CSI2101 Discrete Structures Winter 2009: Propositional Logic: normal forms, boolean functions and circuit design

Lucia Moura

Winter 2009

CSI2101 Discrete Structures Winter 2009: Propositional Logic: normal forms, boolean functions and circuit design Lucia Moura

- 4 回 ト 4 ヨト 4 ヨト

Truth assignments, tautologies and satisfiability

Definition

Let X be a set of propositions (also called propositional variables). A **truth assignment** (to X) is a function $\tau : X \to \{true, false\}$ that assigns to each propositional variable a truth value.

If the truth value of a compound propositional (or propositional formula) under truth assignment τ is *true*, we say that τ satisfies P, otherwise we say that τ falsifies P.

A compound proposition P is a **tautology** if every truth assignment satisfies P.

A compound proposition P is **satisfiable** if there is a truth assignment that satisfies P.

A compound proposition P is **unsatisfiable (or a contradiction)** if it is not satisfiable. there is a truth assignment that satisfies P.

Examples: tautology, satisfiable, unsatisfiable

For each of the following compound propositions determine if it is tautology, satisfiable or unsatisfiable:

• $(x \lor y) \land \neg x \land \neg y$

•
$$z \lor y \lor x \lor (\neg x \land \neg y \land \neg z)$$

 $\bullet \ (x \to y) \leftrightarrow (\neg x \lor y)$

- 4 周 ト 4 ヨ ト 4 ヨ ト

3

Logical implication and logical equivalence

Definition

A compound proposition p logically implies a compound proposition q(denoted $p \Rightarrow q$) if $p \rightarrow q$ is a tautology. Two compound propositions p and q are logically equivalent (denoted $p \equiv q$, or $p \Leftrightarrow q$) if $p \leftrightarrow q$ is a tautology.

Theorem

Two compound propositions p and q are logically equivalent if and only if p logically implies q and q logically implies p.

Summary of important logical equivalences

Textbook's Table 6: identity, domination, idempotent, double negation, commutative, associative, distributive, De Morgan's, absorption and negation laws (page 24).

Table 7: logical equivalences involving conditional statements and Table 8: logical equivalences involving biconditionals (page 25).

Normal forms for compound propositions

- A literal is a compound proposition that consists of a proposition or the negation of a proposition.
- A term is a literal or the conjunction (and) of two or more literals.
- A clause is a literal or the disjunction (or) of two or more literals.

Definition

A compound proposition is in **disjunctive normal form** (DNF) if it is a term or a disjunction of two or more terms. A compound proposition is in **conjunctive normal form** (CNF) if it is a clause or a conjunction of two or more clauses.

周 ト イ ヨ ト イ ヨ ト

w of Concepts Normal forms for compound propositions Boolea

Boolean functions and digital circuits

Normal forms for compound propositions

Disjunctive normal form (DNF)

The formula is satisfied by the truth assignment in row 1 or by the truth assignment in row 2 or by the truth assignment in row 4. So, its DNF is : $(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$ eview of Concepts

Normal forms for compound propositions $\circ \circ \bullet$

Boolean functions and digital circuits 000

Normal forms for compound propositions

Conjunctive normal form (CNF)

The formula is **not** satisfied by the truth assignment in row 3 and in row 5 and in row 6 and in row 7 and in row 8. So:, it is log. equiv. to: $\neg(\neg x \land y \land \neg z) \land \neg(x \land \neg y \land \neg z) \land \neg(x \land \neg y \land z) \land \neg(x \land y \land \neg z) \land \neg(x \lor y \lor z)$ apply DeMorgan's law to obtain its CNF: $(x \lor \neg y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \land \neg y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor (\neg x \lor \neg z) \land (\neg x \lor (\neg x \lor z) \land (\neg x \lor (\neg x \lor (\neg x \lor z) \land (\neg x \lor (\neg x \lor$

CSI2101 Discrete Structures Winter 2009: Propositional Logic: normal forms, boolean functions and circuit design Lucia Moura

		Boolean functions and digital circuits ••••
Boolean functions and digital circuits		

Boolean functions and the design of digital circuits

Let $B = \{false, true\}$ (or $B = \{0, 1\}$). A function $f : B^n \to B$ is called a boolean function of degree n.

Definition

A compound proposition P with propositions x_1, x_2, \ldots, x_n represents a Boolean function f with arguments x_1, x_2, \ldots, x_n if for any truth assignment τ , τ satisfies P if and only if $f(\tau(x_1), \tau(x_2), \ldots, \tau(x_n)) = true$.

Theorem

Let P be a compound proposition that represents a boolean function f. Then, a compound proposition Q also represents f if and only if Q is logically equivalent to P.

Complete set of connectives (functionally complete)

Theorem

Every boolean formula can be represented by a compound proposition that uses only connectives $\{\neg, \land, \lor\}$.

Proof: use DNF or CNF!

This is the basis of circuit design:

In digital circuit design, we are given a **functional specification** of the circuit and we need to construct a **hardware implementation**. **functional specification** = number n of inputs + number m of outputs + describe outputs for each set of inputs (i.e. m boolean functions!)

Hardware implementation uses logical gates: or-gates, and-gates, inverters.

The functional specification corresponds to m boolean functions which we can represent by m compound propositions that uses only $\{\neg, \land, \lor\}$, that is, its hardware implementation uses inverters, and gates and or-gates.

Boolean functions and digital circuits

Consider the boolean function represented by $x \lor y \to \neg x \land z$.

Give a digital circuit that computes it, using only $\{\land,\lor,\neg\}$.

Give a digital circuit that computes it, using only $\{\land, \neg\}$. Is this always possible? Why?

Give a digital circuit that computes it, using only $\{\lor, \neg\}$. Is this always possible? Why?

くほし くほし くほし