CSI 2101 Discrete Structures Prof. Lucia Moura

Homework Assignment #1 (100 points, weight 6.25%) Due: Monday Feb 1, at 10:00 p.m. (in tutorial)

Propositional Logic

- 1. (12 points) Use logical equivalences to show that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology.
- 2. (12 points) Recall that a collection of logical operators is *functionally complete* if every compound proposition is logically equivalent to a compound proposition using only these logical operators. The logical operator NOR, denoted by \downarrow , is true when both p or q are false, and is false otherwise. Show that $\{\downarrow\}$ is a functionally complete collection of operators, by proving the following steps.
 - (a) Use truth tables to show that $p \downarrow p$ is logically equivalent to $\neg p$.
 - (b) Use truth tables to show that $(p \downarrow q) \downarrow (p \downarrow q)$ is logically equivalent to $p \lor q$.
 - (c) Complete the argument by using the fact that $\{\neg, \lor\}$ is functionally complete.

Predicate Logic

- 3. (12 points) Exercise 34, page 48. (English-predicates-negate-English)
- 4. (12 points) Exercise 36, page 49. (Counter examples to universally quantified statements)
- 5. (16 points) Exercise 32, page 61. Note: show your steps. (Negations of nested quantified statements)

Inference Rules

- 6. (14 points) Exercise 12, page 73. (Formal proofs)
- 7. (10 points) Exercise 20, page 74. Please justify a "yes" by referring to a rule of inference applied and a "no" by pointing out the fallacy. (Validity of arguments)

Proof Methods

8. (12 points) Use a proof by contraposition to prove the following: Let x, y and a be real numbers. If $x + y \ge a$ then $x \ge a/2$ or $y \ge a/2$.