
Correctness of recursive algorithms Program verification

CSI2101 Discrete Structures Winter 2009:
Program Correctness and Verification

Lucia Moura

Winter 2009

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Proving the correctness of recursive programs

Mathematical induction (and strong induction) can be used to prove that
a recursive algorithm is correct:

to prove that the algorithm produces the desired output for all possible
input values.

We will see some examples next.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Recursive algorithm for computing an

procedure power(a: nonzero real number, n: nonnegative integer)
if (n = 0) then return 1

else return a×power(a, n− 1)

We will prove by mathematical induction on n that the algorithm above is
correct.
We will show P (n) is true for all n ≥ 0, for
P (n): For all nonzero real numbers a, power(a, n) correctly computes an.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Proving power(a, n) is correct

Basis: If n = 0, the first step of the algorithm tells us that power(a,0)=1.
This is correct because a0 = 1 for every nonzero real number a, so P (0) is
true.

Inductive step:
Let k ≥ 0.
Inductive hypothesis: power(a, k) = ak , for all a 6= 0.
We must show next that power(a, k + 1) = ak+1.
Since k + 1 > 0 the algorithm sets power(a, k + 1) = a×power(a, k).
By inductive hypotheses power(a, k) = ak, so
power(a, k + 1) = a×power(a, k) = a× ak = ak+1.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Recursive algorithm for computing bn mod m

procedure mpower(b, n,m: integers with m ≥ 2, n ≥ 0)
if n = 0 then return 1;
else if n is even then return mpower(b, n/2, m)2 mod m
else return ((mpower(b, bn/2c, m)2 mod m) ∗ (b mod m)) mod m

Examples:

power(2, 5, 6) =
= ((power(2, 2, 6)2 mod 6) ∗ (2 mod 6)) mod 6
= (((power(2, 1, 6)2 mod 6)2 mod 6) ∗ (2)) mod 6
= ((((power(2, 0, 6)2 mod 6) ∗ (2 mod 6)) mod 6)2 mod 6)2 mod 6)
∗2) mod 6

= ((((12 mod 6) ∗ 2) mod 6)2 mod 6)2 mod 6) ∗ 2) mod 6
= 2.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Proving mpower(a, n,m) is correct, using induction on n
Basis: Let b and m be integers with m ≥ 2, and n = 0. In this case, the
algorithm returns 1. This is correct because b0 mod m = 1.
Inductive step:
Induction hypothesis: assume power(b, j, m) = bj mod m for all integers
j with 0 ≤ j ≤ k − 1, whenever b is a positive integer and m is an integer
with m ≥ 2.
We must show next that power(b, k, m) = bk mod m. There are two
cases to consider.

Case 1: k is even. In this case, the algorithm returns
mpower(b, k/2, m)2 mod m = (i.h.)(bk/2 mod m)2 mod m = bk

mod m.

Case 2: k is odd. In this case, the algorithm returns
((mpower(b, bk/2c, m)2 mod m) ∗ (b mod m)) mod m
= (i.h.)(bbk/2c mod m)2 mod m) ∗ (b mod m)) mod m
= (b2bk/2c+1 mod m) = bk mod m.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Program verification

We want to be able to prove that a given program meets the intended
specifications.
This can often be done manually, or even by automated program
verification tools. One example is PVS (People’s Verification System).

A program is correct if it produces the correct output for every possible
input.
A program has partial correctness if it produces the correct output for
every input for which the program eventually halts.
Therefore, a program is correct if and only if it has partial correctnes and
terminates.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Hoare’s triple notation

A program’s I/O specification can be given using initial and final
assertions.

I The initial assertion p is the condition that the program’s input (its
initial state) is guaranteed (by its user) to satisfy.

I The final assertion q is the condition that the output produced by the
program (its final state) is required to satisfy.

Hoare triple notation:
I The notation p{S}q means that, for all inputs I such that p(I) is true,

if program S (given input I) halts and produces output O = S(I),
then q(O) is true.

I That is, S is partially correct with respect to specification p, q.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

A simple example

Let S be the program fragment
y:= 2; z:= x+y

Let p be the initial assertion x=1.
The variable x will hold 1 in all initial states.

Let q be the final assertion z= 3.
The variable z must hold 3 in all final states.

Prove p{S}q.
Proof: If x=1 in the program’s input state, then after running
y:=2 and z:=x+y, then z will be 1 + 2 = 3.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Rules of inference for Hoare triples

The composition rule:
p{S1}q
q{S2}r
∴ p{S1; S2}r

It says: If program S1 given condition p produces condition q,
and S2 given q produces r,
then the program “S1 followed by S2”, if given p, yields r.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Inference rule for if-then statements

(p ∧ cond){S}q
(p ∧ ¬cond)→ q

∴ p{if cond then S}q

Example: Show that: T{if x > y then y := x}(y ≥ x).

Proof:
When initially T is true, if x > y, then the if-body is executed, setting
y = x, and so afterwards y ≥ x is true. Otherwise, x ≤ y and so y ≥ x.
In either case, the final assertion y ≥ x is true. So the rule applies, and so
the fragment meets the specification.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Inference rule for if-then-else statements

(p ∧ cond){S1}q
(p ∧ ¬cond){S2}q
∴ p{if cond then S1 else S2}q

Example: Prove that
T{if x < 0 then abs := −x else abs := x}(abs = |x|)

Proof:
If the initial assertion is true and x < 0 then after the if-body, abs will be
−x = |x|.
If the initial assertion is true, but ¬(x < 0) is true, i.e., x ≥ 0, then after
the else-body, abs = x, which is |x|.
So using the above rule, we get that this segment is true with respect to
the final assertion.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Loop Invariants

For a while-loop “while cond S”, we say that p is a loop invariant of this
loop if (p ∧ cond){S}p.

If p (and the continuation condition cond) is true before executing the
body, then p remains true afterwards.

And so p stays true through all subsequent iterations.

This leads to the inference rule:

(p ∧ cond){S}p
∴ p{while cond S}(¬cond ∧ p)

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Example1: loop invariant

Prove that the following Hoare triple holds:
T{i := 1; fact := 1;while i < n{i + +; fact = fact ∗ i}}(fact = n!)

Proof:
Let p be the assertion “‘fact = i! ∧ i ≤ n”. We will show tht p is a loop
invariant.
Assume that at the beginning of the while-loop p is true and the condition
of the while-loop holds, in other words, assume that fact = i! and i < n.
The new values inew and factnew of i and fact are
inew = i + 1 and
factnew = fact× (i + 1) = (i!)× (i + 1) = (i + 1)! = inew!.
Since i < n, we also have inew = i + 1 ≤ n.
Thus p is true at the end of the execution of the loop. This shows p is a
loop invariant.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Final example: combining all rules

procedure multiply(m, n : integers)
p := “(m, n ∈ Z)”
if n < 0 then a := −n (segment S1)

else a := n
q := “(p ∧ (a = |n|))”
k := 0;x := 0 (segment S2)
r := “q ∧ (k = 0) ∧ (x = 0)”
(x = mk ∧ k ≤ a)
while k < a { (segment S3)

x = x + m; k = k + 1;
}Maintains loop invariant: (x = mk ∧ k ≤ a)
(x = mk ∧ k = a) ∴ s := “(x = ma) ∧ a = |n|)”
s⇒ (n < 0 ∧ x = −mn) ∨ (n ≤ 0 ∧ x = mn)
if n < 0 then prod := −x (segment S4)

else prod := x t = “(prod = mn)”
CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Correctness of multiply(m, n)
The proof is structured as follows, by using propositions p, q, r, s, t as
defined in the previous page.

Prove p{S1}q by using if-then-else inference rule.
Prove q{S2}r by examining this trivial segment.
Prove r{S3}s by using while-loop inference rule.
Prove s{S4}t by using if-then-else inference rule.
Use the rule of composition to show that p{S1; S2; S3; S4}t;
recall that p := “(m, n ∈ Z)” and t = “(prod = mn)”, which is what
we wanted to show for the partial correctness.

To complete the proof of correctness, given the partial correctness, we
must verify that each segment terminates.
Termination is trivial for segments S1, S2 and S4; for the while-loop (S4)
it is easy to see that it runs for a iterations.
(See general rule for proving termination of loops in the next page)
We leave the details of each step above as an exercise.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Proving termination of a loop

Associate with each iteration i a natural number ki, such that
< k0, k1, k2, . . . > is a decreasing sequence.

Using the well-ordering principle, every decreasing sequence of natural
numbers is finite.

Find a decreasing sequence of natural numbers for the while-loop in
the previous example:

Define ki = a− k
< k0, k1, k2, . . . > is decresing as a is constant and k increases by 1
at each iteration.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Proving termination of a loop

Associate with each iteration i a natural number ki, such that
< k0, k1, k2, . . . > is a decreasing sequence.

Using the well-ordering principle, every decreasing sequence of natural
numbers is finite.

Find a decreasing sequence of natural numbers for the while-loop in
the previous example:

Define ki = a− k
< k0, k1, k2, . . . > is decresing as a is constant and k increases by 1
at each iteration.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

Correctness of recursive algorithms Program verification

Program verification

Proving termination of a loop

Associate with each iteration i a natural number ki, such that
< k0, k1, k2, . . . > is a decreasing sequence.

Using the well-ordering principle, every decreasing sequence of natural
numbers is finite.

Find a decreasing sequence of natural numbers for the while-loop in
the previous example:

Define ki = a− k
< k0, k1, k2, . . . > is decresing as a is constant and k increases by 1
at each iteration.

CSI2101 Discrete Structures Winter 2009: Program Correctness and Verification Lucia Moura

	Correctness of recursive algorithms
	

	Program verification
	Program verification

