COSEQUENTIAL PROCESSING: SORTING
LARGE FILES




CSI2131 - Winter 2002

Cosequential Processing: sorting large files

Contents of today’s lecture:

e Cosequential Processing and Multiway Merge,

e Sorting Large Files (external sorting)

Reference :

FOLK, ZOELLICK AND RICCARDI, File

Structures, 1998. Sections 8.3, 8.5 (up to 8.5.3).

Cosequential processing and Multiway Merging

IK-way merge algorithm : merge K sorted input lists to create a

single sorted output list.

We will adapt our 2-way merge algorithm :

e Instead of List1 and List2 keep an array of lists : List[1],

List[2],

., List[K].

o Instead of item(1) and item(2) keep an array of items :
item[1], item[2], ..., item[K].

Lucia Moura

139




CSI2131 - Winter 2002 Cosequential Processing: sorting large files

Merging Eliminating Repetitions

We modify our synchronization step :

if item(1) < item(2) then ...
if item(1) > item(2) then ...
if item(1) = item(2) then ...
As follows :

(1) minitem = index of minimum item in item[1],
item[2],..., item[K]

(2) output item[minitem] to output list

(3) for i=1 to K do

(4) if item[i]=item[minitem] then

(5) get next item from List[i]

If there are no repeated items among different lists, lines (3)-(5)
can be simplified to :

get next item from List[minitem]

Lucia Moura 140




CSI2131 - Winter 2002 Cosequential Processing: sorting large files

Different ways of implementing the method :

Solution 1 : when the number of lists is small (say K < 8).

e Line (1) does a sequential search on item[1], item[2],
item[K].
Running time : O(K)

* D

e Line(5) just replaces item[i] with newly read item.
Running time : O(1)

Solution 2 : when the number of lists is large.
Store current items item[1], item[2], ...,item[K] into
priority queue (say, an array heap).

e Line (1) does a min operation on the array-heap.
Running time : O(1)

e Line(5) performs a extract-min operation on the array-heap :
Running time : O(log K)
and an insert on the array-heap
Running time : O(log K)

Lucia Moura 141




CSI2131 - Winter 2002 Cosequential Processing: sorting large files

The detailed analysis of both algorithm is somewhat involved.

Let N = Number of items in output list
M = Number of items summing up all input lists
(Note N < M because of possible repetitions.)

Solution 1
Line(1): K - N steps
Line(5), counting all executions: M - 1 steps

Total time: O(K - N+ M) C O(K - M)

Solution 2

Line(1) : 1- N steps

Line(5), counting all executions : M - 2 - log K steps
Total time : O(N 4+ M -log K) = O(log(K - M))

Lucia Moura 142




CSI2131 - Winter 2002 Cosequential Processing: sorting large files

Merging as a Way of Sorting Large Files

e Characteristics of the file to be sorted:
8,000,000 records

Size of a record = 100 bytes
Size of the key = 10 bytes

e Memory available as a work area : 10 MB (Not counting memory
used to hold program, operating system, 1/O buffers, etc.)

- Total file size = 800 MB
- Total number of bytes for all the keys = 80 MB
S0, we cannot do internal sorting nor keysorting.

Idea :

1. Forming runs: bring as many records as possible to main
memory, do internal sorting and save it into a small file.
Repeat this procedure until we have read all the records from
the original file.

2. Do a multiway merge of the sorted files.

In our example, what could be the size of a run ?

Available memory = 10 MB = 10,000,000 bytes

Record size = 100 bytes

Number of records that can fit into available memory = 100,000
records

Number of runs = 80 runs

Lucia Moura 143




CSI2131 - Winter 2002 Cosequential Processing: sorting large files

8,000,000 unsorted records (800 MB)

Sep1 ¥ v v v v v v
80 Internal Sorts
Sz g v v
‘ Runl H Run2 H Run3 ‘ ‘Run77 H Run78 H Run79 H Run80 ‘
Step 3
Step 4

8,000,000 records in sorted order

[/O operations are performed in the following times:

1. Reading each record into main memory for sorting and forming
the runs.

2. Writing sorted runs to disk.

The two steps above are done as follows:

Read a chunk of 10 MEGS; Write a chunk of 10 MEGS
(Repeat this 80 times)

In terms of basic disk operations, we spend :
For reading : 80 seeks' + transfer time for 800 MB
Same for writing.

1Each chunk is read right after we wrote the previous run, so there is an initial seeking.

Lucia Moura 144




CSI2131 - Winter 2002 Cosequential Processing: sorting large files

3. Reading sorted runs into memory for merging. In order to
minimize “seeks” read one chunk of each run, so 80 chunks.
Since the memory available is 10 MB each chunk can have

10,000,000/80 bytes = 125,000 bytes = 1,250 records

How many chunks to be read for each run?
size of a run/ size of a chunk = 10,000,000 / 125,000 = 80

Total number of basic “seeks” = Total number of chunks

(counting all the runs) is 80 runs x 80 chunks/run = 80* chunks.

Reading each chunk involves basic seeking.

4. When writing a sorted file to disk, the number of basic seeks

depends on the size of the output buffer: bytes in file/ bytes in

output buffer.

For example, if the output buffer contains 200 I, the number of

basic seeks is : 200,000,000 / 200,000 = 4,000.

From steps 1-4 as the number of records (N) grows, step 3
dominates the running time.

Lucia Moura

145




CSI2131 - Winter 2002

Cosequential Processing: sorting large files

There are ways of reducing the time for the bottleneck step (step
3):

e Allocate more hardware (e.g disk drives, memory)

e Perform the merge in more than one step - this reduces the order
of each merge and increases the run sizes.

e Algorithmically increase the length of each run.
e Find ways to overlap 1/O operations.

For details in the above steps see sections : 8.5.4 - 8.5.11.

Lucia Moura

146




