 4

profit $500 $1,000 $ 300 $ 210

Knapsack capacity: M = 10 lb.

Two feasible solutions and their profit:

x1 x2 x3 x4 profit

1 1 0 0 $ 1,500
0 1 1 1 $ 1,510

This problem is NP-hard.
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Knapsack

Naive Backtracking Algorithm for Knapsack
Examine all 2n tuples and keep the ones with maximum profit.

Global Variables X,OptP, OptX.
Algorithm Knapsack1 (l)

if (l = n) then

if
∑n−1

i=0 wixi ≤M then CurP ←
∑n−1

i=0 pixi;
if (CurP > OptP ) then

OptP ← CurP ;
OptX ← [x0, x1, . . . , xn−1];

else xl ← 1; Knapsack1 (l + 1);
xl ← 0; Knapsack1 (l + 1);

First call: OptP ← −1; Knapsack1 (0).

Running time: 2n n-tuples are checked, and it takes Θ(n) to check each
solution. The total running time is Θ(n2n).
Note: not all n-tuples are feasible but the algorithm will test all (the whole
search tree is examined). We will improve this algorithm!!!
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A General Backtracking Algorithm

A General Backtracking Algorithm

Represent a solution as a list: X = [x0, x1, x2, . . .].
Each xi ∈ Pi (possibility set)

Given a partial solution: X = [x0, x1, . . . , xl−1], we can use
constraints of the problem to limit the choice of xl to Cl ⊆ Pl (choice
set).

By computing Cl we prune the search tree, since for all y ∈ Pl \ Cl the
subtree rooted on [x0, x1, . . . , xl−1, y] is not considered.
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A General Backtracking Algorithm

Part of the search tree for the previous Knapsack example:

wi 8 1 5 4

pi $500 $1,000 $ 300 $ 210
M = 10.
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: pruning

[1] [0]
C2={0,1}

[ ]  C1={0,1}

[1,1]
C3={0}

[1,1,0]  C4={0}

[1,1,0,0]

[1,0]  C3={0}

[1,0,1] [1,0,0] C4={0}

profit=$1,500

[1,0,0,0]

profit= $500

this part 
not shown
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Backtracking Algorithm with Pruning

General Backtracking Algorithm with Pruning

Global Variables X = [x0, x1, . . .], Cl, for l = 0, 1, . . .).

Algorithm Backtrack (l)
if (X = [x0, x1, . . . , xl−1] is a feasible solution) then

“Process it”
Compute Cl;
for each x ∈ Cl do

xl ← x;
Backtrack(l + 1);
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Backtracking Algorithm with Pruning

Backtracking with Pruning for Knapsack

Global Variables X, OptP, OptX.
Algorithm Knapsack2 (l, CurW )

if (l = n) then if (
∑n−1

i=0 pixi > OptP ) then

OptP ←
∑n−1

i=0 pixi;
OptX ← [x0, x1, . . . , xn−1];

if (l = n) then Cl ← ∅
else if (CurW + wl ≤M) then Cl ← {0, 1};

else Cl ← {0};
for each x ∈ Cl do

xl ← x;
Knapsack2 (l + 1, CurW + wlxl);

First call: Knapsack2 (0, 0).
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Generating all cliques

Backtracking: Generating all Cliques

Problem: All Cliques
Instance: a graph G = (V,E).
Find: all cliques of G without repetition

0 1 2

3456

Cliques (and maximal cliques): ∅, {0}, {1}, . . . , {6},
{0, 1}, {0, 6}, {1, 2}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {3, 4}, {5, 6},
{0, 1, 6}, {1, 5, 6}, {2, 3, 4}.

Definition

Clique in G(V,E): C ⊆ V such that for all x, y ∈ C, x 6= y, {x, y} ∈ E.
Maximal clique: a clique not properly contained into another clique.
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Generating all cliques

Many combinatorial problems can be reduced to finding cliques (or the
largest clique):

Largest independent set in G (stable set): is the same as largest
clique in G.

Exact cover of sets by subsets: find clique with special property.

Find a Steiner triple system of order v: find a largest clique in a
special graph.

Find all intersecting set systems: find all cliques in a special graph.

Etc.
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Generating all cliques

In a Backtracking algorithm, X = [x0, x1, . . . , xl−1] is a partial solution
⇐⇒ {x0, x1, . . . , xl−1} is a clique.
But we don’t want ot get the same k-clique k! times:
[0, 1] extends to [0, 1, 6]
[0, 6] extends to [0, 6, 1]

So we require partial solutions for be in sorted order:
x0 < x1 < x2 < . . . < xl−1.

Let Sl−1 = {x0, x1, . . . , xl−1} for X = [x0, x1, . . . , xl−1].
The choice set of this point is:
if l = 0 then C0 = V
if l > 0 then

Cl = {v ∈ V \ Sl−1 : v > xl−1 and {v, x} ∈ E for all x ∈ Sl−1}
= {v ∈ Cl−1 \ {xl−1} : {v, xl−1} ∈ E and v > xl−1}
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Generating all cliques

So,
C0 = V
Cl = {v ∈ Cl−1 \ {xl−1} : {v, xl−1} ∈ E and v > xl−1}, for l > 0

To compute Cl, define:
Av = {u ∈ V : {u, v} ∈ E} (vertices adjacent to v)
Bv = {v + 1, v + 2, . . . , n− 1} (vertices larger than v)
Cl = Axl−1

∩Bxl−1
∩ Cl−1.

To detect if a clique is maximal (set inclusionwise):
Calculate Nl, the set of vertices that can extend Sl−1:
N0 = V
Nl = Nl−1 ∩Axl−1

.
Sl−1 is maximal ⇐⇒ Nl = ∅.
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Generating all cliques

Algorithm AllCliques(l)
Global: X, Cl(l = 0, . . . , n− 1), Al, Bl pre-computed.

if (l = 0) then output ([ ]);
else output ([x0, x1, . . . , xl−1]);

if (l = 0) then Nl ← V ;
else Nl ← Axl−1

∩Nl−1;
if (Nl = ∅) then output (“maximal”);
if (l = 0) then Cl ← V ;

else Cl ← Axl−1
∩Bxl−1

∩ Cl−1;
for each (x ∈ Cl) do

xl ← x;
AllCliques(l + 1);

First call: AllCliques(0).

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura



Backtracking Intro Generating all cliques Estimating tree size Exact Cover Bounding Branch-and-Bound

Average Case Analysis of AllCliques

Average Case Analysis of AllCliques
Let G be a graph with n vertices and
let c(G) be the number of cliques in G.

The running time for AllCliques for G is in O(nc(G)),
since O(n) is an upper bound for the running time at a node,
and c(G) is the number of nodes visited.

Let Gn be the set of all graphs on n vertices.

|Gn| = 2(n
2) (bijection between Gn and all subsets of the set of unordered

pairs of {1, 2, . . . , n}).

Assume the graphs in Gn are equally likely inputs for the algorithm (that
is, assume uniform probability distribution on Gn).
Let T (n) be the average running time of AllCliques for graphs in Gn.
We will calculate T (n).
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Average Case Analysis of AllCliques

T (n) = the average running time of AllCliques for graphs in Gn.
Let c(n) be the average number of cliques in a graph in Gn.

Then, T (n) ∈ O(nc(n)).

So, all we need to do is estimating c(n).

c(n) =

∑
G∈Gn

c(G)
|Gn|

=
1

2(n
2)

∑
G∈Gn

c(G).

We will show that:

c(n) ≤ (n + 1)nlog2 n, for n ≥ 4.
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Average Case Analysis of AllCliques

Skeetch of the Proof:
Define the indicator function, for each sunset W ⊆ V :

X (G, W ) =
{

1, if W is a clique of G
0, otherwise

Then,

c(n) =
1

2(n
2)

∑
G∈Gn

c(G)

=
1

2(n
2)

∑
G∈Gn

∑
W⊆V

X (G, W )


=

1

2(n
2)

∑
W⊆V

∑
G∈Gn

X (G, W )
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Average Case Analysis of AllCliques

Now, for fixed W ,
∑

G∈Gn
X (G, W ) = 2(n

2)−(|W |2 ).

(Number of subsets of
(
V
2

)
containing edges of W )

c(n) =
1

2(n
2)

∑
W⊆V

2(n
2)−(|W |2 )

=
1

2(n
2)

n∑
k=0

(
n

k

)
2(n

2)−(k
2) =

n∑
k=0

(
n
k

)
2(k

2)
.

So, c(n) =
∑n

k=0 tk, where tk = (n
k)

2(
k
2)

.

A technical part of the proof bounds tk as follows: tk ≤ nlog2 n

(see the textbook for details)
So, c(n) =

∑n
k=0 tk ≤

∑n
k=0 nlog2 n = (n + 1)nlog2 n ∈ O(nlog2 n+1).

Thus, T (n) ∈ O(nc(n)) ⊆ O(nlog2 n+2).
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Estimating the size of a Backtrack tree

Estimating the size of a Backtrack tree

State Space Tree: tree size = 10

a

b c

d
e

f g h

i j

P1 P2

Probing path P1: Probing path P2:
Estimated tree size: N(P1) = 15 Estimated tree size: N(P2) = 9
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Estimating the size of a Backtrack tree

P1

P2

Probing path P1: Probing path P2:
Estimated tree size: N(P1) = 15 Estimated tree size: N(P2) = 9
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Estimating the size of a Backtrack tree

Game for chosing a path (probing):
At each node of the tree, pick a child node uniformly at random.
For each leaf L, calculate P (L), the probability that L is reached.
We will prove later that the expected value of N of N(L) turns out to be
the size of the space state tree. Of course,

N =
∑

L leaf

P (L)N(L) (by definition)
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Estimating the size of a Backtrack tree

In the previous example, consider T (number is estimated number of
nodes at this level)

L3

L4 L5 L6

L2

1

4 6

88

6 64

L1

2 2

P (L1) = 1/4, P (L2) = P (L3) = 1/8, P (L4) = P (L5) = P (L6) = 1/6
N(L1) = 1 + 2 + 4 = 7 N(L2) = N(L3) = 1 + 2 + 4 + 8 = 15
N(L4) = N(L5) = N(L6) = 1 + 2 + 6 = 9

N =
6∑

i=1

P (Li)N(Li) =
1
4
× 7 + 2× (

1
8
× 15) + 3× (

1
6
× 9) = 10 = |T |
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Estimating the size of a Backtrack tree

In practice, to estimate N , do k probes L1, L2, . . . , Lk, and calculate the
average of N(Li):

Nest =
∑k

i=1 N(Li)
k

Algorithm EstimateBacktrackSize()
s← 1; N ← 1; l← 0;
Compute C0;
while Cl 6= ∅) do

c← |Cl|;
s← c ∗ s;
N ← N + s;
xl ← a random element of Cl;
Compute Cl+1 for [x0, x1, . . . , xl];
l← l + 1;

return N ;

L3

L4 L5 L6

L2

1

4 6

88

6 64

L1

2 2

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura



Backtracking Intro Generating all cliques Estimating tree size Exact Cover Bounding Branch-and-Bound

Estimating the size of a Backtrack tree

In the example below, doing only 2 probes:

a

b c

d
e

f g h

i j

P1 P2

P1: l Cl c xl s N

1 1
0 b, c 2 b 2 3
1 d, e 2 e 4 7
2 i, j 2 i 8 15
3 ∅

P1: l Cl c xl s N

1 1
0 b, c 2 c 2 3
1 f, g, h 3 g 6 9
2 ∅

Based on these 2 probes the estimated size of the tree is:

Nest =
15 + 9

2
= 12.
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Estimating the size of a Backtrack tree

Theorem

For a state space tree T , let P be the path probed by the algorithm
EstimateBacktrackSize.
If N = N(P ) is the value returned by the algorithm, then the expected
value of N is |T |.

Proof.
Define the following function on the nodes of T :

S([x0, x1, . . . , xl−1]) =
{

1, if l = 0
|Cl−1| × S([x0, x1, . . . , xl−2])

(s← c ∗ s in the algorithm)
The algorithm computes: N(P ) =

∑
Y ∈P S(Y ).

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura



Backtracking Intro Generating all cliques Estimating tree size Exact Cover Bounding Branch-and-Bound

Estimating the size of a Backtrack tree

P = P (X) is a path in T from root to leaf X, say X = [x0, x1, . . . , xl−1].
Call Xi = [x0, x1, . . . , xi].
The probability that P (X) chosen is:

1
|C0(x0)|

× 1
|C1(x1)|

× . . .× 1
|Cl−1(xl−1)|

=
1

S(X)
.

So,

N =
∑

X∈L(T )

prob(P (X))×N(P (X))

=
∑

X∈L(T )

1
S(X)

∑
Y ∈P (X)

S(Y )

=
∑
Y ∈T

∑
{X∈L(T ):Y ∈P (X)}

S(Y )
S(X)

=
∑
Y ∈T

S(Y )
∑

{X∈L(T ):Y ∈P (X)}

1
S(X)
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Estimating the size of a Backtrack tree

We claim that:
∑
{X∈L(T ):Y ∈P (X)}

1
S(X) = 1

S(Y ) .

Proof of the claim:
Let Y be a non-leaf. If Z is a child of Y and Y has c children, then
S(Z) = c× S(Y ).
So, ∑

{Z:Z is a child of Y }

1
S(Z)

= c× 1
c× S(Y )

=
1

S(Y )

Iterating this equation until all Z’s are leafs:

1
S(Y )

=
∑

{X:X is a leaf descendant of Y }

1
S(X)

So the claim is proved!
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Estimating the size of a Backtrack tree

Thus,

N =
∑
Y ∈T

S(Y )
∑

{X∈L(T ):Y ∈P (X)}

1
S(X)

=
∑
Y ∈T

S(Y )
1

S(Y )

=
∑
Y ∈T

1 = |T |.

The theorem is thus proved!
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Exact Cover

Exact Cover

Problem: Exact Cover
Instance: a collection S of subsets of R = {0, 1, . . . , n− 1}.
Question: Does S contain an exact cover of R

Rephrasing the question:
Does there exist S ′ = {Sx0 , Sx1 , . . . , Sxl−1

} ⊆ S such that every element
of R is contained in exactly one set of S ′?

Transforming into a clique problem:
S = {S0, S1, . . . , Sm−1}
Define: G(V,E) in the following way: V = {0, 1, , . . . , m− 1}
{i, j} ∈ E ⇐⇒ Si ∩ Sj = ∅
An exact cover of R is a clique of G that covers R.
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Exact Cover

Good ordering on S for prunning:
S sorted in decreasing lexicographical ordering.
Choice set:

C′0 = V

C′l = Axl−1
∩Bxl−1

∩ C′l−1, if l > 0,

where

Ax = {y ∈ V : Sy ∩ Sx = ∅} (vertices adjacent to x)
Bx = {y ∈ V : Sx >lex Sy}

Further pruning will be used to reduce C′l by removing Hr’s, which will be
defined later.
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Exact Cover

Example: (corrected from book page 121)

j Sj rank(Sj) Aj ∩Bj corrected?

0 0,1,3, 104 10 Y
1 0,1,5 98 12
2 0,2,4 84 7,9 Y
3 0,2,5 82 8,9,12 Y
4 0,3,6 73 5,9 Y

5 1,2,4 52 ∅
6 1,2,6 49 11 Y
7 1,3,5 42 ∅ Y
8 1,4,6 37 ∅
9 1 32 10,11,12

10 2,5,6 19 ∅
11 3,4,5 14 ∅
12 3,4,6 13 ∅
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Exact Cover

i 0 1 2 3 4 5 6

Hi 0,1,2,3,4 5,6,7,8,9 10 11,12 ∅ ∅ ∅

[0] [3]

[ ]

[0,10]

[1] [2]

[2,7] [2,9] [3,8] [3,9]

[4]

[4,5] [4,9]

[3,9,12]

solution
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Exact Cover

ExactCover (n,S)
Global X, Cl, l = (0, 1, . . .)
Procedure ExactCoverBT(l, r′)

if (l = 0) then U0 ← {0, 1, . . . , n− 1};
r ← 0;

else Ul ← Ul−1 \ Sxl−1
;

r ← r′;
while (r 6∈ Ul) and (r < n) do r ← r + 1;

if (r = n) then output ([x0, x1, . . . , xl−1]).
if (l = 0) then C′0 ← {0, 1, . . . ,m− 1};

else C′l ← Axl−1
∩Bxl−1

∩ C′l−1;
Cl ← C′l ∩Hr;
for each (x ∈ Cl) do

xl ← x;
ExactCoverBT(l + 1, r);
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Exact Cover

Main
m← |S|;
Sort S in decreasing lexico order
for i← 0 to m− 1 do

Ai ← {j : Si ∩ Sj = ∅};
Bi ← {i + 1, i + 2, . . . ,m− 1};

for i← 0 to n− 1 do
Hi ← {j : Sj ∩ {0, 1, . . . , i} = {i}};

Hn ← ∅;
ExactCoverBT(0, 0);

( Ui contains the uncovered elements at level i.
r is the smallest uncovered in Ui.)
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Backtracking with bounding

Backtracking with bounding
When applying backtracking for an optimization problem, we use
bounding for prunning the tree.
Let us consider a maximization problem.
Let profit(X) = profit for a feasible solution X.
For a partial soluion X = [x0, x1, . . . , xl−1], define

P (X) = max { profit(X ′) : for all feasible solutions
X ′ = [x0, x1, . . . , xl−1, x

′
l, . . . , x

′
n−1] }.

A bounding function B is a real valued function defined on the nodes of
the space state tree, such that for any feasible solution X, B(X) ≥ P (X).
B(X) is an upper boud on the profit of any feasible solution that is
descendant of X in the state space tree.
If the current best solution found has value OptP , then we can prune
nodes X with B(X) ≤ OptP , since P (X) ≤ B(X) ≤ OptP , that is, no
descendant of X will improve on the current best solution.
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Backtracking with bounding

General Backtracking with Bounding

Algorithm Bounding(l)
Global X, OptP , OptX, Cl, l = (0, 1, . . .)
if ([x0, x1, . . . , xl−1] is a feasible solution) then

P ← profit([x0, x1, . . . , xl−1]);
if (P > OptP ) then

OptP ← P ;
OptX ← [x0, x1, . . . , xl−1];

Compute Cl;
B ← B([x0, x1, . . . , xl−1]);
for each (x ∈ Cl) do

if B ≤ OptP then return;
xl ← x;
Bounding(l + 1)
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Maxclique problem

Maximum Clique Problem

Problem: Maximum Clique (optimization)
Instance: a graph G = (V,E).
Find: a maximum clique of G.

This problem is NP-complete.

5

6

4

1

2 3 Maximum cliques:

{2,3,4,5}, {3,4,5,6}
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Maxclique problem

Modification of AllCliques to find the maximum clique (no bounding).
Blue adds bounding to this algorithm.

Algorithm MaxClique(l)
Global: X, Cl(l = 0, . . . , n− 1), Al, Bl pre-computed.

if (l > OptSize) then
OptSize← l;
OptClique← [x0, x1, . . . , xl−1];

if (l = 0) then Cl ← V ;
else Cl ← Axl−1

∩Bxl−1
∩ Cl−1;

M← B([x0,x1, . . . ,xl−1]);
for each (x ∈ Cl) do

if (M ≤ OptSize) then return;
xl ← x; MaxClique(l + 1);

Main
OptSize← 0; MaxClique(0);
output OptClique;
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Maxclique problem

Bounding Functions for MaxClique

Definition

Induced Subgraph
Let G = (V,E) and W ⊆ V . The subgraph induced by W , G[W ], has
vertex set W and edgeset: {{u, v} ∈ E : u, v ∈W}.

If we have:
partial solution: X = [x0, x1, . . . , xl−1] with choice set Cl,
extension solution X = [x0, x1, . . . , xl−1, xl, . . . , xj ],
Then {xl, . . . , xj} must be a clique in G[Cl].
Let mc(l) denote the size of a maximum clique in G[Cl], and let ub(l) be
an upper bound on mc(l).
Then, a general bounding function is B(X) = l + ub[l].
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Maxclique problem

Bound based on size of subgraph

General bounding function: B(X) = l + ub[l].

Since mc(l) ≤ |Cl|, we derive the bound:

B1(X) = l + |Cl|.
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Maxclique problem

Bounds based on colouring

Definition (Vertex Colouring)

Let G = (V,E) and k a positive integer. A (vertex) k-colouring of G is a
function

Color: V → {0, 1, . . . , k − 1}
such that, for all {x, y} ∈ E, Color(x) 6=Color(y).

Example: a 3-colouring of a graph:

�
�
�
�

�
�
�
�

�
�
�
�

5

6

4

1

2 3

colour 0

colour 1

colour 2
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Maxclique problem

Lemma

If G has a k-colouring, then the maximum clique of G has size at most k.

Proof. Let C be a clique. Each x ∈ C must have a distinct colour. So,
|C| ≤ k. This is true for any clique, in particular for the maximum clique.
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Maxclique problem

Finding the minimum colouring gives the best upper bound, but it is a hard
problem. We will use a greedy heuristic for finding a small colouring.
Define ColourClass[h] = {i ∈ V : Colour[i] = h}.

GreedyColour(G = (V,E))
Global Colour
k ← 0; // colours used so far
for i← 0 to n− 1 do

h← 0;
while (h < k) and (Ai∩ColourClass[h] 6= ∅) do

h← h + 1;
if (h = k) then k ← k + 1;

ColourClass[h]← ∅;
ColourClass[h]←ColourClass[h] ∪ {i};
Colour[i] = h;

return k;
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Maxclique problem

Sampling Bound:
Statically, beforehand, run GreedyColour(G), determining k and
Colour[x] for all x ∈ V .

SamplingBound(X = [x0, x1, . . . , xl−1])
Global Cl, Colour
return l + |{Colour[x] : x ∈ Cl}|;

Greedy Bound:
Call GreedyColour dynamically.

GreedyBound(X = [x0, x1, . . . , xl−1])
Global Cl
k ←GreedyColour(G[Cl]);
return l + k;
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Maxclique problem

(may scan the table later...)

Here I discuss the performance for random graphs, comparing the 3
bounds seen.
Please, refer to Tables 4.4 and 4.5 in the textbook.
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Branch-and-bound

Branch-and-bound

The book presents branch-and-bound as a variation of backtracking in
which the choice set is tried in decreasing order of bounds.

However, branch-and-bound is usually a more general scheme.

It often involves keeping all active nodes in a priority queue, and processing
nodes with higher priority first (priority is given by upper bound).

Next we look at the book’s version of branch-and-bound.
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Branch-and-bound

Algorithm BranchAndBound(l)
external B(), profit(); global Cl (l = 0, 1, . . .)
if ([x0, x1, . . . , xl−1] is a feasible solution) then

P ←Profit([x0, x1, . . . , xl−1])
if (P > OptP ) then OptP ← P ;

OptX ← [x0, x1, . . . , xl−1];
Compute Cl; count← 0;
for each (x ∈ Cl) do

nextchoice[count]← x;
nextbound[count]← B([x0, x1, . . . , xl−1, x]);
count← count + 1;

Sort nextchoice and nextbound by decreasing order of nextbound;
for i← 0 to count− 1 do

if (nextbound[i] ≤ OptP ) then return;
xl ← nextchoice[i];
BranchAndBound(l + 1);

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura


	Backtracking Intro
	Knapsack
	A General Backtracking Algorithm
	Backtracking Algorithm with Pruning

	Generating all cliques
	Generating all cliques
	Average Case Analysis of AllCliques

	Estimating tree size
	Estimating the size of a Backtrack tree

	Exact Cover
	Exact Cover

	Bounding
	Backtracking with bounding
	Maxclique problem

	Branch-and-Bound
	Branch-and-bound


