Due: Friday Mar 16, at 11:30 p.m. (in lecture)

1. (25 points) Let NearbySet be the problem defined as follows. Given a graph G and a number k, is there a way to select a set $N \subseteq V(G)$ with $|N|=k$ such that every vertex in the graph is either in N or is connect by an edge to a vertex in N. Show that NearbySet is NP-complete.
2. (25 marks) Consider the treasure splitting problem: there are n objects $1,2, \ldots, n$ each of value $v_{i}, 1 \leq i \leq n$. Two pirates need to split the treasures evenly. The TreasureSplitting problem asks: given $v_{1}, v_{2}, \ldots, v_{n}$ is it possible to partition $\{1,2, \ldots, n\}$ into two sets S_{1}, S_{2} (partitioning means $S_{1} \cup S_{2}=\{1,2, \ldots, n\}$ and $S_{1} \cap S_{2}=\emptyset$) such that

$$
\sum_{i \in S_{1}} v_{i}=\sum_{j \in S_{2}} v_{j} ?
$$

Prove that TreasureSplitting is NP-complete.
3. (25 points) Consider a special case of QSAT (Quantified 3-SAT) in which the formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ has no negated variables. We define the decision problem NNQSAT to be the problem of deciding the truth value of:

$$
\exists x_{1} \forall x_{2} \ldots \exists x_{n-2} \forall x_{n-1} \exists x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right),
$$

where n is odd and $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a 3-CNF formula with no negated variables. Give a polynomial time algorithm to solve NNQSAT; analyse the running time of the algorithm.
4. (25 points) Define the choice set and describe a backtracking algorithm for the problem: given G and k, find all k-vertex colourings of G.

