CSI2101-2009 - ASSIGNMENT\#4

Due date: Thursday April 9 at 12:30 (up to max 24hs late with 10% off)
Hand in method: You may hand in to the TA at the tutorial immediately BEFORE the due date (i.e. tutorial of April 6); or otherwise at the dropoff box at SITE 1st floor.
(1) (25 points) Number Theory exercises:
(a) (5 points) Section 3.4: 12 (proof involving arithmetic $\bmod m$)
(b) (5 points) Section 3.4: 22 (proof involving arithmetic $\bmod m$)
(c) (4 points) Section 3.5: 4-a,b,c,d (finding prime factorization)
(d) (11 points) Section 3.7: 28 (using Fermat's Little/Chinese Remainder Thm)
(2) (20 points) Number Theory Applications:

Consider the RSA Cryptosystem. Bob's public keys are $n=4757$ and $e=299$.
Alice uses these keys and sends Bob a message M encoded as $C=1080$. However, since Bob used n too small, a malicious eavesdropper, Eve, is able to factor n as a product of two prime numbers: $n=4757=71 \times 67$.
Show how Eve can use this information to decode the message C in order to discover the original message M; show your work and give the original message M.
Requirements:

- In order to compute the inverse of $a(\bmod m)$, when $\operatorname{gcd}(a, m)=1$, use the Euclidean algorithm to find the gcd and then work backwards in order to determine s and t such that $1=\operatorname{gcd}(a, m)=s \times a+t \times m$. The inverse of a $\bmod m$ is s. Show your work.
- In order to compute $b^{a}(\bmod m)$ you may use some fast exponentiation algorithm available over the internet, such as the one found at:
http://www.math.umn.edu/~garrett/crypto/a01/FastPow.html
(3) (45 points) Recurrence relations:
(a) (7 points) Section 7.1: 30 (modeling with recurrence relations)
(b) ($5+5$ points) Section 7.2: 4-b,d (solving recurrence relations)
(c) $(5+5+5+5$ points) Section 7.2: 46 (modeling population growth and solving recurrence relations)
(d) (8 points) Section 7.3: 20 (analysing divide-and-conquer algorithms)
(4) Intro to graphs (10 points)
(a) (5 points) Section 9.2: 12, 16 (understanding graph models)
(b) (5 points) Section 9.3: 36, 38 (graph isomorphism check)

