CIRCUIT-SAT is NP-hard

Lucia Moura

Winter 2010

CSI4105: CIRCUIT-SAT is NP hard

Lucia Moura

э

<ロト <部ト < 注ト < 注ト

Theorem

The circuit-satisfiability problem is NP-hard.

Proof. (Cormen, Leiserson and Rivest, Introduction to Algorithms.) The proof uses Karp transformation. Let X be a problem in NP. We will describe a polynomial time algorithm F computing a transformation function f that maps every binary string x to a circuit K = f(x) such that $x \in X$ if and only if $K \in CIRCUIT-SAT$.

In the next slides we describe how to build K = f(x), and argue that F runs in polynomial time and does the job of mapping "yes" instances of X to "yes" instances of CIRCUIT-SAT and "no" instances of X to "no" instances of CIRCUIT-SAT.

• Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:
 - the program for A,

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:
 - the program for A,
 - the program counter, auxiliary machine state,

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:
 - ▶ the program for *A*,
 - the program counter, auxiliary machine state,
 - the input x, the certificate y,

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:
 - ▶ the program for A,
 - the program counter, auxiliary machine state,
 - the input x, the certificate y,
 - working storage.

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:
 - ▶ the program for *A*,
 - the program counter, auxiliary machine state,
 - the input x, the certificate y,
 - working storage.
- Starting with configuration c_o , configuration c_i is mapped to configuration c_{i+1} by a combinatorial circuit M implementing the computer hardware. The configurations reside as values on the wires connecting copies of M.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Since $X \in NP$, we have a two input certifier A(x, y) that runs in polynomial time. The algorithm F will use certifier A to build K.
- Let T(n) be the worst-case running time of A on inputs of length n = |x|. Since |y| has also a polynomial size |x|, we know that there is a k such that $T(n) \in O(n^k)$ and $|y| \in O(n^k)$.
- We represent K as a sequence of configurations as illustrated in the figure. Each configuration, includes:
 - ▶ the program for A,
 - the program counter, auxiliary machine state,
 - the input x, the certificate y,
 - working storage.
- Starting with configuration c_o , configuration c_i is mapped to configuration c_{i+1} by a combinatorial circuit M implementing the computer hardware. The configurations reside as values on the wires connecting copies of M.
- The output of algorithm A appears as one of the bits of $c_{T(n)}$.

Configurations and connections used to build K

(figure in Cormen, Leiserson and Rivest - you have a photocopy)

CSI4105: CIRCUIT-SAT is NP hard

Lucia Moura

글 > - < 글 >

How K = f(x) is built

Build K as shown in the previous picture.

The following values in c_o must be wired to their known values:

- program A.
- initial counter,
- input x,
- initial state of the memory.

The only remaining **inputs** for the circuit K are the bits of y. Also, all outputs (values in $c_{T(n)}$) are ignored, and the only **output** of K is the bit that represents A(x, y).

Algorithm F then receives x and outputs K, the circuit described above.

Let K = f(x) computed by Algorithm F. Then, K is satisfiable if and only if $x \in X$.

Proof:

(⇐)

Suppose $x \in X$. Then, here exists a certificate y such that A(x, y) = 1. If we apply the bits of y to the inputs of K the output of the circuit will be A(x, y) = 1. So K is satisfiable. (\Rightarrow)

Suppose K is satisfiable. Then there exists an input y to K such that K(y) = 1. But by construction K(y) = A(x, y) and so A(x, y) = 1, and $x \in X$.

Algorithm F runs in polynomial time in n = |x|.

Proof:

• First we claim the number of bits to represent each configuration c_i is polynomial on n:

First, the program for A has constant size (independent on |x|), |x| = n, $|y| \in O(n^k)$. Since A runs in $O(n^k)$ steps the amount of work storage is also polynomial on n.

Algorithm F runs in polynomial time in n = |x|.

Proof:

• First we claim the number of bits to represent each configuration c_i is polynomial on n:

First, the program for A has constant size (independent on |x|), |x| = n, $|y| \in O(n^k)$. Since A runs in $O(n^k)$ steps the amount of work storage is also polynomial on n.

• The combinatorial circuit M implementing the computer hardware has size polynomial in the length of a configuration (which is in $O(n^k)$), and hence is a polynomial in n.

Algorithm F runs in polynomial time in n = |x|.

Proof:

• First we claim the number of bits to represent each configuration c_i is polynomial on n:

First, the program for A has constant size (independent on |x|), |x| = n, $|y| \in O(n^k)$. Since A runs in $O(n^k)$ steps the amount of work storage is also polynomial on n.

- The combinatorial circuit M implementing the computer hardware has size polynomial in the length of a configuration (which is in $O(n^k)$), and hence is a polynomial in n.
- The circuit K contains $T(n) = {\cal O}(n^k)$ copies of configurations and of M.

Algorithm F runs in polynomial time in n = |x|.

Proof:

• First we claim the number of bits to represent each configuration c_i is polynomial on n:

First, the program for A has constant size (independent on |x|), |x| = n, $|y| \in O(n^k)$. Since A runs in $O(n^k)$ steps the amount of work storage is also polynomial on n.

- The combinatorial circuit M implementing the computer hardware has size polynomial in the length of a configuration (which is in $O(n^k)$), and hence is a polynomial in n.
- The circuit K contains $T(n) = {\cal O}(n^k)$ copies of configurations and of M.
- Each step of the algorithm F that builds K takes polynomial time.