B-TREES I

CSI2131 - Winter 2002 B-trees 1

Contents of today’s lecture:

e Introduction to multilevel indexing and B-trees.
e Insertions in B trees.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 9.1-9.6.

Introduction to Multilevel Indexing and B-Trees

Problems with simple indexes that are kept in disk:

1. Seeking the index is still slow (binary searching):

We don’t want more than 3 or 4 seeks for a search.
So, here logs(N+1) is still slow:

N |logy(IN+1)

15 keys 4
1,000 ~10
100,000 ~17

1,000,000 ~20

2. Insertions and deletions should be as fast as searches:
In simple indexes, insertion or deletion take O(n) disk accesses
(since index should be kept sorted)

Lucia Moura 214

CSI2131 - Winter 2002 B-trees 1

Indexing with Binary Search Trees

We could use balanced binary search trees:

e AVL Trees
Worst-case search is 1.44 logs(N+2)
1,000,000 keys — 29 levels

Still prohibitive...

¢ Paged Binary Trees
Place subtrees of size K in a single page

Worst-case search is logg 1 (N+1)

K=511, N=134,217,727

Binary trees: 27 seeks
Paged binary tree: 3 seeks

This is good but there are lots of difficulties in maintaining (doing
insertions and deletions in) a paged binary tree.

Lucia Moura 215

CSI2131 - Winter 2002 B-trees 1

Multilevel Indexing

Consider our 8,000,000 example with keysize = 10 bytes.

Index file size = 80 MB

Each record in the index will contain 100 pairs (key, reference)
A simple index would contain: 80,000 records. Too expensive to
search (still ~ 16 seeks)

Multilevel Index
Build an index of an index file:

How:

e Build a simple index for the file, sorting keys using the method for
external sorting previously studied.

e Build an index for this index.

e Build another index for the previous index, and so on.

<- 100 keys->

Index File

(Level 1) rec 100 ‘ ‘ rec 79,901 ‘ ‘ rec 80,000

Index File
(Leve 2)

1

‘ rec1

TN
Index File ‘ ‘ X
(Leve 3)

rec 8 ‘

Index File
(Level 4) rec1

Note: That the index of an index stores the largest key in the record
1t 1s pointing to.

Lucia Moura 216

CSI2131 - Winter 2002 B-trees 1

B-Trees - Working Bottom-Up

e Again an index record may contain 100 keys.

e An index record may be half full (each index record may have
from 50 to 100 keys).
e When insertion in an index record causes it to overfull:
- Split record in two

- “Promote” the largest key in one of the records to the upper
level

Example for order = 4 (instead of 100).

Node 1

Node 2 Node 3

Lucia Moura 217

CSI2131 - Winter 2002 B-trees 1

Inserting X

X is between T and Z: insertion in node 3 splits it and generates a
promotion of node X.

Spliting :
U W X Y Z
Node 3.1 Node 3.2

Promoting largest of Node 3.1.

Node 1 T A\ X Z

Important: If Node 1 was full, this would generate a new
split-promotion of Node 1. This could be propagated up to the root.

Lucia Moura 218

CSI2131 - Winter 2002 B-trees 1

An example showing insertions:

Inserting keys: order = 4

C7 S7 D7 T7 A7 M7 P7 I7 B7 W7 N7 G7 U7 R7 K7 E7 H7 O7 L7 J7 Y7 Q? Z7
F, X,V

Inserting A: Split and promotion

Root may have less
than 1/2. i.e. 2.

Inserting M,P only changes Node 2 to :

Lucia Moura 219

CSI2131 - Winter 2002 B-trees 1

But inserting “I” Splits and promotes “P”.

There is room for one more node at level 2. After that the root may
get split!

Complete the above example as an exercise.

Important: At cach level, no more than 2 nodes are affected. We
oot search and updates with cost equal to the height of the tree !!

Lucia Moura 220

CSI2131 - Winter 2002 B-trees 1

Note regarding insertions in B-trees

Special case of larger key:

Node 1

Node 2 Node 3

Inserting Z

7. is larger than P but P is larger in Node 1, so the place for Z is Node
3.

Node 1

Node 2 Node 3

221

Lucia Moura

CSI2131 - Winter 2002 B-trees 1

B-Tree Properties

Properties of a B-tree of order m:

1. Every node has a maximum of m children.

2. Every node, except for the root and the leaves, has at least

[m /2] children.
3. The root has at least two children (unless it is a leaf).
4. All the leafs appear on the same level.

5. The leaf level forms a complete index of the associated data file.

Lucia Moura 222

CSI2131 - Winter 2002 B-trees 1

Worst-case search depth

The worst-case depth occurs when every node has the minimum
number of children.

Level Minimum number of keys
(children)

1 2

(root)

2 2-[m/2]

3|2 [mf2] - /2] =2+ [m/2)?

4 2+ [m/2]?

4 |2 g2y

If we have N keys in the leaves:
N >2-[m/2]"!
So, d < 1+ log,, »(N/2)
For N = 1,000,000 and order m = 512, we have

d S 14+ 1Og256 500, 000
d < 3.37

There is at most 3 levels in a B-tree of order 512 holding 1, 000, 000
keys.

Lucia Moura 223

B-TREES 11

CSI2131 - Winter 2002 B-Trees 11

Contents of today’s lecture:

e Outline of Search and Insert algorihtms
e Deletions in B trees.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 9.8, 9.9, 9.10, 9.11, 9.12

Outline of Search and Insert algorithms

Search (keytype key)

1) Find leaf: find the leaf that could contain key, loading all the
nodes in the path from root to leaf into an array in main memory.

2) Search for key in the leaf which was loaded in main memory.

Lucia Moura 225

CSI2131 - Winter 2002 B-Trees 11

Insert (keytype key, int datarec_address)
1) Find leaf (as above).

2) Handle special case of new largest key in tree: update largest key
in all nodes that have been loaded into main memory and save
them to disk.

3) Insertion, overflow detection and splitting on the update path:
currentnode = leaf found in step 1)
recaddress = datarec_address

3.1) Insert the pair (keys, recaddress) into currentnode.
3.2) If it caused overflow

- Create newnode

- Split contents between newnode, currentnode

- Store newnode, currentnode in disk

- If no parent node (root), go to step 4)

- currentnode becomes parent node

- recaddress = address in disk of newnode

- key = largest key in new node

- Go back to 3.1)

4) Creation of a new root if the current root was split.

Create root node pointing to newnode and currentnode. Save
new root to disk.

Lucia Moura 226

CSI2131 - Winter 2002 B-Trees 11

Deletions in B-Trees

The rules for deleting a key K from a node n in a B-tree:

1. If n has more than the minimum number of keys and K is not
the largest key in n, simply delete K from n.

2. If n has more than the minimum number of keys and K is the
largest key in n, delete K from n and modify the higher level
indexes to reflect the new largest key in n.

3. If n has exactly the minimum number of keys and one of the
siblings has “few enough keys”, merge n with its sibling and
delete a key from the parent node.

4. If n has exactly the minimum number of keys and one of the
siblings has extra keys, redistribute by moving some keys from
a sibling to n, and modify higher levels to reflect the new largest
keys in the affected nodes.

Lucia Moura 227

CSI2131 - Winter 2002 B-Trees 11

Consider the following example of a B-tree of order 5 (minimum
allowed in node is 3 keys)

Node 1 E N U Z
A 4
V w Z
Node 5
\ 4
P R S T U
Node 4
\4
K M N
Node 3
A 4
A C E
Node 2

We consider the following 5 alternative modifications on the previous
tree:

e Deleting “T7 falls into case 1)

e Deleting “U” falls into case 2)

Lucia Moura 228

CSI2131 - Winter 2002

Node 1

B-Trees 11

Node 2

E N U
A 4
Z
Node
\ 4
P T U
Node 4
\4
K M
Node 3
A 4
C E

e Deleting “C” falls into case 3) merging with sibling:

/

N

U

z

Node 1

A

E

K

Node 2 merged with 3

Lucia Moura

I

Node 4 Node 5

229

CSI2131 - Winter 2002 B-Trees 11

Node 1 E N U Z
A 4
V w Z
Node 5
\ 4
P R S T U
Node 4
\4
K M N
Node 3
A 4
A C E
Node 2

e Deleting “W” falls into case 4) redistribution with sibling;

Nodel‘ E\ \N\ \T\ z\ \ \

Node 5

Node 4

Node 3

Node 2

e Deleting “M” allows for two possibilities: case 3) or 4)
- Merge Node 3 with Node 2; or
- Redistribute keys between Node 3 and Node 4

Note that “sibling” here refers only to nodes that have the same
parent and are next to each other.

Lucia Moura 230

B+ TREES 1

CSI2131 - Winter 2002 B+ Trees 1

Contents of today’s lecture:

e Maintaining a sequence set.

o A simple prefix B+ tree.

Reference : FOLK, ZOELLICK AND RICCARDI, File
Structures, 1998. Sections 10.1 - 10.5

232

Lucia Moura

CSI2131 - Winter 2002

B+ Trees 1

Motivation

Some applications require two views of a file :

Indexed view :

Sequential view :

Records are indexed by a key

can be sequentially

Records

accessed in order by key

Direct, indexed access

Sequential — access (physically

contiguous records)

Interactive, random access

Batch

co-sequential processing)

(Ex:

processing

Example

of applications

e Student record system in a university :

— Indexed view : access to individual records

— Sequential view : batch processing when posting grades or

when fees are paid

o Credit card system :

— Indexed view : interactive check of accounts

— Sequential view : batch processing of payment slips

Lucia Moura

CSI2131 - Winter 2002 B+ Trees 1

We will look at the following two aspects of the problem :

1. Maintaining a sequence set : keeping records in sequential
order

2. Adding an index set to the sequence set

Maintaining a Sequence Set

Sorting and re-organizing after insertions and deletions is out of
question.
We organize the sequence set in the following way:

e Records are grouped in blocks

e Blocks should be at least half full.

e Link fields are used to point to the preceding block and the
following block (similarly to doubly linked lists)

e Changes (insertion/deletion) are localized into blocks by
performing :

— Block Splitting when insertion causes overflow

— Block Merging or Redistribution when deletion causes
underflow

Lucia Moura 234

CSI2131 - Winter 2002 B+ Trees 1

Example:
Block size = 4

key : Last Name

——» Forward Pointer

———9% Backward Pointer

e Insertion with overflow:

Block 1 ADAMS ... BIXBY ... CARSON ... COLE ...

Insert "BAIRD ..."

Block 1 |: ADAMS ... BAIRD ... BIXBY ... <«

Block 2 CARSON ... COLE ... -

Lucia Moura

235

(CSI2131 - Winter 2002 B+ Trees 1
¢ Deletion with merging:
Blockl — ADAMS.. |BAIRD.. BIXBY ... BOONE..
Block2 L% BYNUM.. |CARSON.. | CARTER.. ,—ﬁ:
Block 3 [DENVER .. | ELLIS.. - i
I
Block4 |5 COLE ... DAVIS ... gL:
Delete "DAVIS ..." (Merging)
Blockl — ADAMS.. |BAIRD.. BIXBY ... BOONE..
Block2 L% BYNUM.. |CARSON.. | CARTER.. ,—ﬁ:
Block 3 i
Block4 |, COLE .. DENVER .. |ELLIS.. _J

Block 3 is available for re-use

Delete ‘BYNUM':

Just remove it from Block 2

Then, delete ‘CARTER’ :

We can either merge Block 2 and 4 or redistribute records among

Blocks 1 and 2.

e Deletion with redistribution:

Block 1 |j
Block 2

Block 4

ADAMS ... \ BAIRD ... \ BIXBY ...
BOONE ... CARSON ...
COLE ... DENVER ... ELLIS ...

When previous and next blocks are full then redistribution is the only

option.

Lucia Moura

236

CSI2131 - Winter 2002 B+ Trees 1

Advantages and disadvantages of the scheme described

Advantages:

e No need to re-organize the whole file after insertions/deletions.
Disadvantages:

e File takes more space than unblocked files (since blocks may be

half full).

e The order of the records is not necessarily physically sequential
(we only guarantee physical sequentiality within a block).

Choosing Block Size

Consider :
e Main memory constraints (must hold at least 2 blocks)

e Avoid seeking within a block (Ex: in sector formatted disks
choose block size equal to cluster size).

Lucia Moura 237

CSI2131 - Winter 2002

Adding an Index Set to the Sequential Set

Index will Contain Separators Instead of Keys

Choose the Shortest Separator (a prefix)

Block Range

__1—_ ADAMS
2 BOLEN
3 CAMP
4 EMBRY
5 FABER
6 FOLKS

of Keys

Separator

CAM
DUTTON

EVANS
FOLK

FOLKS
GADDIS

How can we find a separator for keyl= “CAGE" and

key2 ="CAMP”?

Find the smallest prefix of key2 that is not a prefix of key1.

In this example, the separator is “CAM”.

Lucia Moura

B+ Trees 1

238

CSI2131 - Winter 2002 B+ Trees 1

The Simple Prefix B+ Tree

The simple prefix B+ tree consists of :

e sequence set (as previously seen).

e index set: similar to a B-tree index, but storing the shortest
separators (prefixes) for the sequence set.

Note : If a node contains N separators, it will contain N+1 children.
Using separators slightly modifies the operations in the B-tree index.
Example :

Order of the index set is 3 (i.e. maximum of 2 separators and 3
children). Note: The order is usually much larger, but we made it
small for this example.

Node 0 . | E

Node 1 _ | BO CAM | , Node2 | , | F | \ | FOLKS | \

ADAMS-BERNE

BOLEN-CAGE 1 CAMP-DUTTON —» EMBRY-EVANS 1 FABER-FOLK 1 FOLKS-GADPIS
n

1 2 3 4 5 6

Search in a simple prefix B+ tree: Search for “EMBRY":
e Retrieve Node 0 (root).

e “EMBRY” > “E”. so go right, and retrieve Node 2.
e Since “EMBRY” < “F” go left, and retrieve block number 4.
e Look for the record with key “EMBRY"” in block number 4.

Lucia Moura 239

B+ TREES 11

CSI2131 - Winter 2002 B+ Trees 11

Contents of today’s lecture:

e Simple Prefix B+ Tree Maintenance: Insertions and Deletions

Reference : FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 10.6 - 10.7 (overview 10.8 - 10.11).

From B trees to B+ trees

A clarification regarding the book’s treatment of B-trees and B+
trees: the transition from understanding B trees to understanding the
index set of the simple prefix B4+ tree may be facilitated by the
following interpretation.

- Look at the B + tree index set as a B-tree in which the smallest

element in a child is stored at the parent node in order:

key1, pointerl, key2, pointer2, ..., keyN, pointerN.
- Then, remember that each key is a separator. And remove keyl
from the node’s representation. It may help if you think that “keyl”

is still there, but is “invisible” for understanding purposes.

With this in mind, it should become clear that the updates on the B
+ tree index set are the same as in regular B-trees.

Lucia Moura 241

CSI2131 - Winter 2002

Simple Prefix B+ Tree Maintenance

Example:

e Scequence set has blocking factor 4

o Index set is a B tree of order 3

Index Set

Sequence Set

H

L~
»f/ JL
A CE,G < H,J L N < 0,Q,S
Block 1 Block 2 Block 3

Note that “A” is not really there.

B+ Trees I1

1. Changes which are local to single blocks in the sequence set

Insert “U”:

e (Go to the root

e Go to the right of “O”

e Insert “U” to block 3:
The only modification is

0,Q,5 U

Block 3

e There is no change in the index set

Lucia Moura

242

CSI2131 - Winter 2002 B+ Trees 11

Delete “O7:

e Go to the root
e Go to the right of “O”
e Delete “O7 from block 3:

The only modification is

Q.S U

Block 3

There is no change in the index set: “O7 is still a perfect
separator for blocks 2 and 3.

Lucia Moura 243

CSI2131 - Winter 2002 B+ Trees 11

2. Changes involving multiple blocks in the sequence set.
Delete “5”7 and “U":

Now block 3 becomes less than 1/2 full (underflow)

Q

Block 3

Since block 2 is full, the only option is re-distribution bringing
a key from block 2 to block 3:

We must update the separator “O” to “N”.

The new tree becomes:

Nodel |

Y
A CEG »f/H,J,L —> N, Q

Block 1 Block 2 Block 3

Lucia Moura 244

CSI2131 - Winter 2002 B+ Trees 11

\>

Node 1 } |~ H Ve N ,

A CEG »r/H,J,L —> N, Q

Block 1 Block 2 Block 3

gl

Insert “B”:

e Go to the root

e Go to the left of “H” to block 1

e Block 1 would have to hold A,B.C.E,G
e Block 1 is split:

AﬂBiC _> E,G

Block 1 Block 4 (New)

Promote new separator “E” together with pointer to new block 4

E 1
Blockt
We wished to have:
Node 1 }L:Ai\: E H N

Vo

Block 1 Block 4 Block 2 Block 3

But the order of the index set is 3 (3 pointers, 2 keys).

Lucia Moura 245

CSI2131 - Winter 2002 B+ Trees 11

So this causes node to split:

[

Node 1 CA | E Node2 | H | N |

I B

Block 1 Block 4 Block 2 Block 3

Create a new root to point to both nodes:

A

Node 1 Node 2

H,J L > N, Q

A 4

E, G

Block 1 Block 4 Block 2 Block 3

Remember that “A” is not really present in nodes 1 an 3 and
that “H” is not really present in node 2.

246

Lucia Moura

(CSI2131 - Winter 2002 B+ Trees 11
\
Node 1 }Li&i/ E |/ Node 2 LEi N |\
A B,C P E,G > H,J L > N, Q
Block 1 Block 4 Block 2 Block 3
Insert “F”

e (GO to root

e Go to left of “H”

e Go to right of “E” in Node 1
o Insert “F” in block 4

e Block 4 becomes:

E,F,G

Block 4

e Index set remains unchanged

Delete “J” and “L”

Block 2 would become:

H

Block 2

But this i1s an underflow.

One may get tempted to redistribute among blocks 4 and 2: E, F,
G and H would become E, F and G, H.

Why this is not possible 7
Block 4 and block 2 are not siblings! They are cousins.

Lucia Moura

247

CSI2131 - Winter 2002 B+ Trees 11

The only sibling of block 2 is block 3.
Redistribution in not possible between H and N,(), so the only
possibility is merging blocks 2 and 3 :

H, N, Q

Block 2

e Send block 3 to AVAIL LIST

e Remove the following from node 2

N

v

Block 3

e This causes an underflow in Node 2

H

v

Block 2

e The only possibility is a merge with its sibling (Node 1):

Node 1 } A | E | H |

R

Block 1 Block 4 Block 2

e In our interpretation “H” becomes “visible”; In the textbook’s
interpretation “H” is brought down from the root.

e Send node 2 to AVAIL LIST

Lucia Moura 248

CSI2131 - Winter 2002 B+ Trees 11

e Now remove

e Underflow on the root causes removal of the root (Node 3)
and Node 1 becomes the new root :

\>

Node 1 L | — E Ve H ,

A
A B, C f/E,F,G H, N, Q

Block 1 Block 4 Block 2

Blocks were reunited as a big happy family again !!

Compare it with the original tree.

Note : Remember that a B+ tree may be taller, so that splittings or
mergings of nodes may propagate for several levels up to the root.

Lucia Moura 249

CSI2131 - Winter 2002 B+ Trees 11

Advanced Observations for Meditation

. Usually a node for the index set has the same physical size (in
bytes) than a block in the sequence set. In this case, we say
“index set block” for a node.

. Usually sequence set blocks and index set blocks are mingled
inside the same file.

. The fact that we use separators of variables length suggests the
use of B trees of variable order. The concepts of underflow and
overflow become more complex in this case.

. Index set blocks may have a complex internal structure in order
to store variable length separators and allow for binary search on
them (see Figure 10.12 on page 442).

. Building a B+ tree from an existing file already containing many
records can be done more efficiently than doing a sequence of

insertions into an initially empty B4 tree. This is discussed in
Section 10.9 (Building a Simple Prefix B4+ Tree).

. Simple prefix B+ trees or regular B+ trees are very similar. The
difference is that the latter stores actual keys rather than shortest
separators or prefixes.

Lucia Moura 250

