A JOURNEY OF A BYTE AND BUFFERING




CSI2131 - Winter 2002

A Journey of a Byte and Buffering

Contents of today’s lecture:

o A Journey of a Byte

e Buffer Management

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Section 3.8 and 3.9.

Complementary reading: Section 3.10 “I/O in Unix”, if

interested.

A Journey of a Byte

Suppose in our program we wrote :

outfile << c;

This causes a call to the file manager, the part of the operating
system responsible for input /output operations.

The O/S (File Manager) makes sure the byte is written to the disk.

Lucia Moura

66




(CSI2131 - Winter 2002 A Journey of a Byte and Buffering

Pieces of software /hardware involved in I/O operations :

¢ Application program
- requests the 1/O operation (outfile << ¢;)

e Operating system/file manager
- keeps tables for all opened files (types of accesses allowed, FAT
with each file’s corresponding clusters, etc)
- brings appropriate sector to buffer
- writes byte to buffer
- gives instruction to I/O processor to write data from this buffer
into correct place in disk.

Note: the operating system is a program running in CPU and
working on RAM (it copied the content of variable ¢ into the
appropriate buffer). The buffer is an exact image of a cluster in

disk.

e I/O Processor (a separate chip in the computer; it runs
independently of CPU so that it frees up CPU to other tasks -
[/O and internal computing can overlap)

- Finds a time when drive is available to receive data, and puts
data in proper format for the disk.
- Sends data to the disk controller

¢ Disk Controller (a separate chip on the disk circuit board)
- Controller instructs the drive to move the read /write head to the
proper track, waits for proper sector to come under the read/write
head, then sends the byte to be deposited on the surface of the
disk.

Refer to Figure 3.21 at page 90 of the textbook.

Lucia Moura 67




(CSI2131 - Winter 2002 A Journey of a Byte and Buffering

Buffer Management

Buffering means working with large chunks of data in main
memory so that the number of accesses to secondary storage is
reduced.

Today we will discuss the System I/0O Buffers.

Note that the application program may have its own “buffer” - i.e.
a place in memory (variable, object) that accumulates large chunks
of data to be later written to disk as a chunk.

Recommended Reading :

Chapter 4.2 - using classes to manipulate buffers. This has nothing
to do with the system 1/O buffer which is beyond the control of
the program and is manipulated by the operating system.

Lucia Moura 68




(CSI2131 - Winter 2002 A Journey of a Byte and Buffering

System [/0O Buffers

Buffer Bottlenecks What if the O/S used only one /O buffer ?

Consider a piece of program that reads from a file and writes into
another, character by character:

while(1) A{
(1) infile >> ch;
(2) if (file.fail()) break;
(3) outfile << ch;

}

Suppose that the next character to be read from infile is
physically stored in sector X of the disk. Suppose that the place to
write the next character to outfile is sector Y.

With a single buffer :

e When line (1) is executed, sector X is brought to the buffer and ch
receives the correct character.

e When line (3) is executed, sector Y must be brought to the buffer.
Sector Y is brought and ch is deposited to the right position.

e Now line (1) is executed again. Suppose we did not reach the end
of sector X yet. Then, sector X must be brought again to the
buffer, so the current content of the buffer must be written to
sector Y before this is done.

And so on.

Lucia Moura 69




(CSI2131 - Winter 2002 A Journey of a Byte and Buffering

This could be solved if there were more buffers available!

Most operating systems have an input buffer and an output buffer.
One buffer could be used for infile and one for outfile.

A new trip to get a sector of infile would only be done after all
the bytes in the previous sector had been read.

Similarly, the buffer for output would be written to the file only
when full (or when file was closed).

Question : If the sector size is 512 bytes. How many extra trips

to the disk we have to do if we have only 1 buffer in comparison to
two or more, in our previous program ?

Lucia Moura

70




(CSI2131 - Winter 2002 A Journey of a Byte and Buffering

Buffering Strategies

1. Multiple Buffering
Double buffering: Two buffers + 1/O-CPU overlapping

I/O Buffer 1 — ToDisk

Program Data Area » |/O Buffer 2

Program Data Area

/O Buffer 1

\ 4

1/O Buffer 2 —» ToDisk

Several buffers may be employed in this way (multiple buffering).

Some operating systems use a buffering scheme called buffer
pooling :

e There is a pool of buffers.

e When a request for a sector is received by the O/S, it first looks
to see if that sector is in some of the buffers.

e If not there, then it brings the sector to some free buffer. If no
free buffer exists then it must choose an occupied buffer, write its

current contents to the disk, and then bring the requested sector
to this buffer.

Various schemes may be used to decide which buffer to choose
from the buffer pool. One effective strategy is the Least
Recently Used (LRU) Strategy: when there are no free
buffers, the least recently used buffer is chosen.

Lucia Moura 71




(CSI2131 - Winter 2002 A Journey of a Byte and Buffering

2. Move Mode and Locate Mode

Move Mode
Situation in which data must be always moved from system buffer
to program buffer (and vice-versa).

Locate Mode

This refers to one of the following two techniques, in order to avoid
unnecessary moves.

The file manager uses system buffers to perform all I/O, but
provides its location to the program, using a pointer variable.

The file manager performs [/O directly between the disk and the
program’s data area.

3. Scatter/Gather 1/0

We may want to have data separated into more than one buffer
(for example: a block consisting of header followed by data).

Scatter Input: a single read call identifies a collection of buffers
into which data should be scattered.

Similarly, we may want to have several buffers gathered for output.

Gather Output: a single write call gathers data from several
buffers and writes it to output.

Lucia Moura

72




