COSEQUENTIAL PROCESSING




CSI2131 - Winter 2002 Cosequential Processing

Contents of today’s lecture:

e Cosequential processing (Section 8.1),
e Application: a general ledger program (Section 8.2)

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Section 8.1-8.2.

128

Lucia Moura




CSI2131 - Winter 2002 Cosequential Processing

Cosequential Processing

Cosequential processing involves the coordinated processing

of two or more sequential lists to produce a single output
list.

The two main types of resulting output lists are :
e Matching (intersection) of the items of the lists.
e Merging (union) of the items of the lists.

Examples of applications :

1. Matching :
Master file - bank account info (account number, person name,
account balance) - sorted by account number
Transaction file - updates on accounts (account number,

credit /debit info).

2. Merging :
Merging two class lists keeping alphabetic order.

Sorting large files (break into small pieces, sort each piece and
then merge them).

Lucia Moura 129




CSI2131 - Winter 2002

Cosequential Processing

Matching the Names in Two Lists

List 1(Sor ted) List 2 (Sorted)
ADAMS ADAMS
CARTER BECH
CHIN BURNS
DAVIS CARTER
MILLER DAVIS
RESTON PETERS
End of list ROSEWALD
Detected SCHIMT
WILLIS
Synchronization :

item (i) = current item from list 1

if item(1) < item(2) then

get next item from list 1
if item(1) > item(2) then

get next item from list 2
if item(1) = item(2) then

output the item to output list

Matched List
(Sorted)

ADAMS
CARTER
DAVIS

get next item from list 1 and list 2

Handling End-of-File/End-of-List Condition
Halt when we get to the end of either list 1 or list 2.

Lucia Moura

130




CSI2131 - Winter 2002

Cosequential Processing

Merging the Names from Two Lists (Elimin. Repetit.)

List 1(Sorted) List 2 (Sorted)

ADAMS ADAMS

CARTER BECH

CHIN BURNS

DAVIS CARTER

MILLER DAVIS

RESTON PETERS
ROSEWALD

<HIGH VALUE>

SCHIMT
WILLIS

<HIGH VALUE>

Modify the synchronization slightly :

if item(1) < item(2) then
output item(1) to output list
get next item from list 1

if item(1) > item(2) then
output item(2) to output list
get next item from list 2

if item(1) = item(2) then
output the item to output list

Merged List
(Sorted)

ADAMS
BECH
BURNS
CARTER
CHIN
DAVIS
MILLER
PETERS
RESTON
ROSEWALD
SCHIMT
WILLIS

get next item from list 1 and list 2

Lucia Moura

131




CSI2131 - Winter 2002 Cosequential Processing

Handling End-of-File/End-of-List Condition

1. Using a <HIGH VALE> as in the previous example:

By storing <HIGH VALUE> in the current item for the list that
finished, we make sure the contents of the other list is flushed to
the output list.

The stopping criteria is changed to :

Halt when we get to the end of either list 1 and list 2.

2. Reducing the number of comparisons:

We can perform a similar algorithm with less comparisons
without using a <HIGH VALUE> as described above.

The stopping criteria becomes:

When we get to the end of either list 1 or list 2, we halt the

program.

Finalization: flush the unfinished list to the output list.

while (list 1 did not finish)
output item(1) to output list
get next item from list 1

while (list 2 did not finish)
output item(2) to output list
get next item from list 2

Lucia Moura 132




CSI2131 - Winter 2002 Cosequential Processing

Cosequential Processing: A General Ledger Program

Ledger = A book containing accounts to which debits and credits
are posted from books of original entry.

Problem: design a general ledger posting program as part of an
accounting system.

Two files are involved in this process:

Master File: ledger file
- monthly summary of account balance for each of the
book-keeping accounts.

Transaction File: journal file
- contains the monthly transactions to be posted to the ledger.

Once the journal file is complete for a given month, the journal
must be posted to the ledger.

Posting involves associating each transaction with its account in
the ledger.

Lucia Moura

133




CSI2131 - Winter 2002

Sample Ledger Fragment

Cosequential Processing

Account | Account Jan Feb| Mar | Apr

Number | Title

101 checking 1032.00 | 2114.00 | 5219.00

account #1
102 checking 543.00 | 3094.17 | 1321.20
account #2

510 auto expense 195.00 | 307.00| 501.00

540 office expense 57.00 | 105.25| 138.37

550 rent 500.00 | 1000.00 | 1500.00
Sample Journal Entry
Account | Check |Date Description | Debit/Credit
Number | Num-

ber

101 1271 April 2, 01 | Auto expense - 79.00
510 1271 April 2, 01 | Tune-up 79.00
101 1272 April 3, 01 | Rent - 500.00
550 1272 April 3, 01 | Rent for April 500.00
102 670 April 4, 01 | Office expense - 32.78
540 670 April 4, 01 | Printer cartridge 32.00
101 1273 April 5, 01 | Auto expense - 31.00

510

1273

April 5, 01

Oil change

31.83

Lucia Moura

134




CSI2131 - Winter 2002 Cosequential Processing

Sample Ledger Printout

101 Checking account #1

1271 | April 2, 01 | Auto expense - 79.00
1272 | April 3, 01 | Rent - 500.00
1273 | April 5, 01 | Auto expense - 31.00
Prev. Bal.: 5,219.00 New Bal.: 4,609.00

102 Checking account #2

510 Auto expense

540 Office expense

550 Rent

Lucia Moura 135




CSI2131 - Winter 2002 Cosequential Processing

How to implement the Posting Process?

e Use account number as a key to relate journal transactions to
ledger records.

e Sort the journal file.

e Process ledger and sorted journal co-sequentially.

Tasks to be performed:

e Update ledger file with the current balance for each account.

e Produce printout as in the example.

From the point of view of ledger account :
Merging (unmatched accounts go to printout)

From the point of view of journal account:
Matching (unmatched accounts in journal constitute an error)

The posting method is a combined merging /matching.

Lucia Moura 136




CSI2131 - Winter 2002 Cosequential Processing

Ledger Algorithm

Item(1): always stores the current master record
Item(2): always stores the current transactions record

- Read first master record
- Print title line for first account
- Read first transactions record
While (there are more masters
or there are more transactions) {
if item(1) < item(2) then {
Finish this master record:
- Print account balances, update master record
- Read next master record
- If read successful, then print title line for
new account }
if item(1) = item(2) {
Transaction matches master:
- Add transaction amount to the account balance
for new month
- Print description of transaction
- Read next transaction record }
if item(1) > item(2) {
Transaction with no master:
- Print error message
- Read next transaction record }

}

Lucia Moura 137




