2.1

. . E (0.2)->(0.1.SL)
Solutions for Assignment 1 i @0>(1081)
(00->(00SL) (1L1)->(1,1,SL)

0. >x%RR)

L )->y.RR)
(0X)->(0XRR)

October 22, 2003 @y)->(LyRR)

1. Answers

a) False Accept (x1) > (xY.RR) (x, 0)->(x ORR)
We will show by contradiction that f ¢ O(g). Suppose f € O(g), then (¥.0->(y, x, RR) E?g;:g RR)
there exist constants ¢ > 0 and ny > 0 such that Lm) < ¢ for all n > ng. But, e
g(m) (v, )->(y LRR)
(01)>(0.LLR)
lim () = limn=o0c (0>(LOLR)
n—oo !]( ) n—oo
which contradicts the previous statement. 2.2
b) False

e Stepl (states q1 and q2): Go over tape 1 writing its conents to tape 2.
Take f(n) =1 and g(n) = n. Then fumin(n) =1, and vl ( 4 a2) v ¢ v

(f+9)(n)=f(n)+g(n)=n+1

Step2 (state g3): Rewind tape 2 while keeping tape 1 in its last input
symbol.
f+9 ¢ O(fmin

00).

nce f+g & O(fmin) (because lim, o % =1lim,_,e0 % =

Step 3 (state q4): Go over both tapes, tape 1 from right to left and
tape 2 from left to right, comparing symbols. If symbols are equal at
¢) True any point, rejest. Stop when reaching leftmost point of tape 1.
Suppose f € O(g). Then we know there exist postive constants ¢ and ng
such that f(n) < cg(n) for all n > ng. Thus 1f(n) < g(n) for all n > ne;
50 there exists a constant d = 1 > 0 such that df(n) < g(n) for all n > nq,
which implies g € Q(f).

Let T'(n) be the worst case running time of M. Steps 1, 2, and 3 each
consists of a single scanning of the tape so T'(n) € ©(n)

d) False 23
Counterexample: f(n) = 1, g(n) = n. In this case f € O(g) since for

c=1landny=1, f(n)=1<n=1-g(n)for all n > 1. However g ¢ O(f)

since lim, . ji(% =lim n = oo, which is not below any constant.

1 2

Step 2: Scan the tape again crossing the first symbol that is not an X
0->0,R and the last symbol that is not an X. If original symbols were equal
1->1,R then reject. If no symbol other than X has been found, accept.

Step 3: GO to step 2.

The first step can be done with a single scan of the tape, so it takes O(n)
steps. Similarly step 2 takes O(n) steps. Step 2 is repeated at most § times,
since at each step two symbols are transformed into X. Therefore the total
running time is in O(n?)

2.5 RAM Program
We will use registers:
79 = accumulator
71 = store index of leftmost symbol to be examined
79 = store index of rightmost symbol to be examined
1LOAD =1
2STORE 1
3READ |1
4 STORE 2
5LOAD 1
6 ADD =2
7STORE 1
8 LOAD 2
9 STORE 11
10 ADD 1
11 JZERO 16
12 LOAD 1
13SUB 1
14 STORE 1
15 JUMP 3 // loop 3-15 reads iy,. .., i, into 73,..., Tpia
16 LOAD 1
17 SUB =1
18 STORE 2 /) rae—n+2
19 LOAD =3
20 STORE 1 /)3
o Step 1: Scan the tape crossing the first and last symbols. If symbols 21 LOAD 2
were equal then reject. 22 SUB 1

2.4.Description and analysis



23 JNEG 34 //if 73 < ry then go to accept
24 LOAD 11

25 SUB 1 2

26 JZR 36 // if leftmost symbol = rightmost symbol then reject
27 LOAD 1

28 ADD =1

20 STORE 1 Jmen+l

30 LOAD 2

31 SUB =1

32 STORE 2 [ e —1

33 IMP 21

34 LOAD =1 // accept

35 HALT

36 LOAD =0 // reject

37 HALT

2.6 Running Time

The first loop (line 3 to line 15) simply reads the input which takes time
O(n). The second loop (line 21 to line 33) runs for [ﬂ iterations, so it takes
time in O(n). The whole program takes time in O(n).

3. Let Ac P, A#Y" and A+ ¢. Since A € P, we know A € NP. It
remains to show A is NP-hard.

‘We need to show that L <, A forall L € NP.

Let L € NP be an arbitrary language in NP. Since P = NP, we
conclude L € P and so there exists a polynominal time algorithm D that
decides L. We will build a reduction algorithm F (reduction from L to A)
in the following way:

Algorithm F(z)

{ Let a be a string in A, Let b be a string in *\ A

if D(z) =1 then return a

else return b

}

if z € L then D(z) =1 and F(z) =a € A.

ifx ¢ L, then D(x) =0 and F(x) =b¢ A

Moreover, since D runs in polynominal time and F simply calls D (poly-
nomial time) and does a constant number of steps, F' runs in polynominal

loop in line 6 runs n times

loop in line 9 runs at most m times

therefore line 10 over all iteration run in n x m x T(n,m)

line 11- 12 run in time n X m

line 8 and 15 are repeated n times and each time it may take O(n X m),
so totally, it is O(n? X m)

Thus the running time for B is in O(n? x m +n x m x T(n,m)), since
T(n,m) is a polynomial, B runs in polynomial time.

5. Proof:

Step 1 DoubleSAT € NP
Certificate : Two truth assignments
Verification Algorithm:

A< ¢>,91,9)

o Evaluate formula ¢ using truth assignment given in y1. If (y1 is not a
satifying assignment) then return 0;

o Evaluate formula ¢ using truth assignment given in yy. If (y2 is not a
satifying assignment) then return 0;

o If(y; # y,) then return 1; else return 0;

is satisfiable < there exist two distinct truth assignments that satisfy
¢ < there exists inputs y;, ¥, for A that causes A to return 1.

Algorithm A runs in polynomial time since the formula evaluation can be
done in linear time with the size of ¢. Also 3, and y, have size n, the number
of variables in ¢, so these comparison also take linear time.

Step 2 We will prove SAT <, DoubleSAT

Step 3 We will describe the reduction algorithm F.
Algorithm F(< ¢ >)

Let z1, 3, ..., T, be the variable in ¢

Build another formula ¢, equivalent to ¢ but substituting variables
1,T3, ...y Tn DY Y1, Y2, ..., Yn TESPECtively.

Create a formula ¢' as the disjunction of ¢ and ¢s: ¢ = ¢ V da;
return ¢’

time.

4. Since HAMPATH € P, there exists a polynomial time algorithm A
that decides HAMPATH.

Below we describe the polynomial time algorithm B that finds a hamil-
tonian path from u to v, if one exists.

Algorithm B (G = (V,E),u,v)

1 if A(G,u,v)=0 then

2 output “no hamiltonian path from u to v exists ”
3 else

4 {n=|V]

5 w=u

6 fori=1tondo

7 { PATH[{] = w;

8 G~ G\{w};

9 for each edge (w,t) in G' coming out of w do
10 {if (A(G',t,v) = 1) then

1 {w=¢t

12 break this loop;

13

14 }

15 GG

16 }

17 return (PATH);

18

19}

The correctness of the algorithm comes from the idea that if there exists
a hamiltonian path from u to v, having second vertex t, when we remove u
from G, there must be hamiltonian path from t to v in the reduced graph.
Iterating this principle, we can determine the sequence of the vertices in the
hamiltonian path.

The algorithm runs in polynomial time, for the following reasons:

Let T(n,m) be the worst case running time of algorithm A for a graph
with n vertices and m edges.

stepl takes time T'(n, m)

step 2-5 takes constant time

}

Step 4

If ¢ € SAT, then there exists a satisfying assignment o = (01, 03, ..., o),
where 0; = 0 or 1 for ¢. Thus, o satisfies ¢ and ¢,. Let 7 =
(71,725 Ta)s T # o.Therefore o' = (01,04,..., On, T1, T2, ..., Tn) and
0% = (T, Tay o0y Tny 01, O3, ..., 0y) SaLESEY ¢ = @V s So ¢ € DoubleSAT

If ¢ ¢SAT, then for all truth assignments ¢ = (01, 03,...,0,), ¢ eval-
uates to 0. Therefore, for any truth assignment 7, ¢, evaluates to 0. So

¢’ = ¢V, evaluates to 0 for any truth assignment (o1,04, ..., 00, T1, T2, -.ny

So ¢ ¢ DoubleSAT

Step 5
¢ can be copied to ¢, in linear time and both can be combined with an
or operation in constant time. So F runs in linear time on the size of ¢



