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Review of Concepts

Truth assignments, tautologies and satisfiability

Definition

Let X be a set of propositions (also called propositional variables).
A truth assignment (to X) is a function τ : X → {true, false} that
assigns to each propositional variable a truth value.
If the truth value of a compound propositional (or propositional formula)
under truth assignment τ is true, we say that τ satisfies P , otherwise we
say that τ falsifies P .
A compound proposition P is a tautology if every truth assignment
satisfies P .
A compound proposition P is satisfiable if there is a truth assignment
that satisfies P .
A compound proposition P is unsatisfiable (or a contradiction) if it is
not satisfiable. there is a truth assignment that satisfies P .
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Examples: tautology, satisfiable, unsatisfiable

For each of the following compound propositions determine if it is
tautology, satisfiable or unsatisfiable:

(x ∨ y) ∧ ¬x ∧ ¬y
z ∨ y ∨ x ∨ (¬x ∧ ¬y ∧ ¬z)
(x→ y)↔ (¬x ∨ y)
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Logical implication and logical equivalence

Definition

A compound proposition p logically implies a compound proposition q
(denoted p⇒ q) if p→ q is a tautology.
Two compound propositions p and q are logically equivalent (denoted
p ≡ q, or p⇔ q ) if p↔ q is a tautology.

Theorem

Two compound propositions p and q are logically equivalent if and only if
p logically implies q and q logically implies p.
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Summary of important logical equivalences

Textbook’s Table 6: identity, domination, idempotent, double negation,
commutative, associative, distributive, De Morgan’s, absorption and
negation laws (page 24).
Table 7: logical equivalences involving conditional statements and
Table 8: logical equivalences involving biconditionals (page 25).
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Normal forms for compound propositions

A literal is a compound proposition that consists of a proposition or
the negation of a proposition.

A term is a literal or the conjunction (and) of two or more literals.

A clause is a literal or the disjunction (or) of two or more literals.

Definition

A compound proposition is in disjunctive normal form (DNF) if it is a
term or a disjunction of two or more terms. A compound proposition is in
conjunctive normal form (CNF) if it is a clause or a conjunction of two
or more clauses.
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Disjunctive normal form (DNF)

x y z x ∨ y → ¬x ∧ z
1 F F F T
2 F F T T
3 F T F F
4 F T T T
5 T F F F
6 T F T F
7 T T F F
8 T T T F

The formula is satisfied by the truth assignment in row 1 or
by the truth assignment in row 2 or by the truth assignment in row 4.
So, its DNF is : (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ z)
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Conjunctive normal form (CNF)

x y z x ∨ y → ¬x ∧ z
1 F F F T
2 F F T T
3 F T F F
4 F T T T
5 T F F F
6 T F T F
7 T T F F
8 T T T F

The formula is not satisfied by the truth assignment in row 3 and
in row 5 and in row 6 and in row 7 and in row 8. So:, it is log. equiv. to:
¬(¬x∧y∧¬z)∧¬(x∧¬y∧¬z)∧¬(x∧¬y∧z)∧¬(x∧y∧¬z)∧¬(x∨y∨z)
apply DeMorgan’s law to obtain its CNF:
(x∨¬y∨ z)∧ (¬x∨y∨ z)∧ (¬x∨y∨¬z)∧ (¬x∨¬y∨ z)∧ (¬x∧¬y∧¬z)
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Boolean functions and the design of digital circuits

Let B = {false, true} (or B = {0, 1}). A function f : Bn → B is called a
boolean function of degree n.

Definition

A compound proposition P with propositions x1, x2, . . . , xn represents a
Boolean function f with arguments x1, x2, . . . , xn if for any truth
assignment τ , τ satisfies P if and only if
f(τ(x1), τ(x2), . . . , τ(xn)) = true.

Theorem

Let P be a compound proposition that represents a boolean function f .
Then, a compound proposition Q also represents f if and only if Q is
logically equivalent to P .
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Boolean functions and digital circuits

Complete set of connectives (functionally complete)

Theorem

Every boolean formula can be represented by a compound proposition that
uses only connectives {¬,∧,∨}.

Proof: use DNF or CNF!
This is the basis of circuit design:
In digital circuit design, we are given a functional specification of the
circuit and we need to construct a hardware implementation.
functional specification = number n of inputs + number m of outputs
+ describe outputs for each set of inputs (i.e. m boolean functions!)
Hardware implementation uses logical gates: or-gates, and-gates,
inverters.
The functional specification corresponds to m boolean functions which we
can represent by m compound propositions that uses only {¬,∧,∨}, that
is, its hardware implementation uses inverters, and-gates and or-gates.
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Boolean functions and digital circuits

Consider the boolean function represented by x ∨ y → ¬x ∧ z.

Give a digital circuit that computes it, using only {∧,∨,¬}.

Give a digital circuit that computes it, using only {∧,¬}.
Is this always possible? Why?

Give a digital circuit that computes it, using only {∨,¬}.
Is this always possible? Why?
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