	Generating all cliques			
000 00 00	00000		00	

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Winter 2009

Backtracking Intro ●00 ○0 ○0	Generating all cliques 00000 0000		Bounding 00 000000000	

Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits $p_0, p_1, \ldots, p_{n-1}$ Weights $w_0, w_1, \ldots, w_{n-1}$ Knapsack capacity M

Find: and *n*-tuple $[x_0, x_1, \ldots, x_{n-1}] \in \{0, 1\}^n$ such that $P = \sum_{i=0}^{n-1} p_i x_i$ is maximized, subject to $\sum_{i=0}^{n-1} w_i x_i \leq M$.

Backtracking Intro	Generating all cliques 00000 0000		Bounding 00 000000000	

Objects:	1	2	3	4
weight (lb)	8	1	5	4
profit	\$500	\$1,000	\$ 300	\$ 210

Knapsack capacity: M = 10 lb.

Two feasible solutions and their profit:

x_1	x_2	x_3	x_4	profit
1	1	0	0	\$ 1,500
0	1	1	1	\$ 1,510

This problem is NP-hard.

Backtracking Intro	Generating all cliques	Estimating tree size		
000 00 00	00000		0000000000	
Knapsack				

Naive Backtracking Algorithm for Knapsack Examine all 2^n tuples and keep the ones with maximum profit.

```
Global Variables X, OptP, OptX.

Algorithm KNAPSACK1 (l)

if (l = n) then

if \sum_{i=0}^{n-1} w_i x_i \leq M then CurP \leftarrow \sum_{i=0}^{n-1} p_i x_i;

if (CurP > OptP) then

OptP \leftarrow CurP;

OptX \leftarrow [x_0, x_1, \dots, x_{n-1}];

else x_l \leftarrow 1; KNAPSACK1 (l + 1);

x_l \leftarrow 0; KNAPSACK1 (l + 1);
```

First call: $OptP \leftarrow -1$; KNAPSACK1 (0).

Running time: 2^n *n*-tuples are checked, and it takes $\Theta(n)$ to check each solution. The total running time is $\Theta(n2^n)$.

Backtracking Intro			Branch-and-Bound
00 00			
A General Backtracking			

A General Backtracking Algorithm

- Represent a solution as a list: $X = [x_0, x_1, x_2, \ldots]$.
- Each $x_i \in P_i$ (possibility set)
- Given a partial solution: $X = [x_0, x_1, \dots, x_{l-1}]$, we can use constraints of the problem to limit the choice of x_l to $C_l \subseteq P_l$ (choice set).
- By computing C_l we prune the search tree, since for all $y \in P_l \setminus C_l$ the subtree rooted on $[x_0, x_1, \ldots, x_{l-1}, y]$ is not considered.

Backtracking Intro	Generating all cliques		
000			
00 00			
A General Backtracking	Algorithm		

Part of the search tree for the previous Knapsack example:

Exhaustive Generation: Backtracking and Branch-and-bound

Backtracking Intro	Generating all cliques		
00			
Backtracking Algorithm	with Pruning		

General Backtracking Algorithm with Pruning

Global Variables $X = [x_0, x_1, \ldots]$, C_l , for $l = 0, 1, \ldots)$.

Algorithm BACKTRACK (l)if $(X = [x_0, x_1, \dots, x_{l-1}]$ is a feasible solution) then "Process it" Compute C_l ; for each $x \in C_l$ do $x_l \leftarrow x$; BACKTRACK(l + 1);

Backtracking Intro	Generating all cliques		
00			
Backtracking Algorithm	with Pruning		

Backtracking with Pruning for Knapsack

```
Global Variables X, OptP, OptX.
Algorithm KNAPSACK2 (l, CurW)
     if (l = n) then if (\sum_{i=0}^{n-1} p_i x_i > OptP) then
                            OptP \leftarrow \sum_{i=0}^{n-1} p_i x_i;
                             OptX \leftarrow [x_0, x_1, \dots, x_{n-1}]:
     if (l = n) then C_l \leftarrow \emptyset
      else if (CurW + w_l \le M) then C_l \leftarrow \{0, 1\};
                                         else C_l \leftarrow \{0\}:
      for each x \in C_l do
          x_{l} \leftarrow x_{i}
          KNAPSACK2 (l+1, CurW + w_lx_l);
```

First call: KNAPSACK2 (0,0).

Backtracking Intro 000 00 00	Generating all cliques •0000 0000		Bounding 00 000000000	
Generating all cliques				

Backtracking: Generating all Cliques

Cliques (and <u>maximal</u> cliques): \emptyset , {0}, {1}, ..., {6}, {0,1}, {0,6}, $\underline{\{1,2\}}, \{1,5\}, \{1,6\}, \{2,3\}, \{2,4\}, \{3,4\}, \{5,6\}, {0,1,6}, {1,5,6}, {2,3,4}.$

Definition

Clique in G(V, E): $C \subseteq V$ such that for all $x, y \in C$, $x \neq y$, $\{x, y\} \in E$. Maximal clique: a clique not properly contained into another clique.

Backtracking Intro 000 00 00	Generating all cliques ○●○○○ ○○○○		Bounding 00 000000000	
Generating all cliques				

• Largest independent set in G (stable set): is the same as largest clique in \overline{G} .

Backtracking Intro 000 00 00	Generating all cliques ○●○○○ ○○○○		Bounding 00 000000000	
Generating all cliques				

- Largest independent set in G (stable set): is the same as largest clique in \overline{G} .
- Exact cover of sets by subsets: find clique with special property.

Backtracking Intro 000 00 00	Generating all cliques ○●○○○ ○○○○		Bounding 00 000000000	
Generating all cliques				

- Largest independent set in G (stable set): is the same as largest clique in \overline{G} .
- Exact cover of sets by subsets: find clique with special property.
- Find a Steiner triple system of order v: find a largest clique in a special graph.

Backtracking Intro 000 00 00	Generating all cliques ○●○○○ ○○○○		Bounding 00 000000000	
Generating all cliques				

- Largest independent set in G (stable set): is the same as largest clique in \overline{G} .
- Exact cover of sets by subsets: find clique with special property.
- Find a Steiner triple system of order v: find a largest clique in a special graph.
- Find all intersecting set systems: find all cliques in a special graph.

Backtracking Intro 000 00 00	Generating all cliques ○●○○○ ○○○○		Bounding 00 000000000	
Generating all cliques				

- Largest independent set in G (stable set): is the same as largest clique in \overline{G} .
- Exact cover of sets by subsets: find clique with special property.
- Find a Steiner triple system of order v: find a largest clique in a special graph.
- Find all intersecting set systems: find all cliques in a special graph.
- Etc.

Backtracking Intro 000 00	Generating all cliques ○○●○○ ○○○○			Bounding 00 000000000	
Generating all cliques					
In a Backtra $\iff \{x_0, x $ But we don'	acking algorithm $1, \ldots, x_{l-1}$ is a t want ot get th	, $X = [x_0, x_1, .$ clique. ne same k -cliqu	$\ldots, x_{l-1}]$ is e $k!$ times:	s a partial	solution
[0,1] extend	s to $\left[0,1,6 ight]$				
[0,6] extend	s to $[0, 6, 1]$				

So we require partial solutions for be in sorted order: $x_0 < x_1 < x_2 < \ldots < x_{l-1}$.

Let
$$S_{l-1} = \{x_0, x_1, \dots, x_{l-1}\}$$
 for $X = [x_0, x_1, \dots, x_{l-1}]$.
The **choice set** of this point is:
if $l = 0$ then $C_0 = V$
if $l > 0$ then

$$\mathcal{C}_{l} = \{ v \in V \setminus S_{l-1} : v > x_{l-1} \text{ and } \{v, x\} \in E \text{ for all } x \in S_{l-1} \} \\ = \{ v \in \mathcal{C}_{l-1} \setminus \{x_{l-1}\} : \{v, x_{l-1}\} \in E \text{ and } v > x_{l-1} \}$$

Backtracking Intro 000 00 00	Generating all cliques 000●0 0000		Bounding 00 000000000	
Generating all cliques				

So,

$$C_0 = V$$

 $C_l = \{v \in C_{l-1} \setminus \{x_{l-1}\} : \{v, x_{l-1}\} \in E \text{ and } v > x_{l-1}\}, \text{ for } l > 0$

To compute
$$C_l$$
, define:
 $A_v = \{u \in V : \{u, v\} \in E\}$ (vertices adjacent to v)
 $B_v = \{v + 1, v + 2, ..., n - 1\}$ (vertices larger than v)
 $C_l = A_{x_{l-1}} \cap B_{x_{l-1}} \cap C_{l-1}$.

To detect if a clique is maximal (set inclusionwise): Calculate N_l , the set of vertices that can extend S_{l-1} : $N_0 = V$ $N_l = N_{l-1} \cap A_{x_{l-1}}$. S_{l-1} is maximal $\iff N_l = \emptyset$.

Backtracking Intro 000 00 00	Generating all cliques 0000● 0000		Bounding 00 000000000	
Generating all cliques				

Algorithm ALLCLIQUES(l)Global: X, $C_l(l = 0, ..., n - 1)$, A_l , B_l pre-computed.

$$\begin{array}{l} \text{if } (l=0) \text{ then output } ([\]); \\ & \text{else output } ([x_0,x_1,\ldots,x_{l-1}]); \\ \text{if } (l=0) \text{ then } N_l \leftarrow V; \\ & \text{else } N_l \leftarrow A_{x_{l-1}} \cap N_{l-1}; \\ \text{if } (N_l=\emptyset) \text{ then output ("maximal");} \\ \text{if } (l=0) \text{ then } \mathcal{C}_l \leftarrow V; \\ & \text{else } \mathcal{C}_l \leftarrow A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}_{l-1}; \\ \text{for each } (x \in \mathcal{C}_l) \text{ do} \\ & x_l \leftarrow x; \\ \text{ALLCLIQUES}(l+1); \\ \end{array}$$

First call: ALLCLIQUES(0).

Backtracking Intro 000 00 00	Generating all cliques ○○○○○ ●○○○		Bounding 00 000000000	
Average Case Analysis	of ALLCHOUES			

Average Case Analysis of ALLCLIQUES

Let G be a graph with n vertices and let c(G) be the number of cliques in G.

The running time for ALLCLIQUES for G is in O(nc(G)), since O(n) is an upper bound for the running time at a node, and c(G) is the number of nodes visited.

Let \mathcal{G}_n be the set of all graphs on n vertices. $|\mathcal{G}_n| = 2^{\binom{n}{2}}$ (bijection between \mathcal{G}_n and all subsets of the set of unordered pairs of $\{1, 2, \ldots, n\}$).

Assume the graphs in \mathcal{G}_n are equally likely inputs for the algorithm (that is, assume uniform probability distribution on \mathcal{G}_n). Let T(n) be the average running time of ALLCLIQUES for graphs in \mathcal{G}_n . We will calculate T(n).

Backtracking Intro 000 00 00	Generating all cliques ○○○○○ ○●○○		Bounding 00 000000000	
Average Case Analysis	of AllCliques			

T(n) = the average running time of ALLCLIQUES for graphs in \mathcal{G}_n . Let $\overline{c}(n)$ be the average number of cliques in a graph in \mathcal{G}_n .

Then, $T(n) \in O(n\overline{c}(n))$.

So, all we need to do is estimating $\overline{c}(n)$.

$$\overline{c}(n) = \frac{\sum_{G \in \mathcal{G}_n} c(G)}{|\mathcal{G}_n|} = \frac{1}{2^{\binom{n}{2}}} \sum_{G \in \mathcal{G}_n} c(G).$$

We will show that:

$$\overline{c}(n) \le (n+1)n^{\log_2 n}$$
, for $n \ge 4$.

Backtracking Intro 000 00 00	Generating all cliques ○○○○○ ○○●○		Bounding 00 000000000	
Average Case Analysis o				

Skeetch of the Proof:

Define the indicator function, for each sunset $W \subseteq V$:

$$\mathcal{X}(G, W) = \begin{cases} 1, & \text{if } W \text{ is a clique of } G \\ 0, & \text{otherwise} \end{cases}$$

Then,

$$\overline{c}(n) = \frac{1}{2^{\binom{n}{2}}} \sum_{G \in \mathcal{G}_n} c(G)$$
$$= \frac{1}{2^{\binom{n}{2}}} \sum_{G \in \mathcal{G}_n} \left(\sum_{W \subseteq V} \mathcal{X}(G, W) \right)$$
$$= \frac{1}{2^{\binom{n}{2}}} \sum_{W \subseteq V} \sum_{G \in \mathcal{G}_n} \mathcal{X}(G, W)$$

(▲ 문) (▲ 문)

____ ▶

Backtracking Intro 000 00 00	Generating all cliques ○○○○○ ○○○●		Bounding 00 000000000	

Average Case Analysis of ALLCLIQUES

Now, for fixed W, $\sum_{G \in \mathcal{G}_n} \mathcal{X}(G, W) = 2^{\binom{n}{2} - \binom{|W|}{2}}$. (Number of subsets of $\binom{V}{2}$ containing edges of W)

$$\overline{c}(n) = \frac{1}{2^{\binom{n}{2}}} \sum_{W \subseteq V} 2^{\binom{n}{2} - \binom{|W|}{2}}$$
$$= \frac{1}{2^{\binom{n}{2}}} \sum_{k=0}^{n} \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2}} = \sum_{k=0}^{n} \frac{\binom{n}{k}}{2^{\binom{k}{2}}}$$

So, $\overline{c}(n) = \sum_{k=0}^{n} t_k$, where $t_k = \frac{\binom{n}{k}}{2\binom{k}{2}}$.

A technical part of the proof bounds t_k as follows: $t_k \leq n^{\log_2 n}$ (see the textbook for details) So, $\overline{c}(n) = \sum_{k=0}^{n} t_k \leq \sum_{k=0}^{n} n^{\log_2 n} = (n+1)n^{\log_2 n} \in O(n^{\log_2 n+1})$. Thus, $T(n) \in O(n\overline{c}(n)) \subseteq O(n^{\log_2 n+2})$.

Backtracking Intro 000 00	Generating all cliques 00000 0000	Estimating tree size ●000000000		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

Estimating the size of a Backtrack tree

State Space Tree: tree size = 10

Probing path P_1 : Estimated tree size: $N(P_1) = 15$ Estimated tree size: $N(P_2) = 9$

Probing path P_2 :

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size ○●○○○○○○○○		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

Probing path P_1 : Estimated tree size: $N(P_1) = 15$ Estimated tree size: $N(P_2) = 9$

Probing path P_2 :

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size 00●0000000		Bounding 00 000000000		
Estimating the size of a Backtrack tree						

Game for chosing a path (probing):

At each node of the tree, pick a child node uniformly at random.

For each leaf L, calculate P(L), the probability that L is reached.

We will prove later that the expected value of \overline{N} of N(L) turns out to be the size of the space state tree. Of course,

$$\overline{N} = \sum_{L \text{ leaf}} P(L)N(L) \qquad \text{(by definition)}$$

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size 000●000000		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

In the previous example, consider T (number is estimated number of nodes at this level)

$$\begin{split} P(L_1) &= 1/4, \ P(L_2) = P(L_3) = 1/8, \ P(L_4) = P(L_5) = P(L_6) = 1/6\\ N(L_1) &= 1+2+4 = 7 \quad N(L_2) = N(L_3) = 1+2+4+8 = 15\\ N(L_4) &= N(L_5) = N(L_6) = 1+2+6 = 9 \end{split}$$

$$\overline{N} = \sum_{i=1}^{6} P(L_i)N(L_i) = \frac{1}{4} \times 7 + 2 \times (\frac{1}{8} \times 15) + 3 \times (\frac{1}{6} \times 9) = 10 = |T|$$

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size	Bounding 00 000000000	
Estimating the size of a				

In practice, to estimate \overline{N} , do k probes L_1, L_2, \ldots, L_k , and calculate the average of $N(L_i)$:

$$N_{est} = \frac{\sum_{i=1}^{k} N(L_i)}{k}$$

Algorithm ESTIMATEBACKTRACKSIZE()

$$\begin{split} s \leftarrow 1; \ N \leftarrow 1; \ l \leftarrow 0; \\ \text{Compute } \mathcal{C}_0; \\ \text{while } \mathcal{C}_l \neq \emptyset) \text{ do } \\ c \leftarrow |\mathcal{C}_l|; \\ s \leftarrow c * s; \\ N \leftarrow N + s; \\ x_l \leftarrow \text{ a random element of } \mathcal{C}_l; \\ \text{Compute } \mathcal{C}_{l+1} \text{ for } [x_0, x_1, \dots, x_l]; \\ l \leftarrow l+1; \\ \text{return } N; \end{split}$$

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

In the example below, doing only 2 probes:

P_1 :	l	\mathcal{C}_l	c	x_l	s	N	P_1 :	l	\mathcal{C}_l	c	x_l	s	N
					1	1						1	1
	0	b, c	2	b	2	3		0	b, c	2	c	2	3
	1	d, e	2	e	4	7		1	f,g,h	3	g	6	<u>9</u>
	2	i, j	2	i	8	<u>15</u>		2	Ø				
	3	Ø											

	Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size 000000●000		Bounding 00 000000000	
Estimating the size of a Backtrack tree						

Theorem

For a state space tree T, let P be the path probed by the algorithm ESTIMATEBACKTRACKSIZE.

If N = N(P) is the value returned by the algorithm, then the expected value of N is |T|.

Proof.

Define the following function on the nodes of T:

$$S([x_0, x_1, \dots, x_{l-1}]) = \begin{cases} 1, & \text{if } l = 0\\ |\mathcal{C}_{l-1}| \times S([x_0, x_1, \dots, x_{l-2}]) \end{cases}$$

 $(s \leftarrow c * s \text{ in the algorithm})$ The algorithm computes: $N(P) = \sum_{Y \in P} S(Y)$.

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size 0000000000		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

P = P(X) is a path in T from root to leaf X, say $X = [x_0, x_1, \dots, x_{l-1}]$. Call $X_i = [x_0, x_1, \dots, x_i]$. The probability that P(X) chosen is:

$$\frac{1}{|\mathcal{C}_0(x_0)|} \times \frac{1}{|\mathcal{C}_1(x_1)|} \times \ldots \times \frac{1}{|\mathcal{C}_{l-1}(x_{l-1})|} = \frac{1}{S(X)}.$$

So,

$$\begin{split} \overline{N} &= \sum_{X \in \mathcal{L}(T)} prob(P(X)) \times N(P(X)) \\ &= \sum_{X \in \mathcal{L}(T)} \frac{1}{S(X)} \sum_{Y \in P(X)} S(Y) \\ &= \sum_{Y \in T} \sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{S(Y)}{S(X)} \\ &= \sum_{Y \in T} S(Y) \sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{1}{S(X)} \end{split}$$

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size 0000000000		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

We claim that:
$$\sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{1}{S(X)} = \frac{1}{S(Y)}$$
.

Proof of the claim:

Let Y be a non-leaf. If Z is a child of Y and Y has c children, then $S(Z)=c\times S(Y).$ So,

$$\sum_{\{Z:Z \text{ is a child of } Y\}} \frac{1}{S(Z)} = c \times \frac{1}{c \times S(Y)} = \frac{1}{S(Y)}$$

Iterating this equation until all Z's are leafs:

$$\frac{1}{S(Y)} = \sum_{\{X:X \text{ is a leaf descendant of } Y\}} \frac{1}{S(X)}$$

So the claim is proved!

< 3 > < 3 >

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Estimating tree size 00000000●		Bounding 00 000000000			
Estimating the size of a Backtrack tree							

Thus,

$$\overline{N} = \sum_{Y \in T} S(Y) \sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{1}{S(X)}$$
$$= \sum_{Y \in T} S(Y) \frac{1}{S(Y)}$$
$$= \sum_{Y \in T} 1 = |T|.$$

The theorem is thus proved!

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Exact Cover ●00000	Bounding 00 000000000	
Exact Cover				

Exact Cover

PROBLEM:Exact CoverINSTANCE:a collection S of subsets of $\mathcal{R} = \{0, 1, \dots, n-1\}$.QUESTION:Does S contain an exact cover of \mathcal{R}

Rephrasing the question:

Does there exist $S' = \{S_{x_0}, S_{x_1}, \dots, S_{x_{l-1}}\} \subseteq S$ such that every element of \mathcal{R} is contained in exactly one set of S'?

Transforming into a clique problem:

 $\begin{aligned} \mathcal{S} &= \{S_0, S_1, \dots, S_{m-1}\} \\ \text{Define: } G(V, E) \text{ in the following way: } V &= \{0, 1, \dots, m-1\} \\ \{i, j\} \in E \iff S_i \cap S_j = \emptyset \\ \text{An exact cover of } \mathcal{R} \text{ is a clique of } G \text{ that covers } \mathcal{R}. \end{aligned}$

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Exact Cover 0●0000	Bounding 00 000000000	
Exact Cover				

Good ordering on \mathcal{S} for prunning: \mathcal{S} sorted in decreasing lexicographical ordering. Choice set:

$$\begin{aligned} & \mathcal{C}'_0 &= V \\ & \mathcal{C}'_l &= A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}'_{l-1}, \text{ if } l > 0, \end{aligned}$$

where

$$\begin{array}{lll} A_x &=& \{y \in V : S_y \cap S_x = \emptyset\} & (\text{vertices adjacent to } x) \\ B_x &=& \{y \in V : S_x >_{lex} S_y\} \end{array}$$

Further pruning will be used to reduce C'_l by removing H_r 's, which will be defined later.

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Exact Cover 00●000	Bounding 00 000000000	Branch-and-Bound 00
Exact Cover					
Example: (c	orrected from b	ook page 121)			

j	S_j	$rank(S_j)$	$A_j \cap B_j$	corrected?
0	0,1,3,	104	10	Y
1	0,1,5	98	12	
2	0,2,4	84	7,9	Y
3	0,2,5	82	8,9,12	Y
4	0,3,6	73	5,9	Y
5	1,2,4	52	Ø	
6	1,2,6	49	11	Y
7	1,3,5	42	Ø	Y
8	1,4,6	37	Ø	
9	1	32	10,11,12	
10	2,5,6	19	Ø	
11	3,4,5	14	Ø	
12	3,4,6	13	Ø	

Exhaustive Generation: Backtracking and Branch-and-bound

・ロト ・日・・日・・日・・ つくの

	Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Exact Cover 000●00	Bounding 00 000000000	
Exact Cover	Exact Cover				

i	0	1	2	3	4	5	6
H_i	0,1,2,3,4	5,6,7,8,9	10	11,12	Ø	Ø	Ø

э

< 三→

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Exact Cover 0000●0	Bounding 00 000000000	
Exact Cover				

$$\begin{array}{l} \text{EXACTCOVER } (n,\mathcal{S}) \\ \text{Global } X, \ \mathcal{C}_l, \ l = (0,1,\ldots) \\ \text{Procedure EXACTCOVERBT}(l,r') \\ \text{ if } (l=0) \ \text{then } U_0 \leftarrow \{0,1,\ldots,n-1\}; \\ r \leftarrow 0; \\ \text{else } U_l \leftarrow U_{l-1} \setminus S_{x_{l-1}}; \\ r \leftarrow r'; \\ \text{ while } (r \not\in U_l) \ \text{and } (r < n) \ \text{do } r \leftarrow r+1; \\ \text{ if } (r=n) \ \text{then output } ([x_0,x_1,\ldots,x_{l-1}]). \\ \text{ if } (l=0) \ \text{then } \mathcal{C}'_0 \leftarrow \{0,1,\ldots,m-1\}; \\ \text{ else } \mathcal{C}'_l \leftarrow A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}'_{l-1}; \\ \mathcal{C}_l \leftarrow \mathcal{C}'_l \cap H_r; \\ \text{ for each } (x \in \mathcal{C}_l) \ \text{do } \\ x_l \leftarrow x; \\ \text{ EXACTCOVERBT}(l+1,r); \end{array}$$

æ

Backtracking Intro 000 00 00	Generating all cliques 00000 0000	Exact Cover 00000●	Bounding 00 000000000	
Exact Cover				

Main

$$\begin{split} m &\leftarrow |\mathcal{S}|;\\ \text{Sort } \mathcal{S} \text{ in decreasing lexico order}\\ \text{for } i &\leftarrow 0 \text{ to } m-1 \text{ do}\\ A_i &\leftarrow \{j: S_i \cap S_j = \emptyset\};\\ B_i &\leftarrow \{i+1, i+2, \dots, m-1\};\\ \text{for } i &\leftarrow 0 \text{ to } n-1 \text{ do}\\ H_i &\leftarrow \{j: S_j \cap \{0, 1, \dots, i\} = \{i\}\};\\ H_n &\leftarrow \emptyset;\\ \text{EXACTCOVERBT}(0, 0); \end{split}$$

(U_i contains the uncovered elements at level *i*. *r* is the smallest uncovered in U_i .)

	Generating all cliques		Bounding	
			•0	
00				
Backtracking with boun	ding			

Backtracking with bounding

When applying backtracking for an **optimization** problem, we use **bounding** for prunning the tree.

Let us consider a maximization problem.

Let profit(X) = profit for a feasible solution X.

For a partial soluton $X = [x_0, x_1, \dots, x_{l-1}]$, define

$$P(X) = \max \{ \text{ profit}(X') : \text{ for all feasible solutions} \\ X' = [x_0, x_1, \dots, x_{l-1}, x'_l, \dots, x'_{n-1}] \}$$

A **bounding function** B is a real valued function defined on the nodes of the space state tree, such that for any feasible solution X, $B(X) \ge P(X)$. B(X) is an upper boud on the profit of any feasible solution that is descendant of X in the state space tree.

If the current best solution found has value OptP, then we can prune nodes X with $B(X) \leq OptP$, since $P(X) \leq B(X) \leq OptP$, that is, no descendant of X will improve on the current best solution.

	Generating all cliques		Bounding	
			00	
00	0000		000000000	
00				
Backtracking with bou	unding			

General Backtracking with Bounding

```
Algorithm BOUNDING(l)
             Global X, OptP, OptX, C_l, l = (0, 1, ...)
             if ([x_0, x_1, \ldots, x_{l-1}]) is a feasible solution) then
                P \leftarrow \operatorname{profit}([x_0, x_1, \dots, x_{l-1}]);
                if (P > OptP) then
                  OptP \leftarrow P:
                   OptX \leftarrow [x_0, x_1, \ldots, x_{l-1}];
             Compute C_l:
             B \leftarrow B([x_0, x_1, \ldots, x_{l-1}]);
             for each (x \in C_l) do
                  if B < OptP then return;
                  x_l \leftarrow x:
                  BOUNDING(l+1)
```

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding ○○ ●○○○○○○○○○	
Maxclique problem				

Maximum Clique Problem

PROBLEM:Maximum Clique (optimization)INSTANCE:a graph G = (V, E).FIND:a maximum clique of G.

This problem is NP-complete.

Maximum cliques:

{2,3,4,5}, {3,4,5,6}

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding ○○ ○●○○○○○○○○	
Maxclique problem				

Modification of ALLCLIQUES to find the maximum clique (no bounding). Blue adds **bounding** to this algorithm.

Algorithm MAXCLIQUE(l)Global: X, $C_l(l = 0, \ldots, n-1)$, A_l , B_l pre-computed. if (l > OptSize) then $OptSize \leftarrow l$: $OptClique \leftarrow [x_0, x_1, \ldots, x_{l-1}];$ if (l = 0) then $C_l \leftarrow V$; else $\mathcal{C}_l \leftarrow A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}_{l-1}$; $\mathbf{M} \leftarrow \mathbf{B}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{l-1}]);$ for each $(x \in C_l)$ do if $(M \leq OptSize)$ then return; $x_l \leftarrow x$; MAXCLIQUE(l+1); Main

 $OptSize \leftarrow 0; MAXCLIQUE(0);$ output OptClique;

	Generating all cliques		Bounding	Branch-and-Bound
00	0000		000000000	
00				
Maxclique problem				

Bounding Functions for MAXCLIQUE

Definition

Induced Subgraph Let G = (V, E) and $W \subseteq V$. The subgraph induced by W, G[W], has vertex set W and edgeset: $\{\{u, v\} \in E : u, v \in W\}$.

If we have:

partial solution: $X = [x_0, x_1, \ldots, x_{l-1}]$ with choice set C_l , extension solution $X = [x_0, x_1, \ldots, x_{l-1}, x_l, \ldots, x_j]$, Then $\{x_l, \ldots, x_j\}$ must be a clique in $G[C_l]$. Let mc(l) denote the size of a maximum clique in $G[C_l]$, and let ub(l) be an upper bound on mc(l).

Then, a general bounding function is B(X) = l + ub[l].

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding 00 000000000	
Maxclique problem				

Bound based on size of subgraph

General bounding function: B(X) = l + ub[l].

Since $mc(l) \leq |\mathcal{C}_l|$, we derive the bound:

 $B_1(X) = l + |\mathcal{C}_l|.$

Backtracking Intro 000 00	Generating all cliques 00000 0000		Bounding ○○ ○○○○●○○○○	
Maxclique problem				

Bounds based on colouring

Definition (Vertex Colouring)

Let ${\cal G}=(V,E)$ and k a positive integer. A (vertex) $k\mbox{-colouring of }G$ is a function

Color:
$$V \to \{0, 1, \dots, k-1\}$$

such that, for all $\{x, y\} \in E$, $COLOR(x) \neq COLOR(y)$.

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding ○○ ○○○○○●○○○	
Maxclique problem				

Lemma

If G has a k-colouring, then the maximum clique of G has size at most k.

Proof. Let C be a clique. Each $x \in C$ must have a distinct colour. So, $|C| \leq k$. This is true for any clique, in particular for the maximum clique.

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding 00 0000000000	
Maxclique problem				

Finding the minimum colouring gives the best upper bound, but it is a hard problem. We will use a **greedy heuristic** for finding a small colouring. Define $COLOURCLASS[h] = \{i \in V : COLOUR[i] = h\}$.

```
GREEDYCOLOUR(G = (V, E))
           Global COLOUR
           k \leftarrow 0; // colours used so far
          for i \leftarrow 0 to n-1 do
                       h \leftarrow 0:
                       while (h < k) and (A_i \cap \text{COLOURCLASS}[h] \neq \emptyset) do
                              h \leftarrow h + 1:
                       if (h = k) then k \leftarrow k + 1;
                                          COLOURCLASS[h] \leftarrow \emptyset;
                       COLOURCLASS[h] \leftarrow COLOURCLASS[h] \cup {i};
                       COLOUR[i] = h;
           return k;
```

I = ▶

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding ○○ ○○○○○○○○●○	
Maxclique problem				

Sampling Bound:

Statically, beforehand, run GREEDYCOLOUR(G), determining k and COLOUR[x] for all $x \in V$.

SAMPLINGBound(
$$X = [x_0, x_1, \dots, x_{l-1}]$$
)
Global C_l , COLOUR
return $l + |\{\text{COLOUR}[x] : x \in C_l\}|;$

Greedy Bound:

Call GREEDYCOLOUR dynamically.

```
\begin{aligned} \text{GREEDYBound}(X = [x_0, x_1, \dots, x_{l-1}]) \\ & \text{Global } \mathcal{C}_l \\ & k \leftarrow \text{GREEDYCOLOUR}(G[\mathcal{C}_l]); \\ & \text{return } l + k; \end{aligned}
```

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding ○○ ○○○○○○○○○●	
Maxclique problem				

(may scan the table later...)

Here I discuss the performance for random graphs, comparing the 3 bounds seen. Please, refer to Tables 4.4 and 4.5 in the textbook.

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding 00 000000000	Branch-and-Bound ●0
Branch-and-bound				

Branch-and-bound

The book presents branch-and-bound as a variation of backtracking in which the choice set is tried in decreasing order of bounds.

However, branch-and-bound is usually a more general scheme.

It often involves keeping all active nodes in a priority queue, and processing nodes with higher priority first (priority is given by upper bound).

Next we look at the book's version of branch-and-bound.

Backtracking Intro 000 00 00	Generating all cliques 00000 0000		Bounding 00 000000000	Branch-and-Bound ○●
Branch-and-bound				

Algorithm BRANCHANDBOUND(l)external B(), PROFIT(); global C_l (l = 0, 1, ...)if $([x_0, x_1, \ldots, x_{l-1}])$ is a feasible solution) then $P \leftarrow \text{PROFIT}([x_0, x_1, \dots, x_{l-1}])$ if (P > OptP) then $OptP \leftarrow P$; $OptX \leftarrow [x_0, x_1, \dots, x_{l-1}];$ Compute C_l ; *count* \leftarrow 0; for each $(x \in C_l)$ do $nextchoice[count] \leftarrow x;$ $nextbound[count] \leftarrow B([x_0, x_1, \dots, x_{l-1}, x]);$ $count \leftarrow count + 1$: Sort *nextchoice* and *nextbound* by decreasing order of *nextbound*; for $i \leftarrow 0$ to count - 1 do if (nextbound[i] < OptP) then return; $x_{l} \leftarrow nextchoice[i];$ BRANCHANDBOUND(l+1);