Université d'Ottawa
Faculté de génie
uOttawa
École d'ingénierie et de
technologie de l'information

University of Ottawa
Faculty of Engineering
School of Information
Technology and Engineering

L’Université canadienne Canada's university

CSI 2101 Discrete Structures - Final Exam
Instructor: Lucia Moura
April 18, 2010
19:00-22:00
Duration: 3hs
Closed book, no calculators

Last name: \qquad

First name: \qquad

Student number: \qquad

There are 8 questions and 100 marks total.
This exam paper should have 16 pages, including this cover page.
Theorems regarding recurrence relations are provided in pages 15-16.

1 - Predicate Logic - short answers	$/ 10$
2 - Induction 1	$/ 10$
3 - Induction 2	$/ 10$
4 - Number theory 1	$/ 10$
5 - Proof methods/number theory	$/ 14$
6 - Recurrence relations	$/ 20$
7 - Graphs	$/ 16$
8 - Program correctness	$/ 10$
Total	$/ 100$

1 Predicate Logic - short answers - 10 points

Part A-6 points

Suppose $P(x, y)$ is a predicate and the universe for the variables x and y is $\{1,2,3\}$. Suppose $P(1,3), P(2,1), P(2,2), P(2,3), P(3,1), P(3,2)$ are true, and $P(x, y)$ is false otherwise.

Determine whether the following statements are true or false:

- [true/false] $\forall x \exists y P(x, y)$
- [true/false] $\exists x \forall y P(x, y)$
- [true/false] $\neg \exists x \exists y(P(x, y) \wedge \neg P(y, x))$
- [true/false] $\forall y \exists x(P(x, y) \rightarrow P(y, x))$
- [true/false] $\forall x \forall y((x \neq y) \rightarrow(P(x, y) \vee P(y, x))$
- [true/false] $\forall y \exists x((x \leq y) \wedge P(x, y))$

Part B-4 points Suppose the variable x represents people, and $F(x): x$ is friendly $T(x): x$ is tall $A(x): x$ is angry

Write the statement using these predicates and any needed quantifiers:

- Some tall angry people are friendly.
- If a person is friendly, then that person is not angry.

2 Induction 1 - 10 points

Use the principle of mathematical induction to prove that $2 \mid\left(n^{2}+n\right)$ for all $n \geq 0$. (recall that the symbol "" means "divides")

3 Induction $2-10$ points

We are given a chocolate bar with $m \times n$ squares of chocolate, and our task is to divide it into $m n$ individual squares. We are only allowed to split one piece of chocolate at a time using a vertical or a horizontal break.

For example, suppose that the chocolate bar is 2×2. The first split makes two pieces, both 2×1. Each of these pieces requires one more split to form single squares. This gives a total of three splits.

Use strong induction to conclude the following:
"To divide up a chocolate bar with $m \times n$ squares, we need at most $m n-1$ splits."
Hint: Use strong induction on k, the number of squares in the chocolate bar $(k=m n)$.

4 Number theory 1 - 10 points

Part A - 5 points Find the inverse of 21 modulo 44 using the extended Euclidean Algorithm.

Part B-5 points Using the solution above, find all integer solutions to the following linear congruence:

$$
21 x \equiv 3 \quad(\bmod 44) .
$$

5 Proof methods/number theory - 14 points

Part A-4 points Let m and n be integers. Use a proof by contraposition to show that if $m n$ is even then m is even or n is even.

Part B-4 points Use a proof by contradiction to prove that at least one of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ is greater than or equal to the average of these numbers, $\left(a_{1}+a_{2}+\cdots, a_{n}\right) / n$.

Part $\mathbf{C}-6$ points Prove that if n is an odd positive integer, then $n^{2} \equiv 1(\bmod 8)$.
(more space to solve question 5)

6 Recurrence relations - 20 points

For this question, you can refer to the theorems provided in pages 15-16.

Part A-10 points

Consider the recurrence relation $a_{n}=3 a_{n-1}+5^{n}$.
A. Write the associated homogeneous recurrence relation.
B. Find the general solution to the associated homogeneous recurrence relation.
C. Find a particular solution to the given recurrence relation.
D. Write the general solution to the given recurrence relation.
E. Find the particular solution to he given recurrence relation when $a_{0}=1$.
(space to continue solution...)

Part B-10 points

Consider the following recursive algorithm:
procedure LongIntegerMultiply $(X, Y, n: X$ and Y are n-bit integers, n is a power of 2)
if $n=1$ then return $\mathrm{X}^{*} \mathrm{Y} \quad / *$ line 1: single-bit multiplication */
else
split X into X_{1}, X_{2} and Y into Y_{1}, Y_{2} such that $X=2^{n / 2} X_{1}+X_{2}$ and $Y=2^{n / 2} Y_{1}+Y_{2}$ $U \leftarrow \operatorname{LongIntegerMultiply}\left(X_{1}, Y_{1}, n / 2\right)$
$V \leftarrow$ LongIntegerMultiply $\left(X_{2}, Y_{2}, n / 2\right)$
$W \leftarrow \operatorname{LongIntegerMultiply}\left(X_{1}-X_{2}, Y_{1}-Y_{2}, n / 2\right)$
$Z \leftarrow U+V-W$
return $2^{n} U+2^{n / 2} Z+V$
A. Set up a divide-and-conquer recurrence relation for the number of single-bit multiplications (done in line 1) required to compute the product of two n-bit integers X and Y, where n is a power of 2 (i.e. $n=2^{k}$ for some integer k), using the algorithm above.
B. Use the recurrence relation above and the Master theorem to derive a big-O estimate for the number of single-bit multiplications used in the algorithm above.

7 Graphs - 16 points

Part A-4 points Are the following graphs isomorphic? Explain your answer.

Part B-4 points Consider the following graph

A. Does it have an Euler circuit? If yes, state it. If no, explain why.
B. Does it have a Hamilton circuit? If yes, state it. If no, explain why.

Part $\mathrm{C}-6$ points \quad Graph colouring

- Is the following graph 4-colourable? [yes/no] Justify:

- What is the chromatic number of each of the following graphs? Justify.

Part D-2 points Is the following graph planar? [yes/no] Justify:

8 Program correctness - 10 points

Consider the following program segment S :
$i \leftarrow 1$
total $\leftarrow 1$
while $i<n$ do
$i \leftarrow i+1$
total \leftarrow total $+i$
endwhile

Part A - $\mathbf{5}$ points Let p be the proposition "total $=\frac{i(i+1)}{2}$ and $i \leq n$ ". Prove that p is a loop invariant for the while loop.

Part B-5 points Use program verification techniques to show that S is correct with respect to the initial assertion (precondition) " $n \geq 1$ " and the final assertion (postcondition) "total $=\frac{n(n+1)}{2}$ ". You may use the loop invariant in part A, even if you didn't prove it.
(more space for question 8)

Recurrence relation theorems:

MASTER THEOREM Let f be an increasing function that satisfies the recurrence relation

$$
f(n)=a f(n / b)+c n^{d}
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geq 1, b$ is an integer greater than 1 , and c and d are real numbers with c positive and d nonnegative. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

THEOREM 1 Let c_{1} and c_{2} be real numbers. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has two distinct roots r_{1} and r_{2}. Then the sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ for $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

THEOREM 2 Let c_{1} and c_{2} be real numbers with $c_{2} \neq 0$. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has only one root r_{0}. A sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{0}^{n}+\alpha_{2} n r_{0}^{n}$, for $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

THEOREM 3 Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation

$$
r^{k}-c_{1} r^{k-1}-\cdots-c_{k}=0
$$

has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$. Then a sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

if and only if

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.

Recurrence relation theorems (cont'd):

THEOREM 5 If $\left\{a_{n}^{(p)}\right\}$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

then every solution is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$, where $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

THEOREM 6 Suppose that $\left\{a_{n}\right\}$ satisfies the linear nonhomogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\cdots+b_{1} n+b_{0}\right) s^{n}
$$

where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots+p_{1} n+p_{0}\right) s^{n}
$$

When s is a root of this characteristic equation and its multiplicity is m, there is a particular solution of the form

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots+p_{1} n+p_{0}\right) s^{n}
$$

