Homework Assignment \#4 (100 points, weight 6.25\%)
Due: Friday, April 8, at 4:00pm (in lecture)

Recurrence relations

1. (30 points) Find the solution to:

$$
a_{n}=5 a_{n-2}-4 a_{n-4}
$$

with $a_{0}=3, a_{1}=2, a_{2}=6, a_{3}=8$.
2. (40 points) Find the solution of the recurrence relation

$$
a_{n}=7 a_{n-1}-16 a_{n-2}+12 a_{n-3}+n 4^{n},
$$

with $a_{0}=-2, a_{1}=0$ and $a_{2}=5$.
3. (30 points) Consider the following algorithm:
procedure mpower (a, m, n : integers with $m \geq 2 n \geq 0$)
if $n=0$ then return 1
else if n is even then

$$
x=\operatorname{mpower}(a, n / 2, m)
$$

return $x * x \bmod m$
else
$x=\operatorname{mpower}(a,\lfloor n / 2\rfloor, m)$
return $((x * x \bmod m) * a) \bmod m$
(a) Set up a divide-and-conquer recurrence relation for the number of modular multiplications required to compute $a^{n} \bmod m$, where a, m and n are positive integers, using this recursive algorithm above.
(b) Use the recurrence relation you found in part (a) to construct a big-O estimate for the number of modular multiplications used to compute $a^{n} \bmod m$ using this recursive algorithm. (Hint: apply the master theorem).

