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1 Predicate Logic - short answers — 10 points

Part A — 6 points

Suppose P (x, y) is a predicate and the universe for the variables x and y is {1, 2, 3}. Suppose
P (1, 3), P (2, 1), P (2, 2), P (2, 3), P (3, 1), P (3, 2) are true, and P (x, y) is false otherwise.

Determine whether the following statements are true or false:

• [true/false] ∀x∃yP (x, y)

• [true/false] ∃x∀yP (x, y)

• [true/false] ¬∃x∃y(P (x, y) ∧ ¬P (y, x))

• [true/false] ∀y∃x(P (x, y)→ P (y, x))

• [true/false] ∀x∀y((x 6= y)→ (P (x, y) ∨ P (y, x))

• [true/false] ∀y∃x((x ≤ y) ∧ P (x, y))

Part B — 4 points Suppose the variable x represents people, and
F (x): x is friendly T (x): x is tall A(x): x is angry

Write the statement using these predicates and any needed quantifiers:

• Some tall angry people are friendly.

• If a person is friendly, then that person is not angry.

... continued
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2 Induction 1 — 10 points

Use the principle of mathematical induction to prove that 2|(n2 + n) for all n ≥ 0.
(recall that the symbol “|” means “divides”)

... continued
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3 Induction 2 — 10 points

We are given a chocolate bar with m × n squares of chocolate, and our task is to divide it
into mn individual squares. We are only allowed to split one piece of chocolate at a time
using a vertical or a horizontal break.

For example, suppose that the chocolate bar is 2× 2. The first split makes two pieces, both
2× 1. Each of these pieces requires one more split to form single squares. This gives a total
of three splits.

Use strong induction to conclude the following:
“To divide up a chocolate bar with m× n squares, we need at most mn− 1 splits.”

Hint: Use strong induction on k, the number of squares in the chocolate bar (k = mn).

... continued
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4 Number theory 1 — 10 points

Part A — 5 points Find the inverse of 21 modulo 44 using the extended Euclidean
Algorithm.

Part B — 5 points Using the solution above, find all integer solutions to the following
linear congruence:

21x ≡ 3 (mod 44).

... continued
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5 Proof methods/number theory — 14 points

Part A — 4 points Let m and n be integers. Use a proof by contraposition to show
that if mn is even then m is even or n is even.

Part B — 4 points Use a proof by contradiction to prove that at least one of the numbers
a1, a2, . . . , an is greater than or equal to the average of these numbers, (a1 + a2 + · · · , an)/n.

Part C — 6 points Prove that if n is an odd positive integer, then n2 ≡ 1 (mod 8).

... continued
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(more space to solve question 5)

... continued
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6 Recurrence relations — 20 points

For this question, you can refer to the theorems provided in pages 15-16.

Part A — 10 points

Consider the recurrence relation an = 3an−1 + 5n.

A. Write the associated homogeneous recurrence relation.

B. Find the general solution to the associated homogeneous recurrence relation.

C. Find a particular solution to the given recurrence relation.

D. Write the general solution to the given recurrence relation.

E. Find the particular solution to he given recurrence relation when a0 = 1.

... continued
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(space to continue solution...)

... continued
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Part B — 10 points

Consider the following recursive algorithm:

procedure LongIntegerMultiply(X, Y, n: X and Y are n-bit integers, n is a power of 2)
if n = 1 then return X*Y /* line 1: single-bit multiplication */
else

split X into X1, X2 and Y into Y1, Y2 such that X = 2n/2X1 + X2 and Y = 2n/2Y1 + Y2

U ←LongIntegerMultiply(X1, Y1, n/2)
V ←LongIntegerMultiply (X2, Y2, n/2)
W ←LongIntegerMultiply(X1 −X2, Y1 − Y2, n/2)
Z ← U + V −W
return 2nU + 2n/2Z + V

A. Set up a divide-and-conquer recurrence relation for the number of single-bit multipli-
cations (done in line 1) required to compute the product of two n-bit integers X and
Y , where n is a power of 2 (i.e. n = 2k for some integer k), using the algorithm above.

B. Use the recurrence relation above and the Master theorem to derive a big-O estimate
for the number of single-bit multiplications used in the algorithm above.

... continued
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7 Graphs — 16 points

Part A — 4 points Are the following graphs isomorphic? Explain your answer.
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x y z 
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Part B — 4 points Consider the following graph

 

A. Does it have an Euler circuit? If yes, state it. If no, explain why.

B. Does it have a Hamilton circuit? If yes, state it. If no, explain why.

... continued
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Part C — 6 points Graph colouring

• Is the following graph 4-colourable? [yes/no] Justify:

 

• What is the chromatic number of each of the following graphs? Justify.

 

  b a 

c d e f 

Part D — 2 points Is the following graph planar? [yes/no] Justify:

 

... continued
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8 Program correctness — 10 points

Consider the following program segment S:

i← 1
total← 1
while i < n do

i← i + 1
total← total + i

endwhile

Part A — 5 points Let p be the proposition “total = i(i+1)
2

and i ≤ n”. Prove that p is
a loop invariant for the while loop.

Part B — 5 points Use program verification techniques to show that S is correct with
respect to the initial assertion (precondition) “n ≥ 1” and the final assertion (postcondition)

“total = n(n+1)
2

”. You may use the loop invariant in part A, even if you didn’t prove it.

... continued
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(more space for question 8)

... continued
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Recurrence relation theorems:

... continued
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Recurrence relation theorems (cont’d):

... End Of Final Exam


