CSI12131 FILE MANAGEMENT

Prof. Lucia Moura

Winter 2002

LECTURE 1. INTRODUCTION TO FILE
MANAGEMENT

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

Contents of today’s lecture:

e Introduction to file structures
e History of file structure design

e Course contents and organization

References :

e 'OLK, ZOELLICK AND RICCARDI, File Structures, 1998.
Sections 1.1 and 1.2.

e Course description handout (for course contents and organization)

Lucia Moura 2

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

Introduction to File Structures

e Data processing from a computer science perspective:

— Storage of data
— Organization of data
— Access to data

— Processing of data

This will be built on your knowledge of Data Structures.

e Data Structures vs File Structures

Both mnvolve :

Representation of Data

|

Operations for accessing data

Difference :

Data Structures : deal with data in main memory.

File Structures : deal with data in secondary storage (Files)

Lucia Moura 3

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

Computer Architecture

DIFERENCES

Datais Main Memory
manipulated here Fast

RAM Small
RAM (Random Access Memory) Expensive
Semiconductors Volatile

Data Transfer

Datais

Stable
L ored here Secondary Storage

Disk

Disk, Tape, CD-ROM

How fast is main memory in comparison to secondary
storage 7

Typical time for getting info from:

main memory: ~ 12 nanoseconds = 120 x 107 secs
magnetics disks: ~ 30 milliseconds = 30 x 1073 secs

An analogy keeping same time proportion as above:

Looking at the index of a book: 20 secs
Versus
Going to the library: 58 days

Lucia Moura 4

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

Main Memory

e Fast (since electronic)
e Small (since expensive)

e Volatile (information is lost when power failure occurs)

Secondary Storage

e Slow (since electronic and mechanical)

e Large (since cheap)

e Stable, persistent (information is preserved longer)

Goal of the file structure and what we will study in
this course:

e Minimize number of trips to the disk in order to get desired
information. Ideally get what we need in one disk access or get it
with as few disk accesses as possible.

e Grouping related information so that we are likely to get
everything we need with only one trip to the disk (e.g. name,
address, phone number, account balance).

Lucia Moura 5

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

History of File Structure Design

1. In the beginning ... it was the tape

e Sequential access

e Access cost proportional to size of file
[Analogy to sequential access to array data structure]

2. Disks became more common

e Direct access [Analogy to access to position in array -
binary search in sorted arrays]
e Indexes were invented
- list of keys and pointers stored in small file

- allows direct access to a large primary file
Great if index fits into main memory.
As a file grows we have the same problem we had with a
large primary file.

3. Tree structures emerged for main memory (1960’s)
- Binary search trees (BST'’s)
- Balanced, self adjusting BST’s : e.g. AVL trees (1963)

Lucia Moura 6

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

4. A tree structure suitable for files was invented : B trees (1979)

and B+ trees

Good for accessing millions of records with 3 or 4 disk accesses.

5. What about getting info with a single request 7
e Hashing Tables (Theory developed over 60’s and 70’s but

still a research topic)
Good when files do not change to much in time.

¢ Extendible, dynamic hashing (late 70’s and 80’s)
One or two disk accesses even if file grows dramatically

Lucia Moura

CSI2131 - Winter 2002 Lecture 1: Introduction to File Management

Course Contents and Organization

e Introduction to file management. Fundamental file processing
operations. (Chapters 1 and 2)

Managing files of records. Sequential and direct access. (Chapters
4 and b5)

e Secondary storage. physical storage devices: disks, tapes and
CD-ROM. (Chapter 3)
System software: 1/O system, file system, buffering. (Chapter 3)

e File compression: Huffman and Lempel-Ziv codes. Reclaiming
space in files. Internal sorting, binary searching, keysorting.

(Chapter 6)

e File Structures:

— Indexing. (Chapter 7)

— Co-sequential processing and external sorting. (Chapter 8)
— Multilevel indexing and B trees. (Chapter 9)

— Indexed sequential files and B+ trees. (Chapter 10)

— Hashing. (Chapter 11)

— Extendible hashing. (Chapter 12)

Chapters above refer to the textbook:
FOLK, ZOELLICK AND RICCARDI. File Structures, 1998.

Refer to the “course description handout” for course organization.

Lucia Moura 8

LECTURE 2: FUNDAMENTAL FILE
PROCESSING OPERATIONS

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Contents of today’s lecture:

e Sample programs for file manipulation

e Physical files and logical files

e Opening and closing files

e Reading from files and writing into files

e How these operations are done in C and C++

e Standard input /output and redirection
References :

e F'OLK, ZOELLICK AND RICCARDI, File Structures. 1998.
Section 2

Lucia Moura 10

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Sample programs for file manipulation

A program to display the contents of a file on the screen:
e Open file for input (reading)

e While there are characters to read from the input file :
Read a character from the file

Write the character to the screen

e Close the input file

A C program (which is also a valid C++ program) for doing this
task:

// listc.cpp
#include <stdio.h>

main() {
char ch;

FILE * infile;
infile = fopen("A.txt","r");
while (fread(&ch,1,1,infile) != 0)

fwrite(&ch,1,1,stdout);
fclose(infile);

Lucia Moura 11

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

A CH4+ program for doing the same task:

// listcpp.cpp
#include <fstream.h>

main() {
char ch;
fstream infile;

infile.open("A.txt",ios:in);
infile.unsetf(ios: :skipws);
// set flag so it doesn’t skip white space

infile >> ch;

while (! infile.fail()) {
cout << ch ;
infile >> ch ;

}

infile.close();

Lucia Moura

12

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Physical Files and Logical Files

physical file: a collection of bytes stored on a disk or tape

logical file: a “channel” (like a telephone line) that connects the
program to a physical file

- The program (application) sends (or receives) bytes to (from) a
file through the logical file. The program knows nothing about
where the bytes go (came from).

- The operating system is responsible for associating a logical file in

a program to a physical file in disk or tape. Writing to or reading
from a file in a program is done through the operating system.

Note that from the program point of view, input devices

(keyboard) and output devices (console, printer, etc) are treated as

files - places where bytes come from or are sent to.

There may be thousands of physical files on a disk. but a program

only have about 20 logical files open at the same time.

The physical file has a name, for instance myfile.txt

The logical file has a logical name used for referring to the file

inside the program. This logical name is a variable inside the
program. for instance outfile

Lucia Moura

13

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

In C programming language, this variable is declared as follows:
FILE * outfile;

In C++ the logical name is the name of an object of the class
fstream:

fstream outfile;

In both languages, the logical name outfile will be associated to
the physical file myfile.txt at the time of opening the file as
we will see next.

Lucia Moura 14

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Opening Files

Opening a file makes it ready for use by the program.
Two options for opening a file :

e open an existing file
e create a new file

When we open a file we are positioned at the beginning of the file.

How to do it in C:

FILE * outfile;
outfile = fopen("myfile.txt", "w'");

The first argument indicates the physical name of the file.

The second one determines the “mode”, i.e. the way, the file is
opened.

The mode can be:

e "r'": open an existing file for input (reading);

e "w'": create a new file, or truncate existing one. for output;
e "a": open a new file, or append an existing one, for ouput;
e "r+": open an existing file for input and output;

e "w+": create a new file, or truncate an existing one, for input and
output:

e "a+": create a new file, or append an existing one, for input and
output.

Lucia Moura 15

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

How to do 1t in C++:

fstream outfile;
outfile.open("myfile.txt",ios::out);

The second argument is an integer indicating the mode.
Its value is set as a “bitwise or” (operator |) of constants defined
in the class ios:

e ios::in open for input:

e ios::out open for output;

e ios::app seek to the end of file before each write;

® ios::trunc always create a new file;

® ios::nocreate fail if file doesn’t exist:

e ios::noreplace create a new file, but fail if it already exists;

e ios::binary open in binary mode (rather than text mode).

Exercise: Open a physical file "myfile.txt" associating it to
the logical file "afile" and with the following capabilities:

1. input and output (appending mode):
afile.open("myfile.txt", ios::inlios::app);

2. create a new file, or truncate existing one, for output:

3. open an existing file for input and output, no creation allowed:

Lucia Moura 16

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Closing Files

This is like “hanging up” the line connected to a file.

After closing a file, the logical name is free to be associated to
another physical file.

Closing a file used for output guarantees that everything has been

written to the physical file.

We will see later that bytes are not sent directly to the physical file
one by one; they are first stored in a buffer to be written later as a
block of data. When the file is closed the leftover from the buffer is
flushed to the file.

Files are usually closed automatically by the operating system at
the end of program’s execution.

It’s better to close the file to prevent data loss in case the program
does not terminate normally.

In C:
fclose(outfile);
In C++:

outfile.close();

Lucia Moura 17

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Reading

Read data from a file and place it in a variable inside the program.

A generic Read function (not specific to any programming
language):

Read(Source_file, Destination_addr, Size)

Source_file: logical name of a file which has been opened
Destination_addr: first address of the memory block were data
should be stored

Size: number of bytes to be read

In C (or in C++ using C streams):

char c; // a character
char a[100]; // an array with 100 characters
FILE * infile;

infile = fopen("myfile,"r");
fread(&c,1,1,infile); /* reads one character */
fread(a,1,10,infile); /* reads 10 characters */

fread:
Ist argument: destination address (address of variable ¢)
2nd argument: element size in bytes (a char occupies 1 byte)
3rd argument: number of elements
4th argument: logical file name

Lucia Moura 18

CSI2131 - Winter 2002

In C, read and write operations to files are supported by various

functions: fread, fget, fwrite, fput, fscanf, fprinf.

In C4++:

char c;

char a[100];
fstream infile;

infile.

infile

infile.

//

infile.

open("myfile.txt",ios::in);

>> ¢; // reads one character
read(&c,1);

alternative way of reading one character
read(a,10); // reads 10 bytes

Note that in the C4++ version, the operator >> communicates the

same info at a higher level. Since ¢ is a char variable, it’s implicit

that only 1 byte is to be transferred.

C++ fstream also provide the read method, corresponding to

fread in C.

Lucia Moura

Lecture 2: Fundamental File Processing Operations

19

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Writing

Write data from a variable inside the program into the file.
A generic Write function :

Write (Destination_File, Source_addr, Size)

Destination_file: logical file name of a file which has been
opened

Source_addr: first address of the memory block where data is
stored

Size: number of bytes to be written

In C (or in C++ using C streams) :

char c; char a[100];

FILE * outfile;

outfile = fopen("mynew.txt","w");

/* omitted initialization of ¢ and a */
furite(&c,1,1,outfile);
fwrite(a,1,10,outfile);

In C4++:

char c; char a[100];

fstream outfile;
outfile.open("mynew.txt",ios::out);

/* omitted initialization of ¢ and a */
outfile << c;

outfile.write(&c,1);
outfile.write(a,10);

Lucia Moura 20

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Detecting End-of-File

When we try to read and the file has ended, the read was
unsuccessful. We can test whether this happened in the following
ways :

In C : Check whether fread returned value 0.
int 1;
i = fread(&c,1,1,infile); // attempted to read
if (i==0) // true if file has ended

in C4++4: Check whether infile.fail() returns true.

infile >> c¢; // attempted to read
if (infile.fail()) // true if file has ended

Alternatively, check whether infile.eof () returns true.
Note that fail indicates that an operation has been unsuccesstul,
so it is more general than just checking for end of file.

Lucia Moura 21

CSI2131 - Winter 2002 Lecture 2: Fundamental File Processing Operations

Logical file names associated to standard 1/0
devices and re-direction

purpose default meaning | logical name
in C in C4++4
Standard Output | Console/Screen stdout | cout
Standard Input | Keyboard stdin |cin
Standard Error | Console/Screen stderr | cerr

These streams don’t need to be open or closed in the program.

Note that some operating systems allow this default meanings to
be changed via a mechanism called redirection.

In UNIX and DOS :

Suppose that prog is the executable program.
Input redirection (standard input becomes file in. txt):
prog < 1in.txt

Output redirection (standard output becomes file out . txt. Note
that standard error remains being console):

prog > out.txt

You can also do:
prog < 1in.txt > out.txt

Lucia Moura 22

