
CSI 4105 Design and Analysis of Algorithms II Winter 2012
Computer Science University of Ottawa

Homework Assignment #2 (100 points, weight 6.67%)
Due: Friday Mar 16, at 11:30 p.m. (in lecture)

1. (25 points) Let NearbySet be the problem defined as follows. Given a graph G and a
number k, is there a way to select a set N ⊆ V (G) with |N | = k such that every vertex in the
graph is either in N or is connected by an edge to a vertex in N . Show that NearbySet is
NP-complete.

For a graph G = (V,E), we say that a vertex v is dominated by a set S if either v ∈ S or
there is a vertex u ∈ S such that uv ∈ E. We must first show that NearbySet is in NP .
Given a set N of vertices, we can use the following algorithm to check if N is a solution:

(a) Ensure that |N | = k and N ⊆ V (G). (O(k) steps.)

(b) Mark all nodes in V (G) as undominated. (O(|V |) steps.)

(c) For each v ∈ N , mark v and the neighbourhood of v in V (G) as dominated. (O(k|V |)
steps.)

(d) Iterate over V (G). If any nodes are undominated, return false. Otherwise, return true.
(O(|V |) steps.)

This algorithm can be executed in time O(k|V |), so it is a polynomial time verifier for Near-
bySet. Thus, NearbySet is in NP .

To show that NearbySet is NP-complete, we must find a polynomial time reduction from
another problem in NPC to NearbySet. We will reduce from VertexCover and show
VertexCover ≤p NearbySet. Let (G, k), with G = (V,E), be an instance of Vertex-
Cover, i.e. the problem of determining whether or not there is a vertex cover of size k in G.
Let I be the isolated vertices of G, i.e. the vertices in V (G) such that they are in no edges of
E(G), and let r = |I|.
We now create the graph G′ = (V ′, E ′) as follows: take V ′ = V ∪ {we : e ∈ E}, and for
e = uv ∈ E, we create three edges, uv, uwe, and wev in E ′. (The idea is that for each original
edge, we add two copies in the new graph. In the second copy, we add one vertex, we, in the
middle of the edge.) This reduction can clearly be done in polynomial time: we must find
the isolated vertices in G, which can be done in time O(|V ||E|), and then creating the new
vertices and edges can be done in time O(|V |+ |E|).
We now claim that G has a vertex cover of size at most k if and only if G′ contains a nearby
set of size at most k+ r. If G has a vertex cover, say S, of size at most k, then we claim that
N = S ∪ I is a nearby set of G′ of size at most k + r. We must show that for every vertex
v 6∈ N , there is a vertex u ∈ N such that vu ∈ E ′.

1

Since V ′ = V ∪ {we : e ∈ E}, we first consider vertices of the form we ∈ V ′ for e ∈ E. This
vertex of G′ is in precisely two edges of G′, say uwe and wev, with uv an edge of the original
graph G by construction. Since S is a vertex cover of the original graph G, then either u or
v must be in S since uv ∈ E. Without loss of generality, say u ∈ S. Thus, in the new graph
G′, the vertex we is dominated by u ∈ N .

We now consider all vertices v ∈ V ′ that were in the original graph G, so v ∈ V . If v is
isolated in G, then v ∈ I, so v ∈ N ; thus v is dominated by N . Otherwise, there is some edge
uv ∈ E. Since S is a vertex cover of G, either u or v in S. Thus, since uv ∈ E ′, the inclusion
of u or v in N ensures that v is dominated in G′ as required.

If v is an isolated vertex of G′, then v ∈ I ⊆ N , so v is dominated by N . If v ∈ S, then
obviously v is dominated. If v 6∈ S, then since S is a vertex cover of G, there is some vertex
u ∈ V such that u ∈ N and uv ∈ E.

We must now show that if N is a nearby set of G′ of size at most k+ r, then there is a vertex
cover of size at most k in G. Clearly, all isolated vertices of G′, which are precisely the isolated
vertices of G, must be in N , so take N ′ = N \ I, which has size at most k. We show that
from this, we can build a vertex cover S for G in the following way: we may have two types
of vertices in N , either vertices of the original graph G, or vertices of the form we constructed
by bissecting edges of the original graph G. If u ∈ S is a vertex of the original graph, add it
to S. If it is of the form we, then e = vz is an edge of the original graph, so add either v or
z, chosen arbitrarily, to S. Clearly, the size of S is at most k, so we show that S is a vertex
cover of the original graph G. If e = uv ∈ E, then we have edges uv, uwe, and wev in E ′, so
a nearby set in G′ must have included one of u, v, or we. Thus, one of u or v must be in S,
so S is a vertex cover, as required.

Thus, NearbySet is in NPC.

2. (25 marks) Consider the treasure splitting problem: there are n objects 1, 2, . . . , n each of
value vi, 1 ≤ i ≤ n. Two pirates need to split the treasures evenly. The TreasureSplitting
problem asks: given v1, v2, . . . , vn is it possible to partition {1, 2, . . . , n} into two sets S1, S2

(partitioning means S1 ∪ S2 = {1, 2, . . . , n} and S1 ∩ S2 = ∅) such that∑
i∈S1

vi =
∑
j∈S2

vj ?

Prove that TreasureSplitting is NP-complete.

We first show that TreasureSplitting is in NP . Let N = {1, . . . n}, and say we have a
set S that is a certificate for the problem. (The treasure is split into S and N \ S.) We can
use the following algorithm to verify whether or not this is a solution:

(a) Ensure that S ⊆ N . This can be done in time O(n).

(b) Calculate the sums
∑

i∈S vi and
∑

j∈N\S vj. This can be done in time O(n).

2

(c) If the sums are equal, return true; otherwise, return false.

Thus, TreasureSplitting is in NP . We now give a polynomial time reduction from Sub-
setSum, which is in NPC, to show that TreasureSplitting is NP-complete. Consider an
arbitrary subset sum problem with numbers w1, . . . , wn and target sum W . We now construct
an equivalent instance of treasure splitting. Let T =

∑n
i=1wi be the total sum. Create two

new numbers:
wn+1 = W + 1, wn+2 = T + 1−W.

Let N = {1, . . . , n+2}. We now have that
∑n+2

i=1 wi = 2T+2. Clearly, adding two elements can
be done in polynomial time. We claim that the treasure splitting problem with w1, . . . , wn+2

is equivalent to the original problem.

Assume that the answer to the subset sum problem is yes with solution S such that
∑

i∈S wi =
W . Consider the set S ′ = S ∪ {wn+2}. We have that:∑

i∈S′
wi = wn+2 +

∑
i∈S

wi = (T + 1−W) +W = T + 1.

This is precisely 1
2

∑n+2
i=1 wi = 1

2
(2T + 2), so then necessarily, N \ S ′ has sum:

∑
i∈N\S′

wi =
n+2∑
i=1

wi −
∑
j∈S′

wj = (2T + 2)− (T + 1) = T + 1.

Thus, S ′ and N \ S ′ is a partition of N ′ and is a solution to the treasure splitting problem.

Now, assume we have some yes solution, say S, to the treasure splitting problem constructed
from an instance of the subsetsum problem. We show that we can construct an instance of
the subset sum problem from S. We have that:

∑
i∈S

wi =
1

2

n+2∑
i=1

wi = T + 1.

Similarly, the value of the remaining treasure, N ′ \ S, must also sum to T + 1. Now, we have
that if wn+1 ∈ S, then wn+2 ∈ N \ S: otherwise, the sum of S would be greater than or equal
to (T + 1−W) + (W + 1) = T + 2, which is too large. Assume without loss of generality that
S is the set of the partition that contains wn+2. We claim that S ′ = S \ {wn+2} is a solution
to the original subset sum problem. We have that:

∑
i∈S′

wi =

(∑
i∈S

wi

)
− wn+2 = (T + 1)− (T + 1−W) = W.

Thus, S ′ is a solution to the subsetsum problem, as required.

Thus, we have a solution to the subsetsum instance if and only if we have a solution to the
equivalent treasure splitting instance, so this is a polynomial time reduction from SubsetSum
to TreasureSplitting. Hence, TreasureSplitting is in NPC.

3

3. (25 points) Consider a special case of QSAT (Quantified 3-SAT) in which the formula φ(x1, . . . , xn)
has no negated variables. We define the decision problem NNQSAT to be the problem of de-
ciding the truth value of:

∃x1∀x2 . . . ∃xn−2∀xn−1∃xn φ(x1, x2, . . . , xn),

where n is odd and φ(x1, x2, . . . , xn) is a 3-CNF formula with no negated variables. Give a
polynomial time algorithm to solve NNQSAT; analyse the running time of the algorithm.

To make it easier to think about the problem, we can instead consider this problem to be an
competitive instance of CSAT: we have two players, P1 and P2, where P1 and P2 alternate
turns setting the values of variables in sequential order. Thus, P1 sets the values of variables
x1, x3, x5, etc, and P2 sets the values of the variables x2, x4, x6 in order, with the goal of P1
trying to construct an assignment that makes the formula true, and P2 trying to construct an
assignment that makes the formula false. The question then becomes: can P1 force a win, i.e.
can P1 find a strategy so that he always wins? This is equivalent to a solution to NNQSAT:
P1 can force a win if and only if regardless of the choice of assignments for P2, he can find
a winning strategy; thus, for all possible assignments made by P2, he must be able to find a
winning assignment. Thus, the “exists” corresponds to the specific choices made by P1, and
the “for-all” corresponds to all possible choices made by P2.

We claim that P1 can force a win if and only if every clause in φ(x1, . . . , xn) has a variable of
odd index. If this is the case, then P1 can simply pick 1 for every variable of odd index, thus
making each clause true. If this is not the case, though, then for the clause of all even indexed
variables, P2 can simply pick 0 for all these variables, thus making the entire expression false.

Thus, determining the truth value of the expression equates to determining if there is a clause
that contains only even-indexed variables. To do this, we must examine φ(x1, . . . , xn): we
iterate over the clauses, and for each clause, we determine if the clause has only even-indexed
variables. If this is the case for any clause, we return false, indicating that the expression is
false; otherwise, we return true, indicating that the expression is true.

The number of possible clauses is bounded by
(

n
3

)
∈ O(n3) (for each clause, pick three indices

for the variables in the clause). Thus, our algorithm iterates over each clause, which can be
done in time at most O(n3), and then determines if the variables are even- or odd-indexed,
which can be done in time O(3) for each clause. Thus, the whole algorithm can be executed
in time O(n3).

4. (25 points) Define the choice set and describe a backtracking algorithm for the problem: given
G and k, find all k-vertex colourings of G.

Let G = (V = {v1, . . . , vn}, E) be an arbitrary graph over which we want to find all k-
colourings, so we want to assign values {1, . . . k} to each vertex so that no two adjacent
vertices have the same colour. Let X = [x1, . . . , xn] be our solution list. This equates to

4

having the condition that if vivj ∈ E, then xi 6= xj. During the backtracking, when choosing
a colour for vertex vl, 1 ≤ l ≤ n, which equates to choosing a value for xl, we have that Pl,
the possibility set for xl, is all of the colours, so Pl = {1, . . . , k}. However, we want to restrict
our choice set for xl to only the valid colour choices for vl, namely the colours that vl can
assume that do not clash with its neighbours who have already been assigned colours. Thus,
this amounts to:

Cl = {1, . . . , k} \ {xi : 0 ≤ i < l, vivl ∈ E}.

Thus, our full backtracking algorithm is as in Algorithm 1. We initially invoke the algorithm
by executing FindAllColourings(G,X, k, 1) for X = [0, . . . , 0︸ ︷︷ ︸

n

].

Algorithm 1 FindAllColourings(G = (V = {v1, . . . , vn}, E), X = [x1, . . . , xn], k, l)

if l = n+ 1 then
X is a valid k-colouring, so output it.
return

end if
Cl = {1, . . . , k} \ {xi : 0 ≤ i < l, vivl ∈ E}
for c ∈ Cl do
xl = c
FindAllColourings(G, X, k, l + 1)

end for

5

