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Talk Outline

� ����� �� and MOLS

� ������ ��, Plackett-Burman bound, constructions, affine designs

� ������ �� ��, Rao bound, Bush bounds, Bierbrauer-Friedman bound,

constructions

� linear codes and orthogonal arrays, duality

� nonlinear codes and orthogonal arrays, linear programming bounds,

duality

� orthogonal arrays with a non-prime-power number of symbols

D.R. Stinson 2



Covering Arrays Workshop May 14–16, 2006

Definition

Let � � � and � � � be integers. An orthogonal array ����� �� is an

�� � � array, �, with entries from a set � of cardinality � such that,

within any two columns of �, every ordered pair of symbols from �

occurs in exactly one row of �.

An ����� �� �� is equivalent to a set of � mutually orthogonal latin

squares (MOLS) of order �.

Every row of the OA corresponds to a particular cell in each of the latin

squares.
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Example

�MOLS of order � ����� ��
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Example

Consider the cells in row �, column �:

�MOLS of order � ����� ��
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Example

Consider the cells in row �, column �:

�MOLS of order � ����� ��
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Some Basic Results

Theorem 1
Let � � �. If there is an ����� ��, then � � �� �.

Theorem 2
Let � � �. An ����� �� �� is equivalent to any of the following designs:

1. �� � MOLS of order �;

2. an affine plane of order �;

3. a projective plane of order �.
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First Generalization: Higher �
Let � � �, � � � and � � � be integers. An orthogonal array ������ ��

is a ��� � � array, �, with entries from a set� of cardinality � such that,

within any two columns of �, every ordered pair of symbols from �

occurs in exactly � rows of �.

Theorem 3 [Plackett-Burman Bound (1946)]
Let � � �. If there is an ������ ��, then

� �
��� � �

�� �
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First Proof: Variance Method

Relabel the symbols so the last row of � is � � � � � �. Define 
 � ���.

For � � � � 
 � �, let �� denote the number of “�”s in row � of �. Then

����
���

�� � ����� ��

����
���

����� � �� � ��� � ����� ��

����
���

��
� � ������ �� � ���� ���	

Define
� �
����� ��


 � �
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First Proof: Variance Method (cont.)

Then

	 �

����
���

��� � ��
�

�

����
���

��
� � ��

����
���

�� � �
��
 � ��

� ������ �� � ���� ����
������ ���

��� � �

Therefore,

����� ��� � ���� � ������� �� � ���� ���	

This simplifies to yield
� �
��� � �

�� �
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Second Proof: Applying the Johnson Bound

Again, relabel the symbols so the last row of � is � � � � � �. Delete the

last row of �, and replace every symbol  �� � by 	. Consider the code �

formed by the columns of the resulting array. � is a binary code

consisting of � vectors of length � � ��� � �, each of which has constant

hamming weight � � ��� �, such that the hamming distance between

any two distinct codewords is equal to �Æ � ����� ��.

Apply the second Johnson bound for constant weight binary codes:

	�	 �

�Æ

�� � �� � �Æ
	

Hence,

� �

���� � ������ ��

���� ��� � ���� � ������ �� � ���� � ������ ��
�
��� � �

�� �
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Third Proof: Linear Algebra Approach

Assume that � is defined on the symbols in �� . Let the columns of � be

denoted ��� 	 	 	 � ��. Let �� be the column vector of “	”s. For

� � � � �� �, construct��� from �� by multiplying every entry by�

(modulo �).

Let � � ������ and define � 
 �� 
 � by the rule ���� � �	.

Consider the set of � � ���� �� vectors

� � ������ � ������� 
 � � � � �� �� � � � � �	

It can be shown that ����� � 	 for all ��� � �, � �� �, where ��� ��

denotes the hermitian inner product of two (complex-valued) vectors.

Since � consists of mutually orthogonal vectors, they are linearly
independent. Hence, we have a set of � � ���� �� linearly independent

vectors in �� , and it follows that � � ���� �� � 
�� ����.
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BIBDs and Resolvable BIBDs

A ��� �� ��-���� (balanced incomplete block design) is a pair �����,

where� is a set of � elements called points and � is a collection of

�-subsets of � (called blocks) such that every unordered pair of points

occurs in exactly � blocks. The number of blocks is denoted by �, and

each point occurs in exactly � blocks, where

��� � �� � ��� � �� and �� � ��	

A ��� �� ��-����, say �����, is resolvable if � can be partitioned into �

parallel classes, where each parallel consists of ��� disjoint blocks.
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Equality in the Plackett-Burman Bound

A resolvable ��� �� ��-���� is affine resolvable if any two blocks from
different parallel classes intersect in � points. Bose showed that an affine
resolvable BIBD has � � ���, � � �� and � � ���� ������ �� for
integers � and �. Furthermore, there are � blocks in each parallel class
and the number of parallel classes is � � ���� � ������ ��. Such a
design is denoted ����� ��.

Theorem 4
An ����� �� is equivalent to An ��
��� �� where

� � ���� � ������ ��.

Proof. Suppose we have an ����� ��. For � � � � �, let the blocks in the

�th parallel class be named ����� 	 	 	 � ����. For all points  � ���� , define

��� �� � �. Then � is the desired OA. The construction can be reversed,
proving the converse.
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Example

Here is an ����� �� (i.e., an affine resolvable �� �� ��-BIBD) and the
resulting ������ �� ��:
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���� � �	� �� �� �� ���� � ��� �� �� �

���� � �	� �� �� �� ���� � ��� �� �� �

���� � �	� �� �� �� ���� � ��� �� �� �

�	�� � �	� �� �� �� �	�� � ��� �� �� �

� � � � � � �

	 	 	 � 	 	 	 	

� 	 	 	 � � � �

� 	 � 	 	 	 � �

� 	 � � � � 	 	

� � 	 � 	 � 	 �

� � 	 	 � 	 � 	

� � � 	 	 � � 	

� � � � � 	 	 �
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Existence of Affine Designs

There are only two families of ����� �� known to exist:

1. ����� ���, where � is a prime power (this design consists of the

hyperplanes in an affine geometry of dimension �� �) and

2. ����� ��, whenever a Hadamard matrix of order �� exists.

The first family yields ���
�
�����

�� � �
�

and the second family yields

��	���� �� ��.

An ��	���� �� �� is constructed from a Hadamard matrix of order �� by

standardizing a column of the matrix, and then deleting it.
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Example

Here is a Hadamard matrix of order  and the resulting ������ �� ��:
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� 	 	 � � 	 	

	 	 � � 	 	 �

� � � 	 	 	 	

	 � 	 	 � 	 �

� 	 	 	 	 � �

	 	 � 	 � � 	
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Second Generalization: Higher �

Let � � � � �, � � � and � � � be integers. An orthogonal array

������ �� �� is a ��� � � array, �, with entries from a set � of

cardinality � such that, within any � columns of �, every ordered �-tuple

of symbols from � occurs in exactly � rows of �.

Theorem 5 [Rao Bound (1947)]
Let � � �. If there is an ������ �� ��, then

��� �

�

�
� �
���

���
�
�
�

�
��� ��� if � is even

� �

������

���

�
�
�

�
��� ��� �
�
���


������
�
��� ��
������ if � is odd.

The Plackett-Burman bound is the special case of the Rao bound with

� � �.
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The Case � � �: The Bush Bound

Theorem 6 [Bush Bound (1952)]
Let �� � � �. If there is an ������ �� ��, then

� �

���

���
�� �� � if � is even and � � �

�� �� � if � is odd and � � � � �

�� � if � � �.

Theorem 7
If there exists an ������ �� ��, then there exists an ������ �� � � �� ��.

Applying Theorem 7, we have that

������ �� ��� ������ �� � � �� ��� � � � � ������ � � �� �� ���

so � � �� � � �� � always holds. This yields the bound � � �� �� �.
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Derived OAs

Proof of Theorem 7. Let � be an ������ �� �� and let  be any symbol.
The indicated subarray �� is an ������ �� � � �� ��.










��

�� is formed from � by deleting all rows of � that do not contain  in the
first column, and then deleting the first column.
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Example

Theorem 8
For all � and all �, there exists an ������ �� �� ��.

Proof. For all �-tuples ��� 	 	 	 � �� � ����
�, define a row of � consisting

of the ��� ��-tuple

� � � � � � � �� � � � ��� ��� �	

That is, we write down all the ��� ��-tuples that sum to 	 modulo �.

Observe that an ������ �� �� �� meets the Bush bound with equality if

� � �.
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The Case of Large �: The Bierbrauer-Friedman Bound

Theorem 9 [Bierbrauer-Friedman Bound (1995)]
Let �� � � �. If there is an ������ �� ��, then

��� � ��
�

��
��� ���

���� ��
�
	

The bound is nontrivial if

� �
��� ���

�

� �	

If � � � and � � �� �, then the bound yields � � � � �. Hence, if � � �,

it must be the case that � � ���. This is the third case of the Bush bound.
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Simple and Linear Orthogonal Arrays

An orthogonal array � is a simple if all its rows in� are different. An

orthogonal array � is linear if the symbol set� � �  for some prime

power � and the rows of � form a subspace (of the vector space �� ��)

having dimension ��� 	�	.

A linear orthogonal array is necessarily simple, and � is a power of � in a

linear orthogonal array.
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Constructing Linear Orthogonal Arrays

Theorem 10 [Bose (1947)]
Let � be a prime power. Suppose is an � by � matrix of elements from

�  such that every set of � columns of is linearly independent, and 

has rank �. Define � to be the �� by � matrix whose rows consist of all the

linear combinations of the rows of . Then � is a linear ������ �� ��

where � � ����.
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Example

Suppose � is a prime power, and let ! � �  be a primitive element. Let

 be the following � by � � � matrix:�
� 	 � � � � � � � �

� 	 � ! !� � � � !��
�

	

Every pair of columns of is linearly independent, so generates a

linear ������ � � �� ��.

This orthogonal array is optimal; it is equivalent to a projective or affine

plane of order �.
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Example

We can generalize the previous example to any � such that � � � � � � �.
Suppose � is a prime power, and let ! � �  be a primitive element. Let

 be the following � by � � � matrix:�
������������

	 � � � � � � � �

	 	 � ! !� � � � !��

	 	 � !� !� � � � !�
���

	 	 � !� !� � � � !�
���

...
...

...
...

...
. . .

...

� 	 � !��� !
����� � � � !
����
���
�

�����������	

Every set of � columns of is linearly independent, so generates a
linear ������ � � �� ��. For � � � and � odd, this orthogonal array is
optimal as it meets the Bush bound with equality.
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Gilbert-Varshamov Bound

Theorem 11 [Gilbert (1952), Varshamov (1957)]
Let �, � and � be positive integers such that � � � � �, and let � be a

prime power. Suppose that

����
���

�
� � �
�

�
�� � ��� " ��	 (1)

Then there exists a linear ������ �� ��, where � � ����.

Theorem 11 is proven by showing that there is an � by � matrix satisfying

the conditions of Theorem 10. This can be done by an easy counting

argument.
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Codes

Let # be a set of � symbols. A code is a set � of �-tuples (of symbols)

called codewords.

For ��� � #�, define the Hamming distance between � and � to be

���	����� � 	�� 
 � �� $�	�

where � � ��� 	 	 	 � �� and � � �$�� 	 	 	 � $��.

The distance of the code �, denoted ���	���, is the smallest positive

integer � such that ���	����� � � for all ��� � �, � �� �.

� is a ��� � �� ��-code if 	�	 � and ���	��� � �.
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Linear Codes

A code � is a linear code of dimension� if # � �  for some prime

power � and � is an�-dimensional subspace of the vector space �� ��.

The dual code of a linear code � is the code ��, where

�� � �� � �� �
� 
 � � � � 	 for all � � �	

(As usual, “� � �” denotes the inner product over �  of the two vectors �

and �.) The subspaces � and �� are called orthogonal complements of

each other. Observe that �� is a linear code of dimension � � ��
���.
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Linear Codes and OAs

Theorem 12
Suppose that � � �� �

� is a linear code of dimension�. Then

���	��� � � if and only if �� is a linear ������ �� �� ��, where

� � ��������.

Theorem 12 says that the theory of linear codes is “equivalent” to the

theory of linear orthogonal arrays. In particular, every bound or

construction for linear codes implies a corresponding bound or

construction for linear orthogonal arrays, and vice versa.
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Hamming and Simplex Codes

Let � be a prime power and let � � �. The Hamming code is a linear

��� � �� ��-code where � � ��� � ����� � ��, � ���� and � � �.

The Simplex code is the dual of the Hamming code; it is a

��� � �� ��-code where � � ��� � ����� � ��, � �� and � � ����.

It follows that the Hamming code is an ������ �� �� where � � ���� � �,

� � ��� � ����� � �� and � � ������. This is an optimal OA because it

meets the Bierbrauer-Friedman bound with equality.

The Simplex code is an ������ �� �� where � � ��� � ����� � �� and

� � ����. This is an optimal OA because it meets the Plackett-Burman

bound with equality.
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Hamming and Simplex Codes (cont.)

The Simplex code can be constructed using Theorem 10. From every

�-dimensional subspace of �� ��, choose a (non-zero) vector �. Let be

the � by ��� � ����� � �� matrix whose columns are the chosen vectors.

Clearly no two columns of are linearly dependent, so yields an OA

with � � �. (Equivalently, the Hamming code has distance � � �.)

When � � �, the columns of comprise all �� � � non-zero vectors in

�� ��
�. For example, when � � �, we have

 �
�

���
	 	 	 � � � �

	 � � 	 	 � �

� 	 � 	 � 	 �
�

��	 	
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Rao and Sphere-packing Bounds

Recall the Rao bound for ������ �� �� in the case of even �:

��� � � �
����

���
�
�
�

�
�� � ���	

Suppose � is a linear ��� ��� �� ��-code where � is odd. Then �� is a

������ �� �� ��, where � � ��������. Applying the Rao bound with

� � �� �, we obtain

������������ � � �

�������

���

�
�
�

�
�� � ����

or

�� �

��

� �

������

���

�
�
�

�
�� � ���
	

This is the Sphere-packing bound for (linear) codes.

D.R. Stinson 33



Covering Arrays Workshop May 14–16, 2006

Bierbrauer-Friedman and Plotkin Bounds

Recall the Bierbrauer-Friedman bound for ������ �� ��:

��� � ��
�

��
�� � ���

���� ��
�
	

Suppose � is a linear ��� ��� �� ��-code. Then �� is a ������ �� �� ��,
where � � ��������. Applying the Bierbrauer-Friedman bound with

� � �� �, we obtain

������������ � ��
�

��
�� � ���

��

�
	

Suppose that � � �� � �����; then

�� �

��

��� �� � ���
	

This is the Plotkin bound for (linear) codes.
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A Family of Nonlinear OAs

Theorem 13 [Mudhopadhyay (1981), Bierbrauer (1995)]
Suppose � is a prime power, � � � and � � � � ��. Then there exists an

��������������� ��� ���.

Proof. Let � 
 � � 
 �� �
� be any surjective �  -linear mapping. The

rows of � are indexed by �-tuples �%� ��� 	 	 	 � �����, where % � �� �
�

and �� � � � (� � � � �� �), and the columns of � are indexed by the

elements of � � . An entry ���� &� is defined as follows:

���� &� � �
�

�����
���

��&
�

�
	� %�

where � � �%� ��� 	 	 	 � �����.
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A Family of Nonlinear OAs (cont.)

For � � �, we obtain �������� �
�� ���. If � � ��, then these OAs have

the minimum possible value of � permitted by the Plackett-Burman

bound:

� �

����� � �� � �

���

� ���� �
�� � �

���

� ���� � �	

Since � is an integer, it must be the case that � � ����.
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Distance Distributions of Codes

Suppose � is an ��� � �� �� (binary) code. The distance distribution of �

is defined to be the sequence ���� ��� 	 	 	 � ���, where

�� �

�
 

	������ 
 ��� � �� ���	����� � �	�

� � 	� 	 	 	 � �. The following properties are easily verified:

�� � �� (2)

�� � 	 for 	 � � � �� and (3)

�� ��� � 	 	 	��� � 	 (4)

Also,

�� � 	 for � � � � �� �, and �� � 	.
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Krawtchouk Polynomials

Let � be a non-negative integer, and let '��� be the Krawtchouk

polynomial defined as follows:

'��� �

��
���

�����
�

�

��
� � 

�� �
�
	

The dual distance distribution of � is defined to be ��
�

�� �
�

�� 	 	 	 � �
�

��,

where

�
�

� �

�
 

��
���

��'�����

� � 	� 	 	 	 � �. We will express this notationally as

��
�

�� �
�

�� 	 	 	 � �
�

�� � ������ ��� 	 	 	 � ���	
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Krawtchouk Polynomials (cont.)

The following properties, analogous to (2), (3) and (4), were proved by

Delsarte:

�
�

� � �� (5)

�
�

� � 	 for 	 � � � �� and (6)

�
�

� ��
�

� � 	 	 	��
�

� �
��
 
	 (7)

Delsarte further showed that Kr is an involutory transformation:

����
�

�� �
�

�� 	 	 	 � �
�

�� � ���� ��� 	 	 	 � ���	 (8)
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Dual Distance

If �
�

� � 	 for � � � � �
�

� � and �
�

��
� 	, then �

�

is called the dual

distance of the code �. Suppose we write the codewords in � as rows of

an � � array. Delsarte proved the following important result.

Theorem 14 [Delsarte (1973)]

� is an ������������ � �� �� ��.

If � is linear, then the dual distance distribution of � is the same as the

distance distibution of ��. Hence, Theorem 14 generalizes Theorem 12.

D.R. Stinson 40



Covering Arrays Workshop May 14–16, 2006

Linear Programming Bounds

Let � and � be positive integers such that � � �. We employ the

following linear program, �����, which is due to McEliece, Rodemich,

Rumsey and Welch.

Maximize ( � � � � � � � �� � subject to

� � �

� � 	 for � � � � � � �

� � 	 for� � � � �

��
���

�'���� � 	 for 	 � � � �	
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Linear Programming Bounds (cont.)

Theorem 15
Suppose that � is a ��� � �� �� code. Then the following hold:

1. Let (��� be the optimal solution to ��� ��. If � has distance �, then

 � (���.

2. Let (��� be the optimal solution to ��� �
�
�. If � has dual distance �

�

,

then � ���(���.
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Linear Programming Bounds (cont.)

Proof. Let ���� ��� 	 	 	 � ��� be the distance distribution of a ��� � �� ��

code, �, having distance �, and let ��
�

�� �
�

�� 	 	 	 � �
�

�� be the dual distance

distribution of �.

The first assertion is proved as follows. We claim that ���� 	 	 	 � ��� is a

feasible solution for ��� ��. The constraints of ��� �� are satisfied

because of (2), (3) and (6), and the fact that � is assumed to have distance

�. Then, from (4), the resulting value of the objective function is , so

the first assertion follows.

To prove the second assertion, we show that ��
�

�� 	 	 	 � �
�

�� is a feasible

solution for ��� �
�
�. This follows in a similar way from (3), (5), (6) and

(8). Then, from (7), the resulting value of the objective function is ��� ,

so the second assertion follows, as well.
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Duality of Bounds for Codes and OAs

Gopalakrishnan (1994) (see also Bierbrauer, Gopalakrishnan and Stinson

(1998)) observed that Theorem 15 provides an elementary and transparent

explanation of the “duality” of the Sphere-Packing and Rao bounds; and

of the Plotkin and Bierbrauer bounds. This follows immediately from

Theorem 15 once it is proven that the bounds in question are

consequences of the more general linear programming bound. For

example, it is known that the Sphere-Packing bound is a consequence of

the Linear Programming bound. Therefore the Rao bound holds.

Some comments:

1. Other examples of “dual pairs” of bounds also exist.

2. The theory can be generalized to non-binary codes and OAs.

3. A similar observation was made by Levenshtein (1995) using a much

more complicated approach.
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OAs where the Number of Symbols is not a Prime Power

There is an extensive theory of MOLS, which yields many constructions

for OAs with � � � on an arbitrary number of symbols.

As well, recall from Theorem 8 that an ������ ���� �� exists for all � and

�.

In contrast, there are very few constructions for OAs with � � � � � � �,

in which the number of symbols is not a prime power. One classical

construction is a “direct” product construction.

Theorem 16 [Bush (1952)]
If there exist ������� �� ��� and ������� �� ���, then there exists an

��������� �� �����.
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OAs where the Number of Symbols is not a Prime Power
(cont.)

A recent method of Kreher has been used to produce new infinite classes

of ������ �� �� with � � �. This technique employs resolvable �-wise

balanced designs and ordered designs of strength �. Here are two

examples of results obtained using applications of this method.

Theorem 17 [Colbourn, Kreher, McSorley, Stinson (2002)]
Suppose � is an odd prime power. Then there exists an

������� � � �� � � ��.

Theorem 18 [Colbourn, Kreher, McSorley, Stinson (2002)]
Suppose � is an odd prime power. Then there exists an

�������� ��� � ��� � � ��.
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Applications of Orthogonal Arrays in Computer Science

� Secrecy and authentication codes

� Threshold schemes

� Perfect local randomizers

� Derandomization

� Resilient and correlation-immune functions

� Block cipher and stream cipher design
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