CSI 2101 Discrete Structures Prof. Lucia Moura Winter 2011 University of Ottawa

Homework Assignment #3 (100 points, weight 6.25%) Due: Tuesday, March 29, at 2:30pm (in lecture)

Induction

- 1. For which non-negative integers n is $n^2 \leq n!$? Prove your answer using induction.
- 2. Suppose a store offers gift certificates in denominations of \$25 and \$40. Determined the possible total amounts you can form using these gift certificates. Prove your answers using strong induction.
- 3. For this question you need a few definitions:

Definition 1 (full binary trees)

Full binary trees can be defined recursive as follows:

BASIS STEP: A tree formed by a single vertex r is a full binary tree.

RECURSIVE STEP: If T_1 and T_2 are disjoint full binary trees, then the tree $T_1 \cdot T_2$, consisting of a root r connected to the roots of the left subtree T_1 and the right subtree T_2 , is a full binary tree.

Definition 2 (leaves and internal vertices of full binary trees)

BASIS STEP: A tree formed by a single vertex r has a leaf node, r, and no internal nodes.

RECURSIVE STEP: The leaves of $T_1 \cdot T_2$ is the union of the set of leaves of T_1 and the set of leaves of T_2 . The internal vertices of $T_1 \cdot T_2$ are the root r and the union of the set of internal vertices of T_1 and the set of internal vertices of T_2 .

Question: Use structural induction to show that l(T), the number of leaves of a full binary tree T, is one more than i(T), the number of internal vertices of T.

4. (Correctness of recursive programs) Consider the following recursive program

procedure CALC(int *a*, int *b*) if (b = 0) then return 0; else if $(b \mod 2 = 0)$ then return CALC(a + a, b/2); else return CALC(a + a, |b/2|) + a;

Use strong induction to show that CALC(a, b) computes a * b for all nonnegative integers a and b.