HASHING 1

CSI2131 - Winter 2002 Hashing 1

Contents of today’s lecture:

e Introduction to Hashing

e Hash functions.

e Distribution of records among addresses, synonyms and collisions.
e Collision resolution by progressive overflow or linear probing.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 11.1,11.2,11.3,11.5.

Motivation

Hashing is a useful searching technique, which can be used for
implementing indexes. The main motivation for Hashing is
improving searching time.

Below we show how the search time for Hashing compares to the
one for other methods:

- Simple Indexes (using binary search): O(logy N)

- B Trees and B+ trees (will see later): O(log, V)
- Hashing: O(1)

Lucia Moura 148

CSI2131 - Winter 2002 Hashing 1

What is Hashing 7

The idea is to discover the location of a key by simply examining
the key. For that we need to design a hash function.

A Hash Function is a function (k) that transforms a key into
an address.

An address space is chosen before hand. For example, we may
decide the file will have 1,000 available addresses.

If U is the set of all possible keys, the hash function is from U to
{0,1,...,999}, that is

h:U— {0.1,...,999}

Example :
k ASCII product h(k) =
code product mod
for the 1,000
first 2
letters

BALL 66, 65 |66 x 65 = 4,290 | 290
LOWELL |76, 79 |76 x 79 = 6,004 | 004
TREE 84,82 |84 x 82 = 06,888 | 888

Lucia Moura 149

CSI2131 - Winter 2002 Hashing 1

RRN FILE

000
001

004 |LOWELL

290 |BALL

888 | TREE
999

There is no obvious connection between the key and the location

(randomizing).

Two different keys may be sent to the same address generating a
Collision.

Can you give an example of collision for the hash function in the
previous example ?

Lucia Moura 150

CSI2131 - Winter 2002 Hashing 1

Answer:
LOWELL, LOCK, OLIVER, and any word with first two letters L
and O will be mapped to the same address:

h(LOWELL) = h(LOCK) = h(OLIVER) = 4.

These keys are called synonyms. The address “4” is said to be
the home address of any of these keys.

Avoiding collisions is extremely difficult (do you know the
birthday paradox?), so we need techniques for dealing with it.

Ways of reducing collisions:

1. Spread out the records by choosing a good hash function.

2. Use extra memory, i.e. increase the size of the address
space (Ex: reserve 5,000 available addresses rather than 1,000).

3. Put more than one record at a single address (use of

buckets).

Lucia Moura 151

CSI2131 - Winter 2002 Hashing 1

A Simple Hash Function

To compute this hash function, apply 3 steps :

Step 1: transform the key into a number.

IOWELL = | LJ|O|WIEILLILILI | | | | | |
ASCII code: 76 79 87 69 76 76 32 32 32 32 32 32

Step 2: fold and add (chop off pieces of the number and add
them together) and take the mod by a prime number

767918769|7676(3232|3232[3232]
7679+8769+7676+3232+3232+3232 = 33,820

33,820 mod 19937 = 13,883

Step 3: divide by the size of the address space (preferably a
prime number).

13,883 mod 101 = 46

Lucia Moura 152

CSI2131 - Winter 2002 Hashing 1

Distribution of Records among Addresses

There are 3 possibilities :

Uniform All synonyms Random
(no synonyms) (afew synonyms)
Key Address Key Address Key Address

A 0 A 0 A 0
B 1 B 1 B 1
C 2 C 2 C 2
D 3 D 3 D 3
4 4 4

5 5 5

6 6 6

Uniform distributions are extremely rare.

Random distributions are acceptable and more easily obtainable.

Lucia Moura 153

CSI2131 - Winter 2002 Hashing 1

Trying a better-than-random distribution, by preserving
natural ordering among the keys :

e Examine keys for patterns.

Ex: Numerical keys that are spread out naturally such as:
keys are years between 1970 and 2000.

flyear) = (year — 1970) mod(2000 — 1970 + 1)

f(1970) =0, £(1971) = 1,-- -, £(2000) = 30

e Fold parts of the key.

Folding means extracting digits from a key and adding the parts
together as in the previous example.

In some cases, this process may preserve the natural separation of
keys, if there is a natural separation.

e Use prime number when dividing the key.

Dividing by a number is good when there are sequences of
consecutive numbers.

If there are many different sequences of consecutive numbers,
dividing by a number that has many small factors may result in
lots of collisions. A prime number is a better choice.

Lucia Moura 154

CSI2131 - Winter 2002 Hashing 1

When there is no natural separation between keys, try
randomization.

You can using the following Hash functions:

e Square the key and take the middle:

Ex: key = 453 453% = 205209
Extract the middle = 52.
This address 1s between 00 and 99.

¢ Radix transformation:

Transform the number into another base and then divide by the
maximum address.

Ex: Addresses from 0 to 99
key = 453 in base 11 : 382
hash address = 382 mod 99 = &5.

Lucia Moura 155

CSI2131 - Winter 2002 Hashing 1

Collision Resolution:Progressive Overflow

Progressive overflow/linear probing works as follows :

Insertion of key k:

- Go to the home address of k : h(k)

- If free, place the key there

- If occupied, try the next position until an empty position is found
(the ‘next’ position for the last position is position 0, i.e. wrap

around)
Example : Complete Table:
key k |Home address - h(k)| 1
COLE 20
BATES 21 :
ADAMS 21 19
DEAN 22 20
EVANS 20 21

22

Table size = 23
Searching for key k:

- Go to the home address of k : h(k)

- If k is in home address, we are done.

- Otherwise try the next position until: key is found or empty
space is found or home address is reached (in the last 2 cases, the
key is not found)

Lucia Moura 156

CSI2131 - Winter 2002 Hashing 1

DEAN
1 | EVANS

19
20 | COLE

21 | BATES
22 | ADAMS

Ex:
A search for ‘TEVANS’ probes places : 20, 21, 22, 0, 1, finding the

record at position 1.

Search for ‘MOURA', if h(MOURA)=22, probes places 22, 0, 1, 2
where it concludes ‘MOURA’ in not in the table.

Search for ‘SMITH’, if h(SMITH)=19, probes 19, and concludes
"SMITH’ in not in the table.

Advantage : Simplicity

Disadvantage : If there are lots of collisions, clusters of records
can form, as in the previous example.

Lucia Moura

157

CSI2131 - Winter 2002 Hashing 1

Search length

- Number of accesses required to retrieve a record.

average search length
= (sum of search lengths)/(numb.of records)

In the previous example :

DEAN
1 | EVANS key Search Length
COLE
: : BATES
19 ADAMS
20 | COLE DEAN
21 | BATES EVANS
22 | ADAMS

Average search length = (1+14+24245)/5 = 2.2.

Refer to figure 11.7 in page 489. It shows that a packing density
up to 60% gives an average search length of 2 probes, but higher
packing densities make search length to increase rapidly.

Lucia Moura 158

HASHING II

CSI2131 - Winter 2002 Hashing I1

Contents of today’s lecture:

e Predicting record distribution; packing density.
e Hashing with Buckets

e Implementation issues.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 11.3,11.4,11.6

Predicting Record Distribution

Throughout this section we assume a random distribution for the

hash function.
Lot N = number of available addresses, and

r = number of records to be stored.

Let p(z) be the probability that a given address will have
records assigned to it.

It is easy to see that

r!

)

For N and r large enough this can be approximated by:
(r/N)* 1Y

x!

plz) = (

r—z)l!

plx) ~

Lucia Moura 160

CSI2131 - Winter 2002 Hashing I1

Example : N = 1,000, » = 1,000

10 ¢t

p(O) ~ 0 = (.368
el

p(l) ~ T = (.368
12 ¢t

p(2) ~ o) = ().184
13 et

p(3) ~ o) = 0.061

For N addresses,
the expected number of addresses with x records is

N -p(z).

Complete the numbers below for the example above:

expected # of addresses with 0 records assigned to it =
expected # of addresses with 1 records assigned to it =
expected # of addresses with 2 records assigned to it =
expected # of addresses with 3 records assigned to it =

Lucia Moura 161

CSI2131 - Winter 2002 Hashing I1

Reducing Collision by using more Addresses

Now, we see how to reduce collisions by increasing the number of
available addresses.

DEFINITION: packing density = r/N

500 records to be spread over 1000 addresses result in packing
density = 500/1000 = 0.5 = 50%.

Some questions :

1. How many addresses go unused 7 More precisely: What is the
expected number of addresses with no key mapped to 1t?

N - p(0) = 1000 - 0.607 = 607

2. How many addresses have no synonyms 7 More precisely: What
18 the expected number of address with only one key mapped
to it?

N - p(1) = 1000 - 0.303 = 303

Lucia Moura 162

CSI2131 - Winter 2002 Hashing I1

3. How many addresses contain 2 or more synonyms ? More
precisely: What 1s the expected number of addresses with two
or more keys mapped to it ¢

N - (p(2) +p(3) +...) = N - (1 — (p(0) + p(1)) = 1000 - 0.09 = 90

4. Assuming that only one record can be assigned to an address,
how many overflow records are expected 7

1-N-p2)+2-N-p(3)+3-N-pd)+..=
N-[p2)+2-p(3)+3-p(4)+...] ~ 107

The justification for the above formula is that there is going to be
(¢ — 1) overflow records for all the table positions that have 4
records mapped to it, which are expected to be as many as

N - p(i).

Now, there is a simpler formula derived by students from 2001:

expected # of overflow records =
= (#records) - (expected # of nonoverflow records)

=r—(N-p(1) + N-p(2)+ N -p3)+...)

=7 —N-(1—=p(0)) (since probabilities add up to 1)
=N -p(0) = (N —7)

=(expect. # of empty posit. for random hash function]

- (# of empty positions for perfect hash function)

Using this formula we get the same result as before:

N - p(0) — (N —) = 607 — 500 = 107

Lucia Moura 163

CSI2131 - Winter 2002 Hashing I1

5. What is the expected percentage of overflow records 7
107/500 = 0.214 = 21.4%

Note that using either formula, the percentage of overflow records
depend only on the packing density (PD = r/N), and not on the
individual values of N or 7.

Indeed, using the formulas derived in 4., we get that the percentage of
overflow records is:

7a_N-(Tl—p(O)) :1_%-(1—29(0))

and the Poisson function that approximate p(0) is a function of /N
which is equal to PD (for hashing without buckets).

So, hashing with packing density PD = 50% always yield 21% of
records stored outside their home addresses.

Thus, we can compute the expected percentage of overflow records,

given the packing density:

packing density % % overflow records
10% 4.8%
20% 9.4%
30% 13.6%
40% 17.6%
50% 21.4%
60% 24 8%
0% 28.1%
80% 31.2%
90% 34.1%
100% 36.8%

Lucia Moura 164

CSI2131 - Winter 2002

This 1s a variation of hashed files in which more than one
record /key is stored per hash address.

Hashing with Buckets

Hashing I1

bucket = block of records corresponding to one address in the hash

table.

The hash function gives the Bucket Address.

Example: for a bucket holding 3 records, insert the following keys:

key Home Address

LOYD
KING
LAND
MARX
NUTT
PLUM
REES

Lucia Moura

34
33
33
33
33
34
34

33

34

165

CSI2131 - Winter 2002

Effects of Buckets on Performance

We should slightly change some formulas:

packing density

r

b- N

We will compare the following two alternatives:

1. Storing 750 data records into a hashed file with 1,000 addresses,

cach holding 1 record.

2. Storing 750 data records into a hashed file with 500 bucket

addresses, each bucket holding 2 records.

e In both cases the packing density is 0.75 or 75%.

e In the first case r/N=0.75.
In the second case r/N=1.50.

Estimating the probabilities as defined before:

p(0)

p(1)

P(2)

P(3)

p(4)

1) 7/N=0.75 (b=1)
2) r/N=1.50 (b=2)

0.472
0.223

0.354
0.335

0.133
0.251

0.033
0.126

0.006
0.047

Lucia Moura

Hashing I1

166

CSI2131 - Winter 2002 Hashing I1

Calculating the number of overflow records in each case:

1. b=1 (r/N=0.75):
Number of overflow records =
=N-[1-p(2)+2-p3)+3-p4)+...]
=7r—N[p(1)+p2)+p3)+..] (formula derived last class)
= N-(1— p(0)
= 750 — 1000 - (1 — 0.472) = 750 — 528 = 222.
This is about 29.6% overflow.

2. b=2 (r/N=1.5):
Number of overflow records =
=N-[1-p(3)+2-p(4)+3-p(5)+...]
=r—N-p(1)=2-N-[p(2) +p(3)+...| (formula for h=2)

r—N-[p(1) +2[1 = p(0) — p(1)]

=7 —N-[2=2-p(0) — p(1)]

=750 — 500 - [2 — 2- (0.223) — 0.335] = 140.5 = 140.

This is about 18.7% overflow.

Indeed, the percentage of collisions for different bucket sizes is:

‘ Bucket Size
Packing Density % | 1 2 5 10 100
75% 20.6% 18.7% 8.6% 4.0% 0.0%

Refer to table 11.4 page 495 of the book to see the percentage of
collisions for different packing densities and different bucket sizes.

Lucia Moura 167

CSI2131 - Winter 2002 Hashing I1

Implementation Issues:

1. Bucket structure

A Bucket should contain a counter that keeps track of the
number of records stored in it. Empty slots in a bucket may be

marked *//.../".
Ex: Bucket of size 3 holding 2 records:
2 | JONES /111/]]]]]--./] | ARNSWORTH

2. Initializing a file for hashing:

- Decide on the Logical Size (number of available addresses)
and on the number of buckets per address.

- Create a file of empty buckets before storing records. An
empty bucket will look like:

OV LT

3. Loading a hash file:

When inserting a key, remember to:
- Wrap around when searching for available bucket.
- Be careful with infinite loops when hash file is full.

Lucia Moura 168

HASHING III

CSI2131 - Winter 2002 Hashing 11

Contents of today’s lecture:

e Deletions in hashed files.
e Other collision resolution techniques:

— double hashing,
— chained progressive overflow,
— chaining with separate overflow area,

— scatter tables.

e Patterns of record access.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 11.7,11.8,11.9

Lucia Moura 170

CSI2131 - Winter 2002 Hashing 11

Making Deletions

Deletions in a hashed file have to be made with care.

Record ADAMS | JONES | MORRIS | SMITH
Home Address 5 6 6 5

111711117
ADAMS

JONES
MORRIS
SMITH

Hashed File using Progressive Overflow:

C 00 =1 O U e e

Delete ‘MORRIS’
If ‘MORRIS’ is simply erased, a search for ‘“SMITH” would be

unsuccessiul:

TTTTTTTTTT | — empty slot
ADAMS

JONES
1/11]]]]]] | < empty slot (WRONG: can'’t find ‘SMITH" I!!)
SMITH

C 00 ~1 O U e e

Search for ‘SMITH” would go to home address (position 5) and
when reached 7 it would conclude ‘SMITH’ is not in the file!

Lucia Moura 171

CSI2131 - Winter 2002 Hashing 11

IDEA: use TOMBSTONES, i.e. replace deleted records with

a marker indicating that a record once lived there:

111711117
ADAMS

JONES
H#H#H#H#H#H# | — tombstone (CORRECT: will find ‘SMITH")
SMITH

C 00 =1 O U e e

A search must continue when it finds a tombstone, but can stop
whenever an empty slot is found. A search for ‘SMITH’ will
continue when if finds the tombstone in position 7 of the above
table.

Note: Only insert a tombstone when the next record is
occupied or is a tombstone. If the next record is an empty slot, we
may mark the deleted record as empty. Why 7

Insertions should be modified to work with tombstones: if either

an empty slot or a tombstone is reached, place the new record
there.

Lucia Moura 172

CSI2131 - Winter 2002 Hashing 11

Fffects of Deletions and Additions on Performance

The presence of too many tombstones increases search length.

Solutions to the problem of deteriorating average search lengths:

1. Deletion algorithm may try to move records that follow a
tombstone backwards towards its home address.

2. Complete reorganization: re-hashing.

3. Use a different type of collision resolution technique.

Lucia Moura 173

CSI2131 - Winter 2002 Hashing 11

Other Collision Resolution Techniques

1) Double Hashing

e The first hash function determines the home address.

o If the home address is occupied, apply a second hash function to
get a number ¢ (¢ relatively prime to V).

e ¢ is added to the home address to produce an overflow addresses;
if occupied, proceed by adding ¢ to the overflow address, until an
empty spot is found.

Example:
k (key) ADAMS | JONES | MORRIS | SMITH
hi(k) (home address) 5 6 6 5
hao(k) = c 2 3 4 3
0
1
2
3
4
Hashed file using double hashing: 5 | ADAMS
6 | JONES
7
8 | SMITH
9
10 | MORRIS

Lucia Moura 174

CSI2131 - Winter 2002

© 00 ~1 O O = W N — O

—_
-]

Suppose the above table is full, and that a key % has

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

hl(k) = 6 and hg(k) = 3.

Hashing 11

Question: What would be the order in which the addresses would
be probed when trying to insert &7

Answer: 6,9, 1,4, 7,10, 2, 5, 8, 0, 3.

Lucia Moura

175

CSI2131 - Winter 2002

2) Chained Progressive Overflow

e Similar to progressive overflow, except that synonyms are linked
together with pointers.

e The objective is to reduce the search length for records within

clusters.

Example X: Search lengths:

Hashing 11

Key Home Progressive Chained Progr.
Overflow Overflow

ADAMS 20 1 1

BATES 21 1 1

COLES 20 3 2

DEAN 21 3 2

EVANS 24 1 1

FLINT 20 6 3

Average Search Length : 2.5 1.7

Progressive Overflow Chained Progressive Overflow

20
21
22
23
24
25

Lucia Moura

data

ADAMS

BATES

COLES

DEAN

EVANS

FLINT

data | next
20 | ADAMS | 22
21| BATES | 23
22| COLES | 25
23| DEAN -1
24| EVANS | -1
25| FLINT | -1

176

CSI2131 - Winter 2002

Hashing 11

PROBLEM: Suppose that ‘DEAN" home address is 22. Since
‘COLES’ is there, we couldn’t have a link to ‘DEAN’ starting in its
home address!

Solution:

Two-pass loading:

- First pass: only load records that fit into their home addresses.

- Second pass: load all overflow records.

Care should be taken when deletions are done.

key home address
ADAMS 20
BATES 21
COLES 20
DEAN 22
EVANS 24
FLINT 20

table after first pass: table after second pass:

20
21
22
23
24
25

ADAMS |-1
BATES |-1
DEAN -1
EVANS |-1

Lucia Moura

20
21
22
23
24
25

ADAMS |23
BATES -1
DEAN -1
COLES |25
EVANS | -1
FLINT -1

177

CSI2131 - Winter 2002 Hashing 11

3) Chaining with a Separate Overflow Area
Move overflow records to a Separate Overflow Area.

A linked list of synonyms start at their home address in the
Primary data area, continuing in the separate overflow area.

Example X, with separate overflow area:

primary data area overflow area

20 | ADAMS

21 | BATES 1 01 COLES :

- 1| DEAN -1
2 | FLINT -1

23 5

24 | EVANS -1

25

When the packing density is higher than 1 an overflow area is
required.

Lucia Moura

178

CSI2131 - Winter 2002 Hashing 11

4) Scatter Tables: Indexing Revisited

Similar to chaining with separate overflow, but the hashed file
contains no records, but only pointers to data records. The scatter

Example X organized as scatter table:

index (hashed) datafile (entry-sequenced, sorted, etc.)

data next
50 0| ADAMS 2
N 1 | BATES 3
- 2 | COLES 5
53 3| DEAN -1
os [7 4 | EVANS -1
. 5| FLINT -1

Note that the data file can be organized in many different ways:
sorted file, entry sequenced file, etc.

Lucia Moura 179

CSI2131 - Winter 2002 Hashing 11

Patterns of Record Access

Twenty percent of the students send 80 percent of the
e-mazuls. L. M.

Using knowledge of pattern of record access to improve
performance ...

Suppose you know that 80% of the searches occur in 20% of the
items.

How to use this info to try to reduce search length in a hashed file ?

e Keep track of record access for a period of time (say 1 month).
e Sort the file in descending order of access.

e Re-hash using this order.

Records more frequently searched are more likely to be at or
close to their home addresses.

Lucia Moura 180

