DATA COMPRESSION: PART 1

(CSI2131 - Winter 2002 Data Compression: Part |

Contents of today’s lecture:

e Introduction to Data Compression
e Techniques for Data Compression

— Compact Notation
— Run-length Encoding
— Variable-length codes: Huffman Code

References:

FOLK, ZOELLICK AND RICCARDI, File Structures, 1998. Section
6.2 (Data Compression).

CORMEN, LEISERSON, RIVEST AND STEIN, Introduction to
Algorithms, 2001, 2nd ed. Section 16.3 (Huffman codes).

Data Compression = Encoding the information in a file in
such a way that it takes less space.

Lucia Moura 74

(CSI2131 - Winter 2002 Data Compression: Part |

Using Compact Notation

Ex: File with fields: lastname, province, postal code, etc.
Province field uses 2 bytes (e.g. ‘ON’, ‘BC") but there are only 13
provinces and territories which could be encoded by using only 4
bits (compact notation).

16 bits are encoded by 4 bits (12 bits were redundant, i.e. added
no extra information)

Disadvantages:
e The field “province” becomes unreadable by humans.

e Time is spent encoding (‘ON” — 0001) and
decoding (0001 — ‘ON’).

o [t increases the complexity of software.

Lucia Moura 75

(CSI2131 - Winter 2002 Data Compression: Part |

Run-length Encoding

Good for files in which sequences of the same byte may be frequent.

Example: Figure 6.1 in page 205 of the textbook: image of the sky.
o A pixel is represented by 8 bits.
e Background is represented by the pixel value 0.

The idea is to avoid repeating, say, 200 bytes equal to 0 and
represent it by (0, 200).

If the same value occurs more than once in succession, substitute
by 3 bytes:

e a special character - run length code indicator (use 1111 1111 or
FF in hexadecimal notation)

e the pixel value that is repeated (FF is not a valid pixel anymore)
e the number of times the value is repeated (up to 256 times)
Encode the following sequence of Hexadecimal bytes:

22 23 24 24 24 24 24 24 24 25
26 26 26 26 26 26 25 24

Run-length encoding:
22 23 FF 24 07 25 FF 26 06 2b 24
18 bytes reduced to 11.

Lucia Moura 76

(CSI2131 - Winter 2002 Data Compression: Part |

Variable-Length Codes and Huffman Code

Example of a variable-length code:

Morse Code (two symbols associated to each letter)

A
B

— -

Since E and T are the most frequent letters, they are associated to
the shortest codes (. and - respectively)

Lucia Moura 77

(CSI2131 - Winter 2002 Data Compression: Part |

Huffman Code

Huffman Code is a variable length code, but unlike Morse Code

the encoding depends on the frequency of letters occurring in the
data set.

Example of Huffman Code:
Suppose the file content is:

| A M S A MIMI|Y
Total: 10 characters

Letter A I M |S |Y |/b
Frequency |2 1 3 1 1 2
Code 00 |1010{11 |1011}100 |01

Huffman Code is a prefix code: no codeword is a prefix of
any other.
(we are representing the space as “/b”)

Encoded message:

1010010011011011001111100

25 bits rather than 80 bits (10 bytes)!

Lucia Moura 78

(CSI2131 - Winter 2002 Data Compression: Part |

Huffman Tree (for casy decoding)

Consider the encoded message:
101001001101. ..
e Interpret the 0’s as “go left” and the 1's as “go right”.

e A codeword for a character corresponds to the path from the
root of the Huffman tree to the leaf containing the character.

Following the labeled edges in the Huffman tree we decode the
above message.

1010 leads us to I

01 leads us to /b
00 leads us to A
11 leads us to M
01 leads us to /b
etc.

Lucia Moura

79

(CSI2131 - Winter 2002 Data Compression: Part |

Properties of Huffman Tree

e Every internal node has 2 children;

e Smaller frequencies are further away from the root;

e The 2 smallest frequencies are siblings;

e The number of bits required to encode the file is minimized:

B(T)= X fle)-dr(e).

(ceC)

where:

B(T) = number of bits needed to encode the file using tree T,
f(c) = frequency of character ¢,

dr(c) = length of the codeword for character c.

In our example:
B(T)=2x24+1x443x24+1x4+1x3+2x2=25
What is the average number of bits per encoded letter 7

Average number of bits per letter =
= B(T)/total number of characters = 25/10 = 2.5

The way Huffman Tree is constructed guarantees that
B(T) is as small as possible!

Lucia Moura 80

(CSI2131 - Winter 2002 Data Compression: Part |

How is the Huffman Tree constructed 7

The weight of a node is the total frequency of characters under the
subtree rooted at the node.

Originally, form subtrees which represent each character with their
frequencies as weights.

The algorithm employs a Greedy Method that always merges

the subtrees of smallest weights forming a new subtree whose root
has the sum of the weight of its children.

The algorithm in action

Using the letters and frequencies from the previous example:

Subtrees: I:1 S:1 Y:1 A2 /b:2 M:3

Merge the two subtrees of smallest weight (break ties arbitrarily) ...

Lucia Moura 81

CSI2131 - Winter 2002

Subtrees: Y:1

Data Compression: Part |

A:2

/b:2

M:3

S:1

Subtrees: A2

/b:2

Subtrees:

A2

/b:2

Subtrees:

A:2

/b:2

Lucia Moura

82

CSI2131 - Winter 2002

Lucia Moura

Final Tree:

Data Compression: Part |

83

(CSI2131 - Winter 2002 Data Compression: Part |

Pseudo-Code for Huffman Algorithm:

A priority queue Q is used to identify the smallest-weight
subtrees to merge. A priority queue provides the following
operations:

e (.insert(x): insert x to Q
e Q.minimum(): returns element of smallest key

e Q.extract-min(): removes and returns the element with
smallest key

Possible implementations of a priority queue:
Linked lists: Each of the three operations can be done in O(n)
Heaps: Each of the three operations can be done in O(log,)

Pseudo-Code: Huffman

Input: characters and their frequencies

(c1, flc1l), (c2, flc2]), ..., (cn, flcnl)
Output: returns the Huffman Tree

Make priority queue Q using cl, c2,
for i =1 ton-14do {

Z = allocate new node;
= Q.extract-min();

deft = 1;

.right = r;
flz] = flr] + £[1];
Q.insert(z);

1
r = Q.extract-min();
z
z

}

return Q.extract-min();

Lucia Moura 84

(CSI2131 - Winter 2002 Data Compression: Part |

What is the running time of this algorithm if the priority queue is
implemented as a ...

1. Linked List ?

e Make priority queue takes O(n).
e extract-min and insert takes O(n).

e Loop iterates n — 1 times.

Total time: O(nQ)

2. Heap (Array Heap) 7
e Make priority queue takes O(n -logn) or O(n).

e extract-min and insert takes O(logn).

e Loop iterates n — 1 times.

Total time: O(n -logn).

e Pack and unpack commands in Unix use Huffman Codes
byte-by-byte.

e They achieve 25 - 40% reduction on text files, but is not so good
for binary files that have more uniform distribution of values.

Lucia Moura 85

DATA COMPRESSION: PART 11

(CSI2131 - Winter 2002 Data Compression: Part |

Contents of today’s lecture:

e Techniques for Data Compression

— Lempel-Ziv codes.

Reference: This notes.

Lempel-Ziv Codes

There are several variations of Lempel-Ziv Codes. We will look at

LZ78.

Ex: Commands zip and unzip and Unix compress and
uncompress use Lempel-Ziv codes.

Lucia Moura

87

(CSI2131 - Winter 2002 Data Compression: Part |

Let us look at an example for an alphabet having only two letters:
aaababbbaaabaaaaaaabaabb

Rule : Separate this stream of characters into pieces of text, so
that each piece is the shortest string of characters that we have not
seen yet.

alaalblab|bblaaalbalaaaalaablaabb

We see "a".

"a" has been seen, we now see "aa".
We see "b".

"a" has been seen, we now see "ab".
"b" has been seen, we now see "bb" .
"aa'" has been seen, we now see "aaa'".
"b" has been seen, we now see "ba".

"aaa'" has been seen, we now see "aaaa".

e S A Ll o B

"aa'" has been seen, we now see "aab".

10."aab" has been seen, we now see "aabb".

Note that this is a dynamic method!

Lucia Moura 88

(CSI2131 - Winter 2002 Data Compression: Part |

Index the pieces from 1 to n. In the previous example:

Index : 01 2 34 5 6 7 8 9 10
Olalaalblab|bb|aaalbalaaaalaablaabb

0 = Null string

Encoding :

Index :' 1 2 3 4 5 6 7 8 9 10
Oal1lalOb|1b[3bl2al|3al6al2b|9b

Since each piece is the concatenation of a piece already seen with a
new character, the message can be encoded by a previous index
plus a new character.

Indeed a digital tree can be built when encoding;:

1 3
2 4 || 7 5
a b
6 9
a b
8 10

When a node is inserted the code for the current piece becomes the
parent node combined with the new character.

Note that this tree is not binary in general. Here, it is binary
because the alphabet has only 2 letters.

Lucia Moura 89

(CSI2131 - Winter 2002 Data Compression: Part |

Practice Exercises

Encode (using Lempel-Ziv) the file containing the following
characters, drawing the corresponding digital tree:

"aaabbcbcdddeab"

"I AM SAM. SAM I AM."

Lucia Moura 90

(CSI2131 - Winter 2002 Data Compression: Part |

Bit Representation of Coded Information

How many bits are necessary to represent each integer with index
n 7 The integer is at most n — 1, so the answer is: at most the
number of bits to represent the number n — 1.

1 2 3 4 5 6 7 8 9 10
Oal1lalOb|1b[3bl2al|3al6al2b|9b

Index 1: no bit (always start with zero)

Index 2: at most 1, since previous index can be only 0 or 1.
Index 3: at most 2, since previous index is between 0-2.
Index 4: at most 2, since previous index is between 0-3.
Index 5-8: at most 3, since previous index is between 0-7
Index 9-16: at most 4, since previous index is between 0-15

Each letter is represented by 8 bits. Each index is represented
using the largest number of bits possibly required for that position.
For the previous example, this representation would be as follows:

<a>1<a>0001011010<a>011<a>110<a>00101001

Note that <a> and above should be replaced by the ASCII
code for a and b, which uses 8 bits. We didn’t replace them for
clarity and conciseness.

Total number of bits in the encoded example :
(10 x8) +(0+14+2x24+4x3+2x4) =105 bits

The original message was represented using 24 x 8 = 192 bits.

Lucia Moura 91

(CSI2131 - Winter 2002 Data Compression: Part |

Decompressing

1 2 3 4 5 6 7 8 9 10
Oal1lalOb|1b[3bl2al|3al6al2b|9b

| |previous |added |
| |pointer |character]

As the table is constructed line by line, we are able to decode the
message by following the pointers to previous indexes which are
given by the table. Try it, and you will get:

a aa b ab bb aaa aaa ba aaaa aab aabb

Lucia Moura 92

(CSI2131 - Winter 2002 Data Compression: Part |

Decode the following Lempel-Ziv encoded file:

|OM|OA|OK|OE|O |OL|2K|4 |OF|7E|

decoded message:

number of bits in original message:

number of bits in encoded message:

Lucia Moura 93

(CSI2131 - Winter 2002 Data Compression: Part |

Decode the following Lempel-Ziv encoded file:

|OT|OH|OA|1 |0S|3M|0 [O0I|7AlOM|O, [1H|3T[4S]6 |8 |6!]

decoded message:

number of bits in original message:

number of bits in encoded message:

Lucia Moura 94

(CSI2131 - Winter 2002 Data Compression: Part |

Irreversible Compression

All previous techniques : we preserve all information in the original
data.

Irreversible compression is used when some information can be
sacrificed.

Example :
Shrinking an image from 400-by-400 pixels to 100-by-100 pixels.

1 pixel in the new image for each 16 pixels in the original message.

It is less common than reversible compression.

Final Notes

In UNIX:

- pack and unpack use Huffman codes byte-by-byte.
25-40% for text files, much less for binary files (more uniform
distribution)

- compress and uncompress use Lempel-Ziv.

Lucia Moura

95

