Solutions for Assignment 1

October 22, 2003

1. Answers
a) False
We will show by contradiction that f ¢ O(g). Suppose f € O(g), then

there exist constants ¢ > 0 and ny > 0 such that % < c for all n > ngy. But

lim @ = lim n=o

which contradicts the previous statement.

b) False
Take f(n) =1 and g(n) = n. Then f,,(n) =1, and

(f+9)(n)=f(n)+gn)=n+1

f+9 & O(fmin) since f4+g & O( frin) (because lim,, %@E’;) = lim, o 2 =

c) True

Suppose f € O(g). Then we know there exist postive constants ¢ and ng
such that f(n) < cg(n) for all n > ng. Thus +f(n) < g(n) for all n > ny;
so there exists a constant d = 1 > 0 such that df(n) < g(n) for all n > ny,
which implies g € Q(f).

d) False
Counterexample: f(n) = 1, g(n) = n. In this case f € O(g) since for
c=landny=1, f(n)=1<n=1-g(n) for all n > 1. However g ¢ O(f)
9(n)

since lim,, oy = lim n = oo, which is not below any constant.
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2.1

(0,0 ->(00RR) (0,2)->(0,1,SL)
(1,)->(L1RR) (1,0->(1,0,SL)

00->(00SL) (L1)->(LLSL)
©, )->(x xR, R) m

(1v _) '>(y: Y, R, R) ﬂ (_:_) '>(_1_1L1L)
(0x)->(0x,R,R)

(Ly)->(Ly.RR)

(0y)->(0y.L,R)
(1x)->(1.x,L,R)

@ x,1) -> xy,R,R)
(y,O)->(y, X, R,R)

(0,1)->(0,1,L,R)

CO>CoRR

(x, 0->(x,0,RR)
(0,0->(0,0,R,R)
(1,1)->(L,1L,RR)
v, D->(,L,RR)

(1,0->(1,0,L,R)

2.2
e Stepl (states q1 and q2): Go over tape 1 writing its conents to tape 2.

e Step2 (state q3): Rewind tape 2 while keeping tape 1 in its last input
symbol.

e Step 3 (state q4): Go over both tapes, tape 1 from right to left and
tape 2 from left to right, comparing symbols. If symbols are equal at
any point, rejest. Stop when reaching leftmost point of tape 1.

Let T(n) be the worst case running time of Ms. Steps 1, 2, and 3 each
consists of a single scanning of the tape so T'(n) € ©(n)

2.3



0->0,R

1->1,R
_'>_’L
a4 0->0R
0->0,R 1->x L
1->xR LR Reject
_->_,L 1-> R
0->x,R
0->0,L 1>1,L
X->¥ X->X,R
X->X,R
X,R

\ 0->x
X->x,L
' 0->0,R

1->1,R

2.4.Description and analysis

e Step 1: Scan the tape crossing the first and last symbols. If symbols
were equal then reject.



e Step 2: Scan the tape again crossing the first symbol that is not an X
and the last symbol that is not an X. If original symbols were equal
then reject. If no symbol other than X has been found, accept.

e Step 3: GO to step 2.

The first step can be done with a single scan of the tape, so it takes O(n)
steps. Similarly step 2 takes O(n) steps. Step 2 is repeated at most 7 times,
since at each step two symbols are transformed into X. Therefore the total
running time is in O(n?)

2.5 RAM Program
We will use registers:
1o = accumulator
r1 = store index of leftmost symbol to be examined
ry = store index of rightmost symbol to be examined
1 LOAD =1
2 STORE 1
3 READ 71
4 STORE 2
5 LOAD 1
6 ADD = 2
7STORE 1
8 LOAD 2
9 STORE 71
10 ADD 1
11 JZERO 16
12 LOAD 1
13 SUB 1
14 STORE 1
15 JUMP 3 // loop 3-15 reads i1, ..., %, into 73,...,"hio
16 LOAD 1
17 SUB =1
18 STORE 2 /] re —n+2
19 LOAD =3
20 STORE 1 /] 13
21 LOAD 2
22 SUB 1



23 JNEG 34 // if ry < 7y then go to accept
24 LOAD 1 1

25 SUB 1 2

26 JZR 36 // if leftmost symbol = rightmost symbol then reject
27 LOAD 1

28 ADD =1

29 STORE 1 /] ri—r+1

30 LOAD 2

31 SUB =1

32 STORE 2 /vy g —1

33 JMP 21

34 LOAD =1 // accept

35 HALT

36 LOAD =0 // reject

37T HALT

2.6 Running Time

The first loop (line 3 to line 15) simply reads the input which takes time
O(n). The second loop (line 21 to line 33) runs for [%1 iterations, so it takes
time in O(n). The whole program takes time in O(n).

3. Let Ae P, A#Y* and A # ¢. Since A € P, we know A € NP. It
remains to show A is NP-hard.

We need to show that L <, A for all L € NP.

Let L € NP be an arbitrary language in NP. Since P = NP, we
conclude L € P and so there exists a polynominal time algorithm D that
decides L. We will build a reduction algorithm F' (reduction from L to A)
in the following way:

Algorithm F(z)

{ Let a be a string in A, Let b be a string in ¥*\ A

if D(z) =1 then return a

else return b

}

if x € L then D(z) =1 and F(z) =a € A.

if x ¢ L, then D(x) =0 and F(z) =0 ¢ A.

Moreover, since D runs in polynominal time and F simply calls D (poly-
nomial time) and does a constant number of steps, F' runs in polynominal



time.

4. Since HAMPATH € P, there exists a polynomial time algorithm A
that decides HAMPATH.

Below we describe the polynomial time algorithm B that finds a hamil-
tonian path from u to v, if one exists.

Algorithm B (G = (V, E), u, v)

CO I O UL i W N —H A

18

19 }

if A(G,u,v) =0 then
output “no hamiltonian path from u to v exists ”
else
{n=1V|
w=u
fori=1ton do
{ PATH[i] = w;
G — G\{w};
for each edge (w,t) in G coming out of w do
{if (A(G",t,v) =1) then
{w=t
break this loop;
}
¥
G+~ G
}
return (PATH);

}

The correctness of the algorithm comes from the idea that if there exists
a hamiltonian path from u to v, having second vertex t, when we remove u
from @, there must be hamiltonian path from t to v in the reduced graph.
Iterating this principle, we can determine the sequence of the vertices in the
hamiltonian path.

The algorithm runs in polynomial time, for the following reasons:

Let T'(n,m) be the worst case running time of algorithm A for a graph
with n vertices and m edges.

stepl takes time T'(n,m)

step 2-5 takes constant time



loop in line 6 runs n times

loop in line 9 runs at most m times

therefore line 10 over all iteration run in n x m x T'(n,m)

line 11- 12 run in time n X m

line 8 and 15 are repeated n times and each time it may take O(n x m),
so totally, it is O(n? x m)

Thus the running time for B is in O(n? X m +n X m x T(n,m)), since
T(n,m) is a polynomial, B runs in polynomial time.

9.Proof:

Step 1 DoubleSAT € NP
Certificate : Two truth assignments
Verification Algorithm:

A(< ¢ >a Y1, yZ)

e Evaluate formula ¢ using truth assignment given in y;. If (y; is not a
satifying assignment) then return 0;

e Evaluate formula ¢ using truth assignment given in y,. If (35 is not a
satifying assignment) then return 0;

e If(y; # y2) then return 1; else return O;

¢ is satisfiable < there exist two distinct truth assignments that satisfy
¢ < there exists inputs yi, 32 for A that causes A to return 1.

Algorithm A runs in polynomial time since the formula evaluation can be
done in linear time with the size of ¢. Also y; and y, have size n, the number
of variables in ¢, so these comparison also take linear time.

Step 2 We will prove SAT <, DoubleSAT

Step 3 We will describe the reduction algorithm F.

Algorithm F(< ¢ >)

{
Let x1, 29, ..., z, be the variable in ¢
Build another formula ¢, equivalent to ¢ but substituting variables
L1, %2, ey Ty DY Y1, Y2, ..., Yo respectively.
Create a formula ¢’ as the disjunction of ¢ and ¢o: ¢ = @ V ¢o;
return ¢’



}

Step 4

e If ¢ € SAT, then there exists a satisfying assignment o = (01, 09, ..., 04,),
where o; = 0 or 1 for ¢. Thus, o satisfies ¢ and ¢5. Let 7 =
(11,795, ), T # o.Therefore o' = (01,09, ...,0,,71,T2,...,T) and
02 = (T1, Tay eoey Ty O1y O, vy Oy ) Sabisfy ¢ = ¢V hy. So ¢’ € DoubleSAT

o If ¢ ¢SAT, then for all truth assignments o = (o1, 09, ...,0,), ¢ eval-
uates to 0. Therefore, for any truth assignment 7, ¢, evaluates to 0. So

¢ = ¢V by evaluates to 0 for any truth assignment (01, 03, ..., Op, T1, T2y ooy Tn)-
So ¢' ¢ DoubleSAT

Step 5
¢ can be copied to ¢, in linear time and both can be combined with an
or operation in constant time. So F runs in linear time on the size of ¢



