

In this chapter, we will look at graph isomorphism (and automorphism), includying algorithms using invariants and certificates. We will also see isomorphism of other structures.

Graph Isomorphism

Example 1:

 G_1 and G_2 are **isomorphic**, since there is a bijection $f: V_1 \to V_2$ that preserve edges:

$$\begin{array}{cccc}
1 & \rightarrow & c \\
2 & \rightarrow & e \\
3 & \rightarrow & d \\
4 & \rightarrow & a \\
5 & \rightarrow & b
\end{array}$$

Example 2:

 G_3 and G_4 are not isomorphic. Any bijection would not preserve edges since G_3 has no vertex of degree 3, while G_4 does (the degree sequence of a graph is invariant (in sorted order) under isomorphism).

CSI5165 - Fall 2003

DEFINITION. Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \to V_2$ such that

$$\{f(x), f(y)\} \in E_2 \iff \{x, y\} \in E_1.$$

The mapping f is said to be an isomorphism between G_1 and G_2 .

If f is a isomorphism from G to itself, it is called an *automorphism*. The set of all automosphisms of a graph is a permutation group (which is a group under the "composition o permutations" operation). See chapter 6 for more on permutation groups.

The problem of determining if two graphs are isomorphic is in general difficult, but most researchers believe it is not NP-complete.

Some special cases can be solved in polynomial time, such as: graphs with maximum degree bounded by a constant and trees.

Invariants

Let $DS = [deg(v_1), deg(v_2), \ldots, deg(v_n)]$ be the degree sequence of a graph. And let $SDS = [d_1, d_2, \ldots, d_n]$ be its degree sequence in sorted order.

$$DS = [2, 4, 1, 1, 1, 4, 1, 1, 1]$$

 $SDS = [1, 1, 1, 1, 1, 1, 2, 4, 4]$

SDS is the same for all graphs that are isomorphic to G. So, SDS is invariant (under isomorphism).

DEFINITION. Let \mathcal{F} be a family of graphs. An *invariant* on \mathcal{F} is a function ϕ with domain \mathcal{F} such that $\phi(G_1) = \phi(G_2)$ if G_1 is isomorphic to G_2 .

If $\phi(G_1) \neq \phi(G_2)$ we can conclude G_1 and G_2 are not isomorphic. If $\phi(G_1) = \phi(G_2)$, we still need to check whether they are isomorphic.

CSI5165 - Fall 2003

DEFINITION. Let \mathcal{F} be a family of graphs on the vertex set V. Let $D: \mathcal{F} \times V \to \{0, 1, \dots, k\}$. Then, the *partition of* V *induced by* D is

$$B = [B[0], B[1], \dots, B[k]]$$

where $B[i] = \{v \in V : D(G, v) = i\}.$

If $\phi_D(G) = [|B[0]|, |B[1]|, \dots, |B[k]|]$ is an invariant, then we say that D is an invariant inducing function.

Example:

D(G, u) = degree of vertex u in graph G.

Ordered partition induced by D:

$$B = [\emptyset, \{3, 4, 5, 7, 8, 9\}, \{1\}, \emptyset, \{2, 6\}, \emptyset, \emptyset, \emptyset, \emptyset]$$

$$\phi_D(G) = [0, 6, 1, 0, 2, 0, 0, 0, 0]$$

 $\phi_D(G)$ is an invariant for $\mathcal{F} =$ family of all graphs on V. So, D is an invariant inducing function.

Initial partition:

$$X_0(G_1) = \{1, 2, \dots, 12\} \ X_0(G_2) = \{a, b, \dots, l\}$$

1st invariant inducing function:

$$D_1(G, v) = \#$$
 of neighbours for each degree

$$\begin{array}{lll} D_1(G_1,1) = [0010 \cdots 0] & D_1(G_2,a) = [0010 \cdots 0] \\ D_1(G_1,2) = [1020 \cdots 0] & D_1(G_2,b) = [1020 \cdots 0] \\ D_1(G_1,3) = [0030 \cdots 0] & D_1(G_2,c) = [0030 \cdots 0] \\ D_1(G_1,4) = [0030 \cdots 0] & D_1(G_2,d) = [0030 \cdots 0] \\ D_1(G_1,5) = [0030 \cdots 0] & D_1(G_2,e) = [2010 \cdots 0] \\ D_1(G_1,6) = [0030 \cdots 0] & D_1(G_2,e) = [0010 \cdots 0] \\ D_1(G_1,7) = [2010 \cdots 0] & D_1(G_2,g) = [0010 \cdots 0] \\ D_1(G_1,8) = [2010 \cdots 0] & D_1(G_2,h) = [0030 \cdots 0] \\ D_1(G_1,9) = [0010 \cdots 0] & D_1(G_2,i) = [0030 \cdots 0] \\ D_1(G_1,10) = [0010 \cdots 0] & D_1(G_2,k) = [2010 \cdots 0] \\ D_1(G_1,12) = [0010 \cdots 0] & D_1(G_2,k) = [0010 \cdots 0] \\ D_1(G_2,l) = [0010 \cdots 0] & D_1(G_2,l) = [0010 \cdots 0] \end{array}$$

partition refinement of X_0 induced by D_1 :

$$X_1(G_1) = \{1, 9, 10, 11, 12\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8\}$$

 $X_1(G_2) = \{a, f, g, k, l\}, \{b\}, \{c, d, h, i\}, \{e, f\}$

Computing Isomorphism

CSI5165 - Fall 2003

$$X_1(G_1) = \{1, 9, 10, 11, 12\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8\}$$

 $X_1(G_2) = \{a, f, g, k, l\}, \{b\}, \{c, d, h, i\}, \{e, f\}$

2nd invariant inducing function:

 $D_2(G, v) = \#$ of triangles in G passing through v.

V	$D_2(G_1,v)$
1	0
1 2 3	1
3	1
4	1
5	0
6	0
7	0
5 6 7 8 9	0
9	0
10	0
11	0
12	0

V	$D_2(G_2,v)$
a	0
	1
c	1
b c d	1
	0
e f	0
	0
g h	0
i	0
j	0
k	0
l	0

partition refinement of X_1 induced by D_2 :

$$X_2(G_1) = \{1, 9, 10, 11, 12\}, \{2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}$$

 $X_2(G_2) = \{a, f, g, k, l\}, \{b\}, \{c, d\}, \{h, i\}, \{e, f\}$

 G_1 and G_2 are still compatible.

CSI5165 - Fall 2003

$$X_2(G_1) = \{1, 9, 10, 11, 12\}, \{2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}$$

 $X_2(G_2) = \{a, f, g, k, l\}, \{b\}, \{c, d\}, \{h, i\}, \{e, f\}$

We only need to check bijections between the following sets:

of bijections to test: $5! \times 1! \times 2! \times 2! \times 2! = 40$. Without partition refinement, we would have to test 12! bijections!

Backtracking algorithm to find all isomorphisms


```
CSI5165 - Fall 2003
```

```
Algorithm Iso(\mathcal{I}, G_1, G_2) (global n, W, X, Y)
procedure GETPARTITIONS()
    X[0] \leftarrow V(G_1); \quad Y[0] \leftarrow V(G_2); \quad N \leftarrow 1;
    for each D \in \mathcal{I} do
        for i \leftarrow 0 to N-1 do
             Partition X[i] into sets X_1[i], X_2[i], \ldots, X_{m_i}[i],
                 where x, x' \in X_i[i] \iff D(x) = D(x')
             Partition Y[i] into sets Y_1[i], Y_2[i], \ldots, Y_{n_i}[i],
                 where y, y' \in Y_i[i] \iff D(y) = D(y')
             if m_i \neq n_i then exit; (G_1 and G_2 are not isomorphic)
             Order Y_1[i], Y_2[i], \ldots, Y_{m_i}[i] so that for all j
                 D(x) = D(y) whenever x \in X_i[i] and y \in Y_i[i]
             if ordering is not possible then exit; (not isomorphic)
         Order the partitions so that:
             |X[i]| = |Y[i]| < |X[i+1]| = |Y[i+1]| for all i
         N \leftarrow N + m - 1:
    return (N);
procedure FINDISOMORPHISM(l)
    if l = n then output (f);
    j \leftarrow W[l];
    for each y \in Y[j] do
        OK \leftarrow true:
        for u \leftarrow 0 to l-1 do
             if (\{u, l\} \in E(G_1) \text{ and } \{f[u], y\} \not\in E(G_2)) or
               (\{u,l\} \not\in E(G_1) \text{ and } \{f[u],y\} \in E(G_2)) \text{ then } OK \leftarrow false;
        if OK then f[l] \leftarrow y; FINDISOMORPHISM(l+1);
main
         N \leftarrow \text{GetPartitions}();
         for i \leftarrow 0 to N do for eac x \in X[i] do W[x] \leftarrow i;
         FINDISOMORPHISM(0);
```

Computing Certificates

DEFINITION. A certificate Cert() for a family \mathcal{F} of graphs is a function such that for $G_1, G_2 \in \mathcal{F}$, we have

 $Cert(G_1) = Cert(G_2) \iff G_1 \text{ and } G_2 \text{ are isomorphic}$

Certificates for Trees

We will compute certificates in polynomial time for the family of **trees**. Consequently, graph isomorphism for trees can be solved in polynomial time.

Algorithm to compute certificates for a tree:

- 1. Label all vertices with string 01.
- 2. While there are more than 2 vertices in G: for each non-leaft x of G do
 - 2.1. Let Y be the set of labels of the leaves adjacent to x and the label of x with initial 0 and trailing 1 deleted from x;
 - 2.2. Replace the label of x with the concatenation of the labels in Y, sorted in increasing lexicographic order, with a 0 prepended and a 1 appended.
 - 2.3. Remove all leaves adjacent to x.
- 3. If there is only one vertes x left, report x's label as the certificate.
- 4. If there are 2 vertices x and y left, concatenate x and y in increasing lexicographic order, and report it as the certificate.

Lucia Moura

116

Certificates for general graphs

Let G = (V, E). Consider all permutations $\pi : V \to V$. Each Π determines an adjacenc matrix:

$$A_{\pi}[u, v] = 1$$
, if $\{\pi(u), \pi(v) \in E \}$
0, otherwise.

Example: $G = (V = \{1, 2, 3\}, E = \{\{1, 2\}, \{1, 3\}\}).$

$$\pi: A_{\pi}: Num_{\pi} \pi: A_{\pi}: Num_{\pi}$$

$$[1,2,3] \begin{bmatrix} -1 & 1 \\ - & - & 0 \\ - & - & - \end{bmatrix} 110 [1,3,2] \begin{bmatrix} -1 & 1 \\ - & - & 0 \\ - & - & - \end{bmatrix} 110$$

$$\begin{bmatrix}
2,1,3
\end{bmatrix}
\begin{bmatrix}
-&1&0\\
-&-&1\\
-&-&-
\end{bmatrix}$$

$$101$$

$$\begin{bmatrix}
2,3,1
\end{bmatrix}
\begin{bmatrix}
-&0&1\\
-&-&1\\
-&-&-
\end{bmatrix}$$

$$011$$

$$\begin{bmatrix} 3,1,2 \end{bmatrix} \begin{bmatrix} -&1&0\\ -&-&1\\ -&-&- \end{bmatrix} \qquad 101 \qquad \begin{bmatrix} 3,2,1 \end{bmatrix} \begin{bmatrix} -&0&1\\ -&-&1\\ -&-&- \end{bmatrix} \qquad 011$$

We could define the certificate to be

$$Cert(G) = min\{Num_{\pi}(G) : \pi \in Sym(V)\}.$$

Cert(G) is difficult to compute. Cert(G) has as many leading 0's as possible. So, k is as large as possible, where k is the number of all-zero columns above the diagonal. So, vertices $\{1, 2, \ldots, k\}$ form a maximum independent set in G (or equivalently a maximum clique in the complement graph \overline{G}).

So, computing Cert(G) as defined before is NP-hard.

However, it is believed that determining if $G_1 \sim G_2$ (G_1 isomorph to G_2) is not NP-complete.

So, it is possible that the approach of computing Cert(G) to solve the graph isomorphism problem is more work than necessary. So, instead, we will define the certificate as follows:

$$Cert(G) = min\{Num_{\pi}(G) : \pi \in \Pi_G\},\$$

where Π_G is a set of permutations determined by the structure of G but not by any particular ordering of V.

Discrete and equitable partitions

Definitions.

A partition B is a **discrete partition** if |B[j]| = 1 for all j, $0 \le j \le k$.

It is a **unit partition** if |B| = 1.

Let G = (V, E) be a graph and $N_G(u) = \{x \in V : \{u, x\} \in E\}$. A partition B is an **equitable partition** with respect to the graph G if for all i and j

$$|N_G(u) \cap B[j]| = |N_G(v) \cap B[j]|$$

for all $u, v \in B[i]$.

Given B an ordered equitable partition with k parts, we can define M_B to be a $k \times k$ matrix where

$$M_B[i,j] = |N(G(v) \cap B[j]| \text{ where } v \in B[i].$$

Since B is equitable any choice of v produces the same result.

Also define Num(B) = sequence of k(k-1)/2 elements above diagonal written column by column.

Example:

 $B = [\{0\}, \{2,4\}, \{5,6\}, \{7\}, \{1,3\}]$ is an equitable partition with respect to the graph above.

$$M_B = \left[egin{array}{ccccc} 0 & 0 & 0 & 1 & 2 \ 0 & 0 & 1 & 0 & 2 \ 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 2 & 0 & 0 \ 1 & 2 & 0 & 0 & 0 \ \end{array}
ight]$$

and Num(B) = [0, 0, 1, 1, 0, 1, 2, 3, 0, 0].

If B is a **discrete** partition then B corresponds to a permutation $\pi: B[i] = \{\pi[i]\}$, in which case

$$Num(B) = Num_{\pi}(G),$$

adjusting so that Num(B) is interpreted as the sequence of bits of a binary number.

Partition Refinement

Definition. An ordered partition B is a *refinement* of the ordered partition A if

- 1. every block B[i] of B is contained in some block A[j] of A; and
- 2. if $u \in A[i_1]$ and $v \in A[j_1]$ with $i_1 \leq j_1$, then $u \in B[i_2]$ and $v \in B[j_2]$ with $i_2 \leq j_2$.

The definition basically says that B must refine A and preserve its order.

Example:

$$A = [\{0, 3\}, \{1, 2, 4, 5, 6\}]$$

 $B = [\{0,3\}, \{1,5,6\}, \{2,4\}]$ is a refinement of A,

but $B' = [\{1, 5, 6\}, \{2, 4\}, \{0, 3\}]$ is not a refinement of A because blocks are out of order with respect to A.

Let A be an ordered partition and T be any block of A. Define a function $D_T: V \to \{0, 1, \dots, n-1\}$:

$$D_T(v) = |N_G(v) \cap T|$$

This function can be used to refine A.

- 1. Set B equal to A.
- 2. Let S be a list containing the blocks of B.
- 3. While $(\mathcal{S} \neq \emptyset)$ do
- 4. remove a block T from the list S
- 5. for each block B[i] of B do
- 6. for each h, set $L[h] = \{v \in B[i] : D_T(v) = h\}$
- 7. if there is more than pne non-empty block in L then
- 8. replace B[i] with he non-empty blooks in L in order of the index $h, h = 0, 1, \ldots, n 1$.
- 9. add the non-empty blocks in L to the end of the list S

Notes: in step 5 we ignore blocks of S if the block has already been partitioned in B.

The procedure will produce an equitable partition.

The ordering at step 8 is chosen in order to make Num(B) smaller.

Slide with a copy of Algorithm 7.5 page 256. Slide with copy of example 7.8 pages 258-261.

Handwritten slides with explanation of the rest of the chapter.