Solutions for Assignment 2

November 30, 2003

1. Algorithm DNF-SAT (¢)
1. For each clause C; of ¢ do
2. SAT «— TRUE

3 For each literal [; in C; do

4 it =l; appears in C; then
5. SAT «— FALSE

6. end for

7 if (SAT) then return 1

8. end for

9. return 0;

RUNNING TIME
Let m be the number of clauses and n be the number of variables in ¢.
The loop 1-8 runs at most m times. The loop 3-6 runs at most in n times.

The rest in line 4 can be done in O(n). The running time of the algorithm
is O(mn?)

CORRECTNESS OF THE ALGORITHM

Recall that ¢ is formed as an "OR” of clauses that are ” ANDs” of literals.
Therefore ¢ is satisfiable if at least one of the clauses is satisfiable. For a
clause to be satisfiable it is sufficient that it does not contain a literal and
its negation, since their ”AND” would never be satisfiable. The algorithm
above just checks these properties.

2.
part 1) : IntProg = {< A,b >: Ais an n x m integer matrix, b is an
m-vector of integers and there exists a vector z € {0, 1}" such that Ax > b }

Step 2: Idea for the Reduction : 3-CNF-SAT<,, IntProg

Ex: ¢ = (x1 Vaa Vas) A(x V-oxg Voxy)

Transform each clause into an inequality, transforming each literal into
expressions z; or (1 — z;) depending whether it is a variable or its negation
that appears in the clause:

(x1 Vo Vo) : T1+ T +ax3>1
(X1 V—xs V —xy) x1+ (1 —x3) + (1 — 24 > 1 which is
equivalent to z; — x3 — x4 > —1
So, the corresponding instance of IntProg is:

11 1 0 1
A:[10—1 —1] b:[—1]

Step 3: Reduction Algorithm

Algorithm F(< ¢ >)
Check whether ¢ is in 3-CNF format.
If it is not, then return (< A = [1],b = [2] >);
-let m be the number of clauses and n be the
number of variables in ¢;

FOR i =1 to m DO
NUMNEGATED « 0;
FOR j = 1 TO m DO Afi, j] = 0;
FOR EACH LITERAL [in C; DO
IF [= z; THEN A[i, j] = Ali, j] + 1;
ELSE IF [= -z; THEN
Ali,j] = Ali.j) — 1
NUMNEGATED++;
END IF
END FOR
bi] = 1 — NUMNEGATED:;
END FOR
RETURN (< A, b >)
Step 4:

< ¢ >€ 3-CNF-SAT << A, b >€ IntProg:
if ¢ is not in 3-CNF format then A = [1] and b = [2], and the system
1z > 2 has no solution for z; € 0, 1. It remains to look at the

case that ¢ is in 3-CNF format.

In this case, ¢ is satisfiable if and only if there exists a truth assignment
to x1, 9, ..., x, such that each clause is satifiable.

It remains to show that this is true if and only if thre exists values 0, 1
assigned to variables x1, s, ..., x,, such that Az > b.

Let us analyze each clause C;. C; is satisfied by z1, o, ..., 2,

if and only if at least one of its literals is assigned the value TRUE.
Let y1, y2, y3 correspond to the truth values of each literal in C;

Thus C; is satisfied if and only if at least one of y1,yo, y3 is

equal to 1, which is equivalent to saying that y; + yo + y3 > 1.

Now we relate the values of y1, ys, y3 with the values of =1, zo, ..., 2,
Let ll, lg./ Q’I'Ldlg be the literals in CZ Then if lj = Tgj then Yi = Ty,
but if [; = —ay; then y; = 1 — xy; since y; = 1 if a3, =0 and y; =1

if Trj = 1.

Substituting this into the equation y; + yo + y3 > 1 we get

ap1Tr1 + QraTro + ar3Trs > 1 — n; where

ak] B —1 lf lj = _‘xkj

and n; is the number of variables in C; that apear negated.
This ¢ is satisfiable if and only if there exists a 0-1 assignment to
variables x1, ..., x,, such that A, > b.

Step 5: F Runs in Polynomial Time:

Checking whether ¢ is in 3-CNF format can be done in linear time on the
number of clauses.

The loop on 7 runs in m steps.

The loop on j runs in n steps.

The loop on the literals run in constant number of steps, sunce there are
only 3 literals per clause. So the running time of F is O(nm).

3.

Step 1: HAMPATH € NP
CERTIFICATE: A sequence of vertices y
VERIFICATION: Check whether y is a hamiltonian path

from u to v in G.

ALGORITHM A(< G,u,v >, <y >)
1. Check whether y has n vertices; if not return 0;
2. Check whether y = (y1,ya, ..., y,) has repeated
vertices; if so return 0;
3. Check whether {y;, y;1} € Efori=1,...n—1
and whether {y,, 1} € E. If some of the tests fail
then return 0;
4. Check whether y; = u and y,, = v.
If not return 0; otherwise return 1.

A runs in polynomial time, since
1. runs in O(n) steps.
2. runs in O(n) steps.
3. runs in O(n) steps.
4. runs in O(1) steps.
So A runs in O(n) steps.
It is easy to see A is a correct verification algorithm for HAMPATH.
Step 2: HAMCYCLE <, HAMPATH

Idea for the reduction:

Given G, pick an arbitrary vertex u and create a new vertex u’
connecting it to all the neighbours of u, in the new graph G’. A hamilto-
nian in G corresponds to a hamiltonian path from u to v’ in G'.
Example:

G: G :

u u
G\\ 4©|
Q} o (O
The only case for which this reduction fails is G: u o —o
since G has no hamiltonian cycle but

has

a hamiltonian path between u and u/. Therefore we treat the case
| v |= 2 separately in the algorithm.

Step 3 Reduction Algorithm:

Algorithm F(< G >)
Let G = (V, E).
If | V |=2 then return < G' = (V' ={u, v}, E' = ¢),u,v >
select a vertex u in G.
V' —Vu{u}
E' —F
For each v in V do
if {u,v} € F then £/ — E'U{v/,v}
return < G' = (V') E'),u,u' >;

Step 4 The reduction works, that is:

GG has a hamiltonian cycle if and only if G’ has a hamiltonian path

from u to u’.

(=) Let C' = (v; = u, vy, ...,v,) be a hamiltonian cycle in G

(we can assume v; = u without loss of generality). It is easy to see that

(v1 = u, Vg, V3, ..., Up, Upy1 = ') is & hamiltonian path between

uw and u' in G’ since (vy, v, ..., v,) are distinct vertices in G

S0 (V] = U, Vg, ..., Up, Upy1 = u') are distincet vertice in G’; moreover if

{vi,vi:1} € E,i = 1,...,n, and {v,,u} € E then {v;,v;11} € F',i =
L,...,n, and {v,,u'} € E' .

(<) Let P = (u = vy, v, 03, ..., Up, Unp1 = ') be a hamiltonian path

in G'. Then, (v1,vq,...,U, 041 = o) are distinct vertices in G’, so
(v1, V9, ..., v,) are distinct in G. Moreover, since {v;,v;41} € E';i = 1,...,n,
and {u,v1} € F'

then we conclude {v;,v;11} € F,i=1,...,n, and {u,v;} € F'.

Moreover, since n > 2, then {v, vo} # {v,, v1}, so (v1,va, ..., vp)

is a hamiltonian cycle in G.

Step 5 F runs in Polynomial Time:
Copying G into G’ takes time O(n?) where n =| v |. Creating v/ and its
incidence edges takes time in O(n). Therefore, F runs in O(n?).

4.

Refer to Bellman Ford Algorithm in page 588 of the textbook.
The following is a decider for HAMPATHDIRACYCL:
ALGORITHM A(< G,u,v >)

Let G = (V,E),let n=| V|

For each edge (u,v) € E do w(u,v) = —1;

Result«Bellman-Ford(G, w, u);

If (Result = false) then //G is not directed acyclic

Return 0;

If djv] = —(n — 1) then return 1;

else return 0;
END ALGORITHM.

Note that Bellman-Ford returns true only if G does not contain directed
negative cycles, which in our case of all weights being negative is equivalent
to G being directed acyclic graph. If this algorithm return true, then d[|
contains the shortest distance between every vertex and the source vertex u.

The correctness of our algorithm is based on the following fact:

< Let G be a directed acyclic graph. Then, there exists a hamiltonian
path from u to v if and only if the shortest path between u and v, putting
all edge weights equal to -1, has wight —(n —1). >

Proof of the fact:

(=) If G has a hamiltonian path from u to v then the weight of this path
is —(n — 1), since a hamiltonian path has n — 1 edges and each edge has
weight -1.

Because there are no directed cycle in GG, any other path must have dis-
tinct vertices, so the number of vertices is smaller than or equal to n, so its
weight is > —(n — 1). So the shortest path in G has weight —(n — 1).

< If G has no hamiltonian path from u to v then the number of ver-
tices in a path from u to v is at most n — 2. Thus its weight is at least
—(n—2) > —(n—1). So the shortest path from u to v has weight > —(n—1).

Algorithm A runs in polynomial time:

6

Let n=|V |and m =| E |.

Step 2 runs in O(m).

Step 3 runs in O(m - n) (see textbook).

All other steps run in O(1). So A runs in O(m - n).

