CSI2101 Discrete Structures Winter 2009:
Extra material: recurrence relations and number theory

Lucia Moura

Winter 2009

Master Theorem for Divide-and-Conquer Recurrence Relations

Theorem (Master Theorem)

Let f be an increasing function that satisfies the recurrence relation:

$$
f(n)=a f(n / b)+c n^{d}
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geq 1, b$ is an integer greater than 1, and c and d are real numbers with c positive and d non-negative. Then,

	$O\left(n^{d}\right)$	if $a<b^{d}$
$f(n)$ is	$O\left(n^{d} \log ^{2} n\right)$	if $a=b^{d}$
	$O\left(n^{\log _{b} a}\right)$	if $a>b^{d}$.

Proof of the master theorem

We can prove the theorem by showing the following steps:
(1) Show that if $a=b^{d}$ and n is a power of b, then $f(n)=f(1) n^{d}+c n^{d} \log _{b} n$.
Once this is shown, it is clear that if $a=b^{d}$ then $f(n) \in O\left(n^{d} \log n\right)$.
(2) Show that if $a \neq b^{d}$ and n is a power of b, then
$f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a}$, where $c_{1}=b^{d} c /\left(b^{d}-a\right)$ and
$c_{2}=f(1)+b^{d} c /\left(a-b^{d}\right)$.
(3) Once the previous is shown, we get:
if $a<b^{d}$, then $\log _{b} a<d$, so
$f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a} \leq\left(c_{1}+c_{2}\right) n^{d} \in O\left(n^{d}\right)$.
if $a>b^{d}$, then $\log _{b} a>d$, so
$f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a} \leq\left(c_{1}+c_{2}\right) n^{\log _{b} a} \in O\left(n^{\log _{b} a}\right)$.

Proving item 1:

Lemma

If $a=b^{d}$ and n is a power of b, then $f(n)=f(1) n^{d}+c n^{d} \log _{b} n$.

Proof:

Let $k=\log _{b} n$, that is $n^{k}=b$. Iterating $f(n)=a f(n / b)+c n^{d}$, we get:

$$
\begin{aligned}
f(n) & =a\left(a f\left(n / b^{2}\right)+c(n / b)^{d}\right)+c n^{d}=a^{2} f\left(n / b^{2}\right)+a c(n / b)^{d}+c n^{d} \\
& =a^{2}\left(a f\left(n / b^{3}\right)+c\left(n / b^{2}\right)\right)+a c(n / b)^{d}+c n^{d} \\
& =a^{3} f\left(n / b^{3}\right)+a^{2} c\left(n / b^{2}\right)^{d}+a c(n / b)^{d}+c n^{d} \\
& =\ldots=a^{k} f(1)+\sum_{j=0}^{k-1} a^{j} c\left(n / b^{j}\right)^{d}=a^{k} f(1)+\sum_{j=0}^{k-1} c n^{d} \\
& =a^{k} f(1)+k c n^{d}=a^{\log _{b} n} f(1)+\left(\log _{b} n\right) c n^{d} \\
& =n^{\log _{b} a} f(1)+c n^{d} \log _{b} n=n^{d} f(1)+c n^{d} \log _{b} n .
\end{aligned}
$$

Proving item 2:

Lemma

If $a \neq b^{d}$ and n is a power of b, then $f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a}$, where $c_{1}=b^{d} c /\left(b^{d}-a\right)$ and $c_{2}=f(1)+b^{d} c /\left(a-b^{d}\right)$.

Proof:

Let $k=\log _{b} n$; i. e. $n=b^{k}$. We will prove the lemma by induction on k. Basis: If $n=1$ and $k=0$, then $c_{1} n^{d}+c_{2} n^{\log _{b} a}=c_{1}+c_{2}=b^{d} c /\left(b^{d}-a\right)+f(1)+b^{d} c /\left(a-b^{d}\right)=f(1)$. Inductive step: Assume lemma is true for k, where $n=b^{k}$. Then, for $n=b^{k+1}, f(n)=a f(n / b)+c n^{d}=$ $\left.a\left(\left(b^{d} c /\left(b^{d}-a\right)\right)(n / b)^{d}+\left(f(1)+b^{d} c /\left(a-b^{d}\right)\right)(n / b)^{\log _{b} a}\right)\right)+c n^{d}=$ $\left(b^{d} c /\left(b^{d}-a\right)\right) n^{d} a / b^{d}+\left(f(1)+b^{d} c /\left(a-b^{d}\right)\right) n^{\log _{b} a}+c n^{d}=$ $n^{d}\left[a c /\left(b^{d}-a\right)+c\left(b^{d}-a\right) /\left(b^{d}-a\right)\right]+\left[f(1)+b^{d} c /\left(a-b^{d} c\right)\right] n^{\log _{b} a}=$ $\left(b^{d} c /\left(b^{d}-a\right)\right) n^{d}+\left(f(1)+b^{d} c /\left(a-b^{d}\right)\right) n^{\log _{b} a}$.

Chinese Remainder Theorem: solving systems of congruences

A Chinese Mathematician asked in the first century:
There are certain things whose number is unknown. When divided by 3 , the remainder is 2 ; when divided by 5 the remainder is 3 ; and when divided by 7 , the remainder is 2 . What will be the number of things?

This puzzle is asking for the solution of the following system of congruences:

$$
\begin{aligned}
x & \equiv 2(\bmod 3) \\
x & \equiv 3(\bmod 5) \\
x & \equiv 2(\bmod 7)
\end{aligned}
$$

Theorem

Chinese Reminder Theorem Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers and $a_{1}, a_{2}, \ldots, a_{n}$ be arbitrary integers. Then, the system:

$$
\begin{aligned}
x & \equiv a_{1}\left(\bmod m_{1}\right), \\
x & \equiv a_{2}\left(\bmod m_{2}\right), \\
\cdots & \cdots \\
x & \equiv a_{n}\left(\bmod m_{n}\right),
\end{aligned}
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$. (That is, there is a solution x with $0 \leq x<m$, and all other solutions are congruent modulo m to this solution).

Proof of the Chinese Reminder Theorem (existence part)

In order to construct a simultaneous solution, let $M_{k}=m / m_{k}$. Note that $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$. So there exists y_{k} inverse of M_{k} modulo m_{k}. Then $x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{n} M_{n} y_{n}$ is a simulatneous solution. Indeed, for any $1 \leq k \leq n$, since for $j \neq k$, all terms except k th term are 0 modulo m_{k}, which gives $x \equiv a_{2} M_{k} y_{k} \equiv a_{k}\left(\bmod m_{k}\right)$. \square

Showing that this is a unique solution is exercise 3.7-24, which is recommended.

Chinese Remainder Theorem

Exercise: Solve the system of congruences given at the begining of this section.

