COMPUTING ISOMORPHISM

CSI5165 - Fall 2003 Computing Isomorphism

In this chapter, we will look at graph isomorphism (and
automorphism), includying algorithms using invariants and
certificates. We will also see isomorphism of other structures.

Graph Isomorphism

Example 1:

5 e c

(1 and G5 are isomorphic, since there is a bijection f : V; — V5
that preserve edges:

A
STQ QL O

Example 2:

(G5 and (G4 are not isomorphic. Any bijection would not preserve
edges since G has no vertex of degree 3, while G4 does (the degree
sequence of a graph is invariant (in sorted order) under
isomorphism).

Lucia Moura 107

CSI5165 - Fall 2003 Computing Isomorphism

DEFINITION. Two graphs Gy = (Vi, Ey) and Gy = (Vs, Ey) are
1somorphic if there i a bijection f : V7 — V5 such that

{f(2), f(y)} € B2 < {z,y} € E\.

The mapping f is said to be an isomorphism between GG and Gbs.

If f is a isomorphism from G to itself, it is called an
automorphism. The set of all automosphisms of a graph is a
permutation group (which is a group under the “composition o
permutations” operation). See chapter 6 for more on permutation
groups.

The problem of determining if two graphs are isomorphic is in
general difficult, but most researchers believe it is not

NP-complete.

Some special cases can be solved in polynomial time, such as:
graphs with maximum degree bounded by a constant and trees.

Lucia Moura 108

CSI5165 - Fall 2003 Computing Isomorphism

Invariants

Let DS = [deg(v1),deg(vs), . .., deg(v,)] be the degree sequence
of a graph. And let SDS = [dy,ds, . .., d,] be its degree sequence
in sorted order.

1

m
6
DS =12,4,1,1,1,4,1,1,1]

5 4 3 7 8 9 77))))

SDS =[1,1,1,1,1,1,2,4,4]

SDS is the same for all graphs that are isomorphic to G. So,
SDS is invariant (under isomorphism).

DEFINITION. Let F be a family of graphs. An tnvariant on F is
a function ¢ with domain F such that ¢(G1) = ¢(G,) if G is
isomorphic to Gb.

If (G1) # ¢(Ge) we can conclude G and G are not isomorphic.
If p(G1) = ¢(Gs), we still need to check whether they are

isomorphic.

Lucia Moura 109

CSI5165 - Fall 2003 Computing Isomorphism

DEFINITION. Let F be a family of graphs on the vertex set V.
Let D: F xV — {0,1,...,k}. Then, the partition of V
induced by D is

B =[B[0], B[],..., BIK|

where Bli] ={v € V : D(G,v) = i}.
If op(G) = [|B[0]|,|B[1]], ..., |B[k]|] is an invariant, then we say
that D is an invariant inducing function.

Example:

D(G, u) = degree of vertex u in graph G.
1

N

5 4 3 7 8 9
Ordered partition induced by D:

B — |:®7 {37 47 57 77 87 9}7 {1}7 ®7 {27 6}7 ®7 ®7 ®7 ®]
ép(G) = [0,6,1,0,2,0,0,0,0]

¢p(G) is an invariant for F = family of all graphs on V.
So, D is an invariant inducing function.

Lucia Moura 110

CSI5165 - Fall 2003

Computing Isomorphism

1
GIL: >
3 4
5@—@6
°00—@ o—O 12
7 8
100 o1
Initial partition:
Xo(G1) ={1,2,...,12} Xo(Gy) =

Ist invariant inducing function:

Dl(G, ’U) =

Dl(G17)
(1,
1 G17

D(

(

1(Gh,

1(G1,

1(G1
(G4
(G4

2)

3) =

4) =

5) =

1,0) =
I\M1,)
8) =
9) =

) =

)

1 1,

1(Gy,

D;(Gh, 10
D (Gh, 11
Dy(Gh,12) =

SO0 DODOD0D

o O O O O O O O O
SCoOSoD

-

of neighbours for each degree

[0010---0
= [1020- - -
(0030 - - -
(0030 - - -
(0030 - - -
(0030 - - -
2010 - - -
2010 - - -
(0010 - - -
(0010 - - -
= [0010- - -
[0010---0

D1<G27

[\

(
Dl(G2
1(G2
1(G2
Di(Go, f
1(Ga2, 9
(G2, h

C

~

~

~

G
(G
Dl(G ,Z
Dl(G27
Dl(G27
D1(Gy, 1) =

/VVV/VVV_/VV_/

partition refinement of X, induced by D;y:

Xi(Gh) =
Xi1(Ga) =

Lucia Moura

{a,b, ...,

= [0010- - - 0]
= [1020- - - 0]
= 0030 - - 0]
= [0030- - - 0]
= [2010- - - 0]
—[0010- - - 0]
= [0010- - - 0]
—[0030- - - 0]
(0030 - - - 0]
= [2010- - - 0]
—[0010- - - 0]
0010 - - - 0]

{1,9,10,11,12},{2},{3,4,5,6},{7,8}
{a7 f? g? k? l}? {b}7 {c7 d? h’? Z}? {67 f}

111

CSI5165 - Fall 2003 Computing Isomorphism

X,(Gy) = {1,9,10,11,12}, {2}, {3,4, 5,6}, {7, 8}
Xi1(Gq) ={a, f,9,k, 1}, {b}, {c,d, h, i}, {e, f}

2nd invariant inducing function:
Dy(G,v) = # of triangles in G passing through v.

A% DQ(Gl, ’U) A% DQ(GQ,’U)
1 0 a 0
2 1 b 1
3 1 C 1
4 1 d 1
O 0 e 0
6 0 f 0
7 0 g 0
8 0 h 0
9 0 1 0
10 0 i 0
11 0 k 0
12 0 1 0

partition refinement of X induced by Ds:

X5(Gy) = {1,9,10, 11,12}, {2}, {3, 4}, {5, 6}, {7, 8}
X2<G2> — {a7 f7 g, ka l}7 {b}7 {Cv d}7 {h7 i}v {67 f}

(GG1 and G5 are still compatible.

Lucia Moura 112

CSI5165 - Fall 2003 Computing Isomorphism

Xo(Gy) = {1,9,10,11,12}, {2}, {3,4}, {5, 6}, {7, 8}
Xo(Go) =Aa, f,9,k,1},{b}, {c,d}, {h, i}, {e, [}

We only need to check bijections between the following sets:
{1,9,10,11,12} < {a, f,9,k, 1}
{2} < {b}
{3,4} {c,d}
{5,6} {h,i}
{7,8 < {e f}

1111

of bijections to test: 5! x 1! x 2! x 2! x 2! = 40.
Without partition refinement, we would have to test 12! bijections!

Backtracking algorithm to find all isomorphisms

f=labcdbl <o f=[ab,cd,i]
1 prune since {4,5} notin E1, but {d,i} in E2

Lucia Moura 113

CSI5165 - Fall 2003 Computing Isomorphism
Algorithm Iso(Z, Gy, G,) (global n, W, X,Y)
procedure GETPARTITIONS()
X[0] = V(G); Y[0] = V(Ga); N1
for each D € 7 do
fori < 0to N —1do
Partition X |¢] into sets X[¢], Xoli], ..., X [7],
where z, 2’ € X|[i] <= D(x) = D(')
Partition Y'[¢] into sets Y[i], Ya[d], ..., Yo, |¢],
where y,y' € Y;[i] <= D(y) = D(V')
if m; # n; then exit; (G; and Gy are not isomorphic)
Order Y7, Ya[i], . .., Yo, [¢] so that for all j
D(z) = D(y) whenever z € Xj[i| and y € Y][i]
if ordering is not possible then exit; (not isomorphic)
Order the partitions so that:
| X[i]| = Y]] < |X[i+1]|=|Y][i +1]| for all ¢
N —N+m-—1;
return (IN);
procedure FINDISOMORPHISM(!)
if [= n then output (f);
j— WL
for each y € Y[j] do
OK «+ true;
foru «—0tol—1do
it ({u,1} € B(Gy) and {[u 5} & F(G») or
({u,l} ¢ E(Gy) and {f[u],y} € E(G,)) then OK — false;
if OK then f[l] < y; FINDISOMORPHISM(] + 1);
main N «—GETPARTITIONS();
for ¢ «+— 0 to N do for eac x € X|[i] do Wx] « i;
FINDISOMORPHISM(0);

Lucia Moura 114

CSI5165 - Fall 2003 Computing Isomorphism

Computing Certificates

DEFINITION. A certificate Cert() for a family F of graphs is a
function such that for G, Gy € F, we have

Cert(Gy) = Cert(Gy) < G; and G5 are isomorphic

Certificates for Trees

We will compute certificates in polynomial time for the family of
trees. Consequently, graph isomorphism for trees can be solved in
polynomial time.

Algorithm to compute certificates for a tree:

1. Label all vertices with string 01.

2. While there are more than 2 vertices in G:
for each non-leaft x of G do

2.1. Let Y be the set of labels of the leaves adjacent to x and
the label of & with initial 0 and trailing 1 deleted from x;

2.2. Replace the label of x with the concatenation of the labels
in Y, sorted in increasing lexicographic order, with a 0
prepended and a 1 appended.

2.3. Remove all leaves adjacent to x.

3. If there is only one vertes z left, report x’s label as the
certificate.

4. If there are 2 vertices x and y left, concatenate x and y in
increasing lexicographic order, and report it as the certificate.

Lucia Moura 115

CSI5165 - Fall 2003 Computing Isomorphism

Here, see slides with Examples 7.2,7.3,7.4,7.5 from the textbook.

Lucia Moura

116

CSI5165 - Fall 2003

Certificates for general graphs

Computing Isomorphism

Let G = (V, E). Consider all permutations 7 : V — V.
Each IT determines an adjacenc matrix:

Azlu,v] = 1, if {w(u),n(v) € FE

0, otherwise.

Example: G = (V = {1,2,3}, E = {{1, 2}, {1,3}}).

I A,
- 11
1,2,3] |- - 0
- 10
2,1,3] |- - 1
- 10
3,1,2] |- - 1

Num,

110

101

101

™.

1,3, 2]

2,3, 1]

3,2, 1]

We could define the certificate to be
Cert(G) = min{Num,(G) : m € Sym(V)}.

Lucia Moura

A

1

Num,

110

011

011

117

CSI5165 - Fall 2003 Computing Isomorphism

Cert(G) is difficult to compute. Cert(G) has as many leading 0’s
as possible. So, k is as large as possible, where k is the number of
all-zero columns above the diagonal. So, vertices {1,2,...,k}
form a maximum independent set in G (or equivalently a
maximum clique in the complement graph G).

So, computing Cert(G) as defined before is NP-hard.

However, it is believed that determining if Gy ~ G5 (G isomorph
to G2) is not NP-complete.

So, it is possible that the approach of computing Cert(G) to solve
the graph isomorphism problem is more work than necessary.
So, instead, we will define the certificate as follows:

Cert(G) = min{ Num,(G) : 7 € llg},

where [is a set of permutations determined by the structure of
G but not by any particular ordering of V.

Lucia Moura 118

CSI5165 - Fall 2003 Computing Isomorphism

Discrete and equitable partitions

Definitions.

A partition B is a discrete partition if |B[j]| = 1 for all j,
0<j<k

It is a unit partition if |B| = 1.

Let G = (V, E) be a graph and Ng(u) = {x € V : {u,z} € E}.
A partition B is an equitable partition with respect to the
graph G if for all ¢ and j

|Ne(u) 0 Blj]| = [Ne(v) N Blj]]

for all u,v € Bli].

Given B an ordered equitable partition with k parts, we can define
Mp to be a k x k matrix where
M3pli, j] = |N(G(v) N B[j]| where v € Bli].

Since B is equitable any choice of v produces the same result.

Also define Num(B) = sequence of k(k — 1)/2 elements above
diagonal written column by column.

Lucia Moura 119

CSI5165 - Fall 2003 Computing Isomorphism

Example:

0 1

5 4
B =[{0},{2,4},{5,6},{7},{1,3}] is an equitable partition with
respect to the graph above.

(0001 2]
00102
Mp=101110
10200
11200 0]

and Num(B) =[0,0,1,1,0,1,2,3,0,0].
If B is a discrete partition then B corresponds to a permutation
7 Bli] = {~[i]}, in which case

Num(B) = Num,(G),

adjusting so that Num(B) is interpreted as the sequence of bits of
a binary number.

Lucia Moura 120

CSI5165 - Fall 2003 Computing Isomorphism

Partition Refinement

Definition. An ordered partition B is a refinement of the
ordered partition A if

1. every block Bli] of B is contained in some block A[j] of A; and

2. if u € Aliy] and v € A[j1] with 43 < jy, then u € Bliy] and
v E B[jg] with ’ig S jg.

The definition basically says that B must refine A and preserve its
order.

Example:

A=1[{0,3},{1,2,4,5,6}]

B =[{0,3},{1,5,6},{2,4}] is a refinement of A,

but B’ = [{1,5,6},{2,4},{0,3}] is not a refinement of A because
blocks are out of order with respect to A.

Let A be an ordered partition and T' be any block of A. Define a
function Dy : V — {0,1,...,n — 1}:

Dr(v) = [Ne(v) N T

This function can be used to refine A.

Lucia Moura 121

CSI5165 - Fall 2003 Computing Isomorphism

1. Set B equal to A.

2. Let S be a list containing the blocks of B.

3. While (S # () do

4. remove a block T' from the list S

5. for each block Bli] of B do

6 for each h, set L[h| = {v € Bli] : Dy(v) = h}

7 if there is more than pne non-empty block in L then
8

replace Bli] with he non-empty blcoks in L
in order of the index A, h=0,1,...,n — 1.

9. add the non-empty blocks in L to the end of the list S

Notes: in step 5 we ignore blocks of S if the block has already been

partitioned in B.

The procedure will produce an equitable partition.

The ordering at step 8 is chosen in order to make Num/(B)
smaller.

Lucia Moura

122

CSI5165 - Fall 2003 Computing Isomorphism

Slide with a copy of Algortihm 7.5 page 256.
Slide with copy of example 7.8 pages 258-261.

Handwritten slides with explanation of the rest of the chapter.

Lucia Moura

123

