Homework Assignment \#4 (100 points (5 bonus), weight 6.25\%)
Due: April 9 at 1:00p.m. (in lecture)

Recurrence Relations and Graph Theory

1. (15 marks $=2+2+2+2+2+5)$ Graphs Theory: Exercises $34,36,38$ in page 619. Exercises 6,8 in page 665. Exercise 24 in page 666.
2. (30 marks) Recurrence relations: Page 471, Exercises: 4-a,4-d,4-g.
3. (30 marks) Recurrence relations: Page 472, Exercise 30.
4. (30 marks $=10+10+10)$ Professor Maxell Smart designed the following algorithm:
procedure ElegantSort (A, i, j)
if $A[i]>A[j]$ then exchange $A[i]$ with $A[j]$
if $i+1 \geq j$ then return
$k \leftarrow\lfloor(j-i+1 / 3)\rfloor$
ElegantSort $(A, i, j-k) \quad$ sort first $2 / 3$ of the array
ElegantSort $(A, i+k, j) \quad$ sort the last $2 / 3$ of the array
ElegantSort $(A, i, j-k) \quad$ sort the first $2 / 3$ of the array, again
(a) Give a recurrence relation that counts the total number of A-element comparisons (line 1 of procedure) in ElegantSort $(A, 1, n)$.
(b) Use the Master theorem (page 479) to provide a big-Oh estimate for the number of A-element comparisons in this algorithm for an array of length n. Note that even if b is not an integer, the thesis of the Master theorem is true, which can be established by a more general proof, where each n / b in the recurrence can be either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Please provide a, b, c and d as specified in the Master theorem, as well as the big-Oh estimate.
(c) How does this algorithm compare with other sorting algorithms such as insertion sort, mergesort, heapsort and quicksort, in terms of the number of (A-element) comparisons used? Does Professor Smart deserve a promotion?
