
CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Lucia Moura

Winter 2010

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Theorem

The circuit-satisfiability problem is NP-hard.

Proof. (Cormen, Leiserson and Rivest, Introduction to Algorithms.)
The proof uses Karp transformation. Let X be a problem in NP. We will
describe a polynomial time algorithm F computing a transformation
function f that maps every binary string x to a circuit K = f(x) such
that x ∈ X if and only if K ∈ CIRCUIT-SAT.

In the next slides we describe how to build K = f(x), and argue that F
runs in polynomial time and does the job of mapping “yes” instances of X
to “yes” instances of CIRCUIT-SAT and “no” instances of X to “no”
instances of CIRCUIT-SAT.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.

Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).

We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,

I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,

I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,

I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .

The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How to compute K = f(x), for x ∈ X
Since X ∈ NP, we have a two input certifier A(x, y) that runs in
polynomial time. The algorithm F will use certifier A to build K.
Let T (n) be the worst-case running time of A on inputs of length
n = |x|. Since |y| has also a polynomial size |x|, we know that there
is a k such that T (n) ∈ O(nk) and |y| ∈ O(nk).
We represent K as a sequence of configurations as illustrated in the
figure. Each configuration, includes:

I the program for A,
I the program counter, auxiliary machine state,
I the input x, the certificate y,
I working storage.

Starting with configuration co, configuration ci is mapped to
configuration ci+1 by a combinatorial circuit M implementing the
computer hardware. The configurations reside as values on the wires
connecting copies of M .
The output of algorithm A appears as one of the bits of cT (n).

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Configurations and connections used to build K

(figure in Cormen, Leiserson and Rivest - you have a photocopy)

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

How K = f(x) is built

Build K as shown in the previous picture.
The following values in co must be wired to their known values:

program A.

initial counter,

input x,

initial state of the memory.

The only remaining inputs for the circuit K are the bits of y.
Also, all outputs (values in cT (n)) are ignored, and the only output of K is
the bit that represents A(x, y).
Algorithm F then receives x and outputs K, the circuit described above.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Lemma

Let K = f(x) computed by Algorithm F . Then,
K is satisfiable if and only if x ∈ X.

Proof:
(⇐)
Suppose x ∈ X. Then, here exists a certificate y such that A(x, y) = 1.
If we apply the bits of y to the inputs of K the output of the circuit will
be A(x, y) = 1. So K is satisfiable.
(⇒)
Suppose K is satisfiable. Then there exists an input y to K such that
K(y) = 1. But by construction K(y) = A(x, y) and so A(x, y) = 1, and
x ∈ X.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Lemma

Algorithm F runs in polynomial time in n = |x|.

Proof:

First we claim the number of bits to represent each configuration ci is
polynomial on n:
First, the program for A has constant size (independent on |x|),
|x| = n, |y| ∈ O(nk). Since A runs in O(nk) steps the amount of
work storage is also polynomial on n.

The combinatorial circuit M implementing the computer hardware
has size polynomial in the length of a configuration (which is in
O(nk)), and hence is a polynomial in n.

The circuit K contains T (n) = O(nk) copies of configurations and of
M .

Each step of the algorithm F that builds K takes polynomial time.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Lemma

Algorithm F runs in polynomial time in n = |x|.

Proof:

First we claim the number of bits to represent each configuration ci is
polynomial on n:
First, the program for A has constant size (independent on |x|),
|x| = n, |y| ∈ O(nk). Since A runs in O(nk) steps the amount of
work storage is also polynomial on n.

The combinatorial circuit M implementing the computer hardware
has size polynomial in the length of a configuration (which is in
O(nk)), and hence is a polynomial in n.

The circuit K contains T (n) = O(nk) copies of configurations and of
M .

Each step of the algorithm F that builds K takes polynomial time.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Lemma

Algorithm F runs in polynomial time in n = |x|.

Proof:

First we claim the number of bits to represent each configuration ci is
polynomial on n:
First, the program for A has constant size (independent on |x|),
|x| = n, |y| ∈ O(nk). Since A runs in O(nk) steps the amount of
work storage is also polynomial on n.

The combinatorial circuit M implementing the computer hardware
has size polynomial in the length of a configuration (which is in
O(nk)), and hence is a polynomial in n.

The circuit K contains T (n) = O(nk) copies of configurations and of
M .

Each step of the algorithm F that builds K takes polynomial time.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

CIRCUIT-SAT is NP-hard

CIRCUIT-SAT is NP-hard

Lemma

Algorithm F runs in polynomial time in n = |x|.

Proof:

First we claim the number of bits to represent each configuration ci is
polynomial on n:
First, the program for A has constant size (independent on |x|),
|x| = n, |y| ∈ O(nk). Since A runs in O(nk) steps the amount of
work storage is also polynomial on n.

The combinatorial circuit M implementing the computer hardware
has size polynomial in the length of a configuration (which is in
O(nk)), and hence is a polynomial in n.

The circuit K contains T (n) = O(nk) copies of configurations and of
M .

Each step of the algorithm F that builds K takes polynomial time.

CSI4105: CIRCUIT-SAT is NP hard Lucia Moura

	CIRCUIT-SAT is NP-hard
	CIRCUIT-SAT is NP-hard

