Graph Homomorphism Tutorial Field's Institute Covering Arrays Workshop 2006

Rick Brewster

Thompson Rivers University

CA Workshop, 2006 - p.1/6

Preparing this talk

What should I say?

Preparing this talk

What should I say?

What do you want to know?

Basic Definitions;

- Basic Definitions;
- Homomorphisms Generalize Colourings;

- Basic Definitions;
- Homomorphisms Generalize Colourings;
- Graph Covering Arrays;

- Basic Definitions;
- Homomorphisms Generalize Colourings;
- Graph Covering Arrays;
- Categorical Aspects;

- Basic Definitions;
- Homomorphisms Generalize Colourings;
- Graph Covering Arrays;
- Categorical Aspects;
- Computational Aspects.

References

- P. Hell and J. Nešetřil, *Graphs and Homomorphisms*, Oxford University Press, 2004.
- C. Godsil and G. Royle, *Algebraic Graph Theory*, Springer-Verlag, 2001.
- A. Pultr and V. Trnková, Combinatorial, Algebraic, and Topological Representations of Groups, Semigroups and Categories, North-Holland, 1980.

References

- G. Hahn and C. Tardif, Graph homomorphisms: structure and symmetry, in *Graph Symmetry, Algebraic Methods and Applications* (G. Hahn and G. Sabidussi eds.) NATO ASI Series C 497, Kluwer 1997.
- G. Hahn and G. MacGillivray, Graph homomorphisms: computational aspects and infinite graphs, manuscript, 2002.
- P. Hell, Algorithmic aspects of graph homomorphisms, in *Surveys in Combinatorics 2003* (C. D. Wensley ed.) *London Math. Soc. Lecture Notes Series* **307** Cambridge University Press.

Definition 1 Let *G* and *H* be graphs. A homomorphism of *G* to *H* is a

Definition 1 Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

 $xy \in E(G) \Rightarrow f(x)f(y) \in E(H).$

Definition 1 Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

 $xy \in E(G) \Rightarrow f(x)f(y) \in E(H).$

Adjacent vertices receive adjacent images.

Definition 1 Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

 $xy \in E(G) \Rightarrow f(x)f(y) \in E(H).$

We write $G \rightarrow H$ ($G \not\rightarrow H$) if there is a homomorphism (no homomorphism) of G to H.

Beyond graphs

Definition of a homomorphism naturally extends to:

- digraphs;
- edge-coloured graphs;
- relational systems.

Beyond graphs

Definition of a homomorphism naturally extends to:

- digraphs;
- edge-coloured graphs;
- relational systems.

Hot idea: Constraint Satisfaction Problems encoded as homomorphisms.

An example

CA Workshop, 2006 - p.8/6

Why is this assignment not allowed?

This assignment requires a loop on vertex 0 (in H)

This assignment is allowed.

This labeling is a homomorphism $G \rightarrow H$.

A partitioning problem

CA Workshop, 2006 - p.9/6

A partitioning problem

CA Workshop, 2006 - p.9/6

The *quotient* of the partition is a subgraph of H

The partition is the *kernel* of the map.

CA Workshop, 2006 - p.9/6

Many keys ideas appear in our example:

Many keys ideas appear in our example:

- $G \rightarrow K_3$ iff G is 3-colourable.
- $G \to K_n$ iff G is n-colourable.

Many keys ideas appear in our example:

- $G \rightarrow K_3$ iff G is 3-colourable.
- $G \to K_n$ iff G is n-colourable.
- Homomorphisms generalize colourings.
- Testing the existence of a homomorphism is a hard problem.

Many keys ideas appear in our example:

- $G \rightarrow K_3$ iff G is 3-colourable.
- $G \to K_n$ iff G is n-colourable.
- Homomorphisms generalize colourings.
- Testing the existence of a homomorphism is a hard problem.

Notation: $G \to H$ is an *H*-colouring of *G*.

The complexity of *H*-colouring

Let H be a fixed graph.

H-colouringInstance: A graph *G*.Question: Does *G* admit an *H*-colouring.

Theorem 1 (Hell and Nešetřil, 1990) *If H is bipartite or contains a loop, then H-colouring is polynomial time solvable; otherwise, H is NP-complete.*

About loops

- If H contains a loop, then the testing $G \xrightarrow{?} H$ is trivial.
- Variants of *H*-colouring remain difficult when loops are allowed.

We will assume graphs are loop-free unless stated otherwise.

In the language of homomorphisms

Chromatic number

$$\chi(G) = \min_{n} \{ n | G \to K_n \}$$

Clique number

$$\omega(G) = \max_{n} \{ n | K_n \to G \}$$

Odd girth

$$og(G) = \min_{\ell} \{ 2\ell + 1 | C_{2\ell+1} \to G \}$$

CA Workshop, 2006 - p.13/6

Homomorphism language con't

An *H*-colouring of *G* is a partition of V(G) subject to the edge structure in *H*.

Independence number

$$\alpha(G) = \max_{f} \{ |f^{-1}(1)| \mid f : G \to H \}$$

General partitioning problems

H

- Split graphs
- *G* is a *split-graph* iff $\exists g, g : G \to H$ such that $g^{-1}(0)$ is complete.

General partitioning problems

Η

- *G* is a *split-graph* iff $\exists g, g : G \to H$ such that $g^{-1}(0)$ is complete.
- *M*-partitions Feder, Hell, Klein, and Motwani.
- Trigraphs in Hell and Nešetřil book.
General partitioning problems

Η

- Split graphs
- *G* is a *split-graph* iff $\exists g, g : G \to H$ such that $g^{-1}(0)$ is complete.
- *M*-partitions Feder, Hell, Klein, and Motwani.
- Trigraphs in Hell and Nešetřil book.
- clique-cut set, skew partition, homogenous set, ...

CSP encodings via Edge-coloured graphs

- Graphs have coloured edges.
- Homomorphisms preserve edges and their colours.

CSP encodings via Edge-coloured graphs

- Graphs have coloured edges.
- Homomorphisms preserve edges and their colours.
- Red edges encode same; and
- blue edges encode *different*.

CSP encodings via Edge-coloured graphs

CA Workshop, 2006 - p.17/6

CSP encodings via Edge-coloured graphs

Colouring interpolation theorem

• Achromatic number

$$\psi(G) = \max_{k} \{k | G \xrightarrow{sur} K_k\}$$

- Complete *k*-colourings
- Theorem 1 Let G be a graph. For each i, $\chi(G) \le i \le \psi(G)$, G admits a complete *i*-colouring.

Another partitioning example

Another partitioning example

The quotient of the partition is the *homomorphic image*, in this case H

3

H

CA Workshop, 2006 - p.19/6

Another partitioning example

3

 $C_{\mathbf{I}}$

2

3

H

CA Workshop, 2006 - p.19/6

Another partitioning example HG2

The homomorphic image is the edge on $\{0,1\}$ Note any bipartite graph will map to $\{0,1\}$

Given $f: G \to H$:

Given $f: G \to H$:

Is f vertex (edge) injective?

Given $f: G \to H$:

- Is f vertex (edge) injective?
- Is f vertex (edge) surjective?

Given $f: G \to H$:

- Is f vertex (edge) injective?
- Is f vertex (edge) surjective?

Homomorphisms generalize isomorphisms. NP-complete versus Graph-Isomorphism complete.

Homomorphisms compose

Homomorphisms compose

Learning to say no

Let G and H be graphs.

- If $\chi(G) > \chi(H)$, then $G \not\rightarrow H$.
- If og(G) < og(H), then $G \not\rightarrow H$.
- If $F \to G$ and $F \not\to H$, then $G \not\to H$.

The core of a graph

In our example,

- $H \to K_3$ and $K_3 \hookrightarrow H$.
- H and K_3 are homomorphism equivalent.
- Every graph has a unique (up to iso) inclusion minimal subgraph to which it is hom-equivalent called the core of the graph.

Core examples

Core examples

Core examples

The mapping to the core

- C_5 is a subgraph of H.
- H maps to C_5 .
- $C_5 \xrightarrow{g} H \xrightarrow{h} C_5$
- $h \circ g = \mathrm{id}_{C_5}$
- The map *h* is a *retraction*.

The mapping to the core

- C_5 is a subgraph of H.
- H maps to C_5 .
- $C_5 \xrightarrow{g} H \xrightarrow{h} C_5$
- $h \circ g = \mathrm{id}_{C_5}$
- The map *h* is a *retraction*.
- Let $H' \subseteq H$. A retraction $f : H \to H'$ is a hom that is the identity on H'.

Core of an old friend

Core of an old friend

Core of an old friend

The hom-image contains $K_3 \not\subseteq P_{10}$. Petersen graph is a core.

CA Workshop, 2006 - p.26/6

Cores

- Every graph H contains a core, denoted H^{\bullet} .
- The core is a subgraph.
- There is a retraction $r: H \to H^{\bullet}$ (which fixes H^{\bullet}).
- For all G,

$$G \to H \Leftrightarrow G \to H^{\bullet}$$

• If $H = H^{\bullet}$, then H is a core.

Some popular cores

The following graphs are cores:

- complete graphs $\overline{K_n}$;
- odd cycles C_{2n+1} ;
- directed cycles \vec{C}_k .

Resumé

- Homomorphisms generalize colourings.
- Homomorphisms generalize isomorphism.
- Each graph contains a unique core.
- Let $H' \subseteq H$. A retraction $f : H \to H'$ is a hom that the identity on H'.

Colouring Problems

Key idea: Many colouring problems can be formulated as homomorphism problems by defining a suitable collection of target graphs.

Circular colourings

A (p/q)-colouring of a graph G is:

- a function $c: V(G) \to \{0, 1, 2, ..., p-1\};$
- where $uv \in E(G)$ implies $q \leq |c(u) c(v)| \leq p q$.

In other words, adjacent vertices receive colours that differ by a least q modulo p.

Circular colourings

A (p/q)-colouring of a graph G is:

- a function $c: V(G) \to \{0, 1, 2, ..., p-1\};$
- where $uv \in E(G)$ implies $q \leq |c(u) c(v)| \leq p q$.

In other words, adjacent vertices receive colours that differ by a least q modulo p.

- Introduced by Vince (1988).
- Combinatorial setting Bondy and Hell (1990).
- Survey Zhu (2001).

Circular chromatic number

The *circular chormatic number* of a graph G is

$$\chi_c(G) = \inf\left\{\frac{p}{q} \mid G \text{ is } (p/q) - \text{colourable}\right\}.$$

Circular chromatic number

The circular chormatic number of a graph G is

$$\chi_c(G) = \inf\left\{\frac{p}{q} \mid G \text{ is } (p/q) - \text{colourable}\right\}.$$

Prop 2

 A (p,1)-colouring is simply a p-colouring. Hence, (p,q)-colourings generalize classical colourings.

•
$$\chi_c(K_n) = \chi(K_n) = n;$$

•
$$\chi_c(C_{2k+1}) = 2 + 1/k$$
.

Circular chromatic number in the language of homomorphisms

We require a suitable colleciton of *calibrating* graphs. What is the correct target H for a (p/q)-colouring?
Circular chromatic number in the language of homomorphisms

We require a suitable colleciton of *calibrating* graphs. What is the correct target H for a (p/q)-colouring?

- $V(H) = \{0, 1, 2, \dots, p-1\};$
- $E(H) = \{ij \mid q \le |i j| \le p q\}.$

Circular chromatic number in the language of homomorphisms

We require a suitable colleciton of *calibrating* graphs. What is the correct target H for a (p/q)-colouring?

- $V(H) = \{0, 1, 2, \dots, p-1\};$
- $E(H) = \{ij \mid q \le |i j| \le p q\}.$

We call these graphs the $K_{p/q}$ cliques.

$$\chi_c(G) = \inf\left\{\frac{p}{q} \mid G \to K_{p/q}\right\}$$

CA Workshop, 2006 - p.34/6

The circular cliques have many nice properties we recognize from classical cliques.

The circular cliques have many nice properties we recognize from classical cliques.

• For rationals r' < r, $K_{r'} \rightarrow K_r$;

The circular cliques have many nice properties we recognize from classical cliques.

- For rationals r' < r, $K_{r'} \rightarrow K_r$;
- for (p,q)=1 and $p/q\geq 2$

$$(K_{p/q} - \{x\}) \to K_{p'/q'}$$

with p'/q' < p/q, p' < p and q' < q;

The circular cliques have many nice properties we recognize from classical cliques.

- For rationals r' < r, $K_{r'} \rightarrow K_r$;
- for (p,q)=1 and $p/q\geq 2$

$$(K_{p/q} - \{x\}) \to K_{p'/q'}$$

with p'/q' < p/q, p' < p and q' < q;

• we can replace inf with min.

• $\chi(G) - 1 < \chi_c(G) \le \chi(G)$

- $\chi(G) 1 < \chi_c(G) \le \chi(G)$
- An orientation \vec{G} of G is obtained by assigning a direction to each edge in G.
- Given a cycle C in G, C⁺(C⁻) is number of forward (backward) arcs.

- $\chi(G) 1 < \chi_c(G) \le \chi(G)$
- An orientation \vec{G} of G is obtained by assigning a direction to each edge in G.
- Given a cycle C in G, C⁺(C⁻) is number of forward (backward) arcs.
- Minty, 1962: $\chi(G) = \min_{\vec{G}} \max_{C} \left[\frac{|C^+|}{|C^-|} + 1 \right]$
- Goddyn, Tarsi, Zhang, 1998: $\chi_c(G) = \min_{\vec{G}} \max_C \frac{|C^+|}{|C^-|} + 1$

Fractional Colourings

A *k*-tuple, *n*-colouring of a graph *G* is:

Fractional Colourings

A *k*-tuple, *n*-colouring of a graph G is:

- an assignment to each vertex v, a k-set of colours from an n-set;
- adjacent vertices receive disjoint sets.

Fractional Colourings

A *k*-tuple, *n*-colouring of a graph G is:

- an assignment to each vertex v, a k-set of colours from an n-set;
- adjacent vertices receive disjoint sets.

When k = 1 we have a classical vertex colouring.

Fractional Colouring Targets

The *Kneser graph* K(n, k) is defined as follows:

Fractional Colouring Targets

The *Kneser graph* K(n, k) is defined as follows:

- vertices *k*-sets from an *n*-set;
- two vertices are adjacent if they are disjoint.

An old friend returns: K(5, 2)

CA Workshop, 2006 - p.39/6

An old friend returns: K(5, 2)

$K_{7/2} \to K(7,2)$

CA Workshop, 2006 - p.40/6

CA Workshop, 2006 - p.40/6

Integer Programming

We can formulate ordinary chromatic number as an integer program. Recall χ is the smallest number of independent sets into which we can partition V(G).

Integer Programming

We can formulate ordinary chromatic number as an integer program. Recall χ is the smallest number of independent sets into which we can partition V(G).

• For each independent set *I*, create a 01-variable *x*_{*I*}.

Integer Programming

We can formulate ordinary chromatic number as an integer program. Recall χ is the smallest number of independent sets into which we can partition V(G).

- For each independent set *I*, create a 01-variable *x*_{*I*}.
- χ is the optimum value of:

$\min \sum_{I} x_{I}$ $\sum_{v \in I} = 1, \text{ for all } v \in V(G)$

Fractional Relaxation

It is easy to verify that χ_f is the optimal value of the fractional relaxation of the IP above:

$$\min \sum_{I} x_{I}$$
$$\sum_{v \in I} = 1, \text{ for all } v \in V(G)$$
$$x_{I} \ge 0$$

Fractional Relaxation (2)

The dual to this problem (in standard form) defines the *fractional clique*. Gives lower bounds on χ_f . For example,

$$\chi_f(G) \ge \frac{|V(G)|}{\alpha}$$

Fractional Relaxation (2)

The dual to this problem (in standard form) defines the *fractional clique*. Gives lower bounds on χ_f . For example,

$$\chi_f(G) \ge \frac{|V(G)|}{\alpha}$$

Using this we get $\chi_f(K(n,k)) = \frac{n}{k}$.

Kneser graphs

- Unlike the circular cliques, we do not have a full understanding of the homomorphism structure between K(n,k).
- We do know for $n \ge 2k \ge 2$
 - $K(n,k) \to K(n+1,k)$
 - $K(n,k) \rightarrow K(tn,tk)$, for every positive integer t
 - $K(n,k) \rightarrow K(n-2,k-1)$, for k > 1

Chromatic number of Kneser graphs

Theorem 3 (Lovász, 1978) For every $n, k, n \ge 2k$,

 $\chi(K(n,k)) = n - 2k + 2.$

Chromatic number of Kneser graphs

Theorem 3 (Lovász, 1978) For every $n, k, n \ge 2k$,

$$\chi(K(n,k)) = n - 2k + 2.$$

- Topological methods;
- Uses $\alpha(K(n,k)) = \binom{n-1}{k-2}$ from the Erdős-Ko-Rado Theorem.

Chromatic number of Kneser graphs

Theorem 3 (Lovász, 1978) For every $n, k, n \ge 2k$,

$$\chi(K(n,k)) = n - 2k + 2.$$

- Topological methods;
- Uses $\alpha(K(n,k)) = \binom{n-1}{k-2}$ from the Erdős-Ko-Rado Theorem.

Stahl (and others) conjecture $K(n,k) \not\rightarrow K(tn - 2k + 1, tk - k + 1).$

Covering Arrays and Homomorphisms

Can we express covering array problems in the language of homomorphisms? Natural problems? Interesting?

Covering Arrays and Homomorphisms

Can we express covering array problems in the language of homomorphisms? Natural problems? Interesting?

- Karen Meagher and Brett Stevens
- Karen Meagher, Lucia Moura, and Latifa Zekaoui
- Chris Godsil, Karen Meagher, and Reza Naserasr

Covering Arrays Targets

The graph QI(n,g) (with $n \ge g^2$)

- V strings of length n over $\{0, 1, \ldots, g-1\}$;
- *E* pairs of qualitatively independent strings.

Covering Arrays Targets

The graph QI(n,g) (with $n \ge g^2$)

- V strings of length n over $\{0, 1, \ldots, g-1\}$;
- *E* pairs of qualitatively independent strings.

A k-clique in QI(n,g) corresponds to a $n \times k$ covering array.

CA in the language of homomorphisms

There exists a CA(n, k, g)
CA in the language of homomorphisms

There exists a CA(n, k, g)iff $k \le \omega(QI(n, g))$

CA in the language of homomorphisms

There exists a CA(n, k, g)iff $k \le \omega(QI(n, g))$ iff $K_k \to \omega(QI(n, g))$

CA in the language of homomorphisms

There exists a
$$CA(n, k, g)$$

iff $k \le \omega(QI(n, g))$
iff $K_k \to \omega(QI(n, g))$

Again, we may restrict our attention to cores.

Observe $QI^{\bullet}(4,2) = K_3$, and is induced by the balance strings starting with 0.

Continuing with homomorphisms

Let's ask the question, for which graph G

 $G \xrightarrow{?} QI(n,g)$

Continuing with homomorphisms

Let's ask the question, for which graph G

$$G \xrightarrow{?} QI(n,g)$$

Covering array on a graph G is a homomorphism $G \rightarrow QI(n,g)$.

Continuing with homomorphisms

Let's ask the question, for which graph G

$$G \xrightarrow{?} QI(n,g)$$

Covering array on a graph G is a homomorphism $G \rightarrow QI(n,g)$.

 $CA(\overline{G},g) = \min_{\ell \in \mathbb{N}} \{\ell : \exists CA(\ell, \overline{G},g)\}$

Note: $CAN(K_k, g) = CAN(k, g)$

Prop 4 If $G \to H$, then $CAN(G,g) \leq CAN(H,g)$. In particular,

 $CAN(K_{\omega(G)},g) \le CAN(G,g) \le CAN(K_{\chi(G)},g)$

Prop 4 If $G \rightarrow H$, then $CAN(G,g) \leq CAN(H,g)$. In particular,

 $CAN(K_{\omega(G)},g) \le CAN(G,g) \le CAN(K_{\chi(G)},g)$

Meagher and Stevens examined the problem of finding graphs such that

 $CAN(G,2) < CAN(K_{\chi(G)},2)$

Prop 4 If $G \to H$, then $CAN(G,g) \leq CAN(H,g)$. In particular,

 $CAN(K_{\omega(G)},g) \le CAN(G,g) \le CAN(K_{\chi(G)},g)$

Meagher and Stevens examined the problem of finding graphs such that

 $CAN(G,2) < CAN(K_{\chi(G)},2)$

QI(5,2) is such a graph.

Do the target graphs behave?

Do the target graphs behave?

(The core of) QI(5,2) is the complement of the Petersen graph.

Do the target graphs behave?

(The core of) QI(5,2) is the complement of the Petersen graph.

Theorem 5 (MS) $QI^{\bullet}(n, 2)$ is the complement of a Kneser graph.

- for n even the core is $\overline{K_{\binom{n}{n/2}}/2}$;
- for n odd the core is F(n, 2) = subgraph induced by vectors of weight [n/2].

• $QI(n,g) \rightarrow BQI(n,g)$?

- $QI(n,g) \rightarrow BQI(n,g)$?
- What is Aut(QI(n,k)) or Aut(QI(ck,k))?

- $QI(n,g) \rightarrow BQI(n,g)$?
- What is Aut(QI(n,k)) or Aut(QI(ck,k))?
- Is $BQI(k^2, k)$ a core?

- $QI(n,g) \rightarrow BQI(n,g)$?
- What is Aut(QI(n,k)) or Aut(QI(ck,k))?
- Is $BQI(k^2, k)$ a core?
- $\chi(BQI(k^2,k)) = \binom{k+1}{2}$?

List Homomorphisms

Definition 5 Let G and H be graphs. Let L(v) be a subset of V(H) for each vertex $v \in V(G)$. A list homomorphism $f: G \to H$ is a homomorphism such that $f(v) \in L(v)$ for all v.

The natural product with homomorphisms is the categorical product $G \times H$.

 $(g_1, h_1)(g_2, h_2) \in E(G \times H)$ $\Leftrightarrow g_1g_2 \in E(G) \text{ and } h_1h_2 \in E(H)$

The natural product with homomorphisms is the categorical product $G \times H$.

 $(g_1, h_1)(g_2, h_2) \in E(G \times H)$ $\Leftrightarrow g_1g_2 \in E(G) \text{ and } h_1h_2 \in E(H)$

The natural product with homomorphisms is the categorical product $G \times H$.

 $(g_1, h_1)(g_2, h_2) \in E(G \times H)$ $\Leftrightarrow g_1g_2 \in E(G) \text{ and } h_1h_2 \in E(H)$

 $\pi_1: G \times H \to G$

Projections are homomorphisms

The natural product with homomorphisms is the categorical product $G \times H$.

 $(g_1, h_1)(g_2, h_2) \in E(G \times H)$ $\Leftrightarrow g_1g_2 \in E(G) \text{ and } h_1h_2 \in E(H)$

 $\pi_2: G \times H \to H$

Projections are homomorphisms

Prop 6 $X \to G \times H$ iff $X \to G$ and $X \to H$

Prop 6 $X \to G \times H$ iff $X \to G$ and $X \to H$

Prop 6 $X \to G \times H$ iff $X \to G$ and $X \to H$

GH π_1 π_{2} $G \times H$ ϕ_2 ϕ_1

Prop 6 $X \to G \times H$ iff $X \to G$ and $X \to H$

 $\alpha(x) := (\phi_1(x), \phi_2(x)) \qquad (= \phi_1 \times \phi_2(x))$ $\phi_1 = \pi_1 \circ \alpha \qquad \phi_2 = \pi_2 \circ \alpha$

CA Workshop, 2006 - p.55/6

Varieties

- A *variety* is a set of graphs closed under retracts and products.
- Let C be a family of graphs. The variety generated by C is the smallest variety containing C. Denoted V(C).
- Example, the variety generated by finite, reflexive paths is important in the study of graph retraction problems. Well characterized.

Cops and Robbers

Consider reflexive graphs.

- Cop picks a vertex.
- Robber picks a vertex.
- Take turns moving to an adjacent vertex.

Cops and Robbers

Consider reflexive graphs.

- Cop picks a vertex.
- Robber picks a vertex.
- Take turns moving to an adjacent vertex.
- Cop wins by occupying the same vertex as the robber. A graph is *cop-win* if the cop has a winning strategy.
- Observation: Cop-win graphs form a variety.
- Nowakowski and Winkler, Disc Math, 1983.

Homomorphism Partial Order

- Let \mathcal{G} be the set of all finite graphs.
- $G \preceq H$ if $G \rightarrow H$.
- Reflexive and Transitive: quasi-order.

Homomorphism Partial Order

- Let \mathcal{G} be the set of all finite graphs.
- $G \preceq H$ if $G \rightarrow H$.
- Reflexive and Transitive: *quasi-order*.
- Not-antisymmetric: $C_6 \rightarrow K_2$ and $K_2 \rightarrow C_6$.
- Usual operation of moding out by hom-equiv to obtain a partial order.
- Cores are the natural representation of the classes.

Homomorphism Partial Order (2)

- Rich structure.
- Distributive lattice.

Homomorphism Partial Order (2)

- Rich structure.
- Distributive lattice.
- meet: $G \wedge H = G \times H$;
- join: G ∨ H = G + H, disjoint union or co-product.

Chains and Antichains

Chains and Antichains

- $K_1 \to K_2 \to K_3 \to \cdots$
- $\cdots \rightarrow C_7 \rightarrow C_5 \rightarrow C_3$
- Recall:
Chains and Antichains

- $K_1 \to K_2 \to K_3 \to \cdots$
- $\cdots \to C_7 \to C_5 \to C_3$
- Recall:
 - $\chi(G) > \chi(H) \Rightarrow G \not\rightarrow H$.
 - $og(G) > og(H) \Rightarrow G \not\leftarrow H$.
 - Erdös: $\forall i \geq 3$, there exists a graph R_i such that $\chi(R_i) = i$ and $og(R_i) = 2i + 1$.

Chains and Antichains

- $K_1 \to K_2 \to K_3 \to \cdots$
- $\bullet \cdots \to C_7 \to C_5 \to C_3$
- Recall:
 - $\chi(G) > \chi(H) \Rightarrow G \not\rightarrow H$.
 - $og(G) > og(H) \Rightarrow G \not\leftarrow H$.
 - Erdös: $\forall i \geq 3$, there exists a graph R_i such that $\chi(R_i) = i$ and $og(R_i) = 2i + 1$.
- R_i , $i \ge 3$ form an antichain.

Given $G \rightarrow H$ and $G \not\leftarrow H$:

Given $G \rightarrow H$ and $G \not\leftarrow H$:

• find Z such that $G \rightarrow Z \rightarrow H$ and $G \not\leftarrow Z \not\leftarrow H$

Given $G \rightarrow H$ and $G \not\leftarrow H$:

- find Z such that $G \rightarrow Z \rightarrow H$ and $G \not\leftarrow Z \not\leftarrow H$
- Theorem 7 (Welzl, 1982) If $\{G, H\} \neq \{K_1, K_2\}$ with $G \rightarrow H$ and $G \not\leftarrow H$, then there exists Z such that

 $G \to Z \to H \text{ and } G \not\leftarrow Z \not\leftarrow H$

Given $G \rightarrow H$ and $G \not\leftarrow H$:

- find Z such that $G \rightarrow Z \rightarrow H$ and $G \not\leftarrow Z \not\leftarrow H$
- Theorem 7 (Welzl, 1982) If $\{G, H\} \neq \{K_1, K_2\}$ with $G \rightarrow H$ and $G \not\leftarrow H$, then there exists Z such that

 $G \to Z \to H \text{ and } G \not\leftarrow Z \not\leftarrow H$

Proof indep Nešetřil and Perles (1990).

Define $\rightarrow H := \{G \mid G \rightarrow H\}$. When can we nicely describe $\rightarrow H$?

Define $\rightarrow H := \{G \mid G \rightarrow H\}$. When can we nicely describe $\rightarrow H$?

- $G \to K_2$ iff $C \not\to G$ for all odd cycles C.
- $G \to K_1$ iff $K_2 \not\to G$.

Define $\rightarrow H := \{G \mid G \rightarrow H\}$. When can we nicely describe $\rightarrow H$?

- $G \to K_2$ iff $C \not\rightarrow G$ for all odd cycles C.
- $G \to K_1$ iff $K_2 \not\to G$.
- duality pair: (F, H)

 $\forall G, G \to H \Leftrightarrow F \not\to G$

Define $\rightarrow H := \{G \mid G \rightarrow H\}$. When can we nicely describe $\rightarrow H$?

- $G \to K_2$ iff $C \not\rightarrow G$ for all odd cycles C.
- $G \to K_1$ iff $K_2 \not\to G$.
- duality pair: (F, H)

$$\forall G, G \to H \Leftrightarrow F \not\to G$$

• *finite duality*: $(\{F_1, ..., F_t\}, H)$

 $\forall G, G \to H \Leftrightarrow \forall i, F_i \not\to G$

A pair [G, H] with G < H is a gap if no X satisfies G < X < H.

A pair [G, H] with G < H is a *gap* if no X satisfies G < X < H. The result of Welzl tell us that $[K_1, K_2]$ is the only gap in \mathcal{G} .

A pair [G, H] with G < H is a gap if no X satisfies G < X < H.

The result of Welzl tell us that $[K_1, K_2]$ is the only gap in \mathcal{G} .

Theorem 8 (Nešetřil and Tardif, 2000)

- If cores (F, H) form a duality pair, then $[F \times H, F]$ is a gap.
- If cores [A, B] form a gap and B is connected, then (B, A^B) is a duality pair.

A pair [G, H] with G < H is a gap if no X satisfies G < X < H.

The result of Welzl tell us that $[K_1, K_2]$ is the only gap in \mathcal{G} .

Theorem 8 (Nešetřil and Tardif, 2000)

- If cores (F, H) form a duality pair, then $[F \times H, F]$ is a gap.
- If cores [A, B] form a gap and B is connected, then (B, A^B) is a duality pair.

Finite duality implies *H*-colouring is polynomial.

Frucht, 1938 Every group is isomorphic to the automorphism group of a graph.

Frucht, 1938 Every group is isomorphic to the automorphism group of a graph.

Hedrlín and Pultr, 1965 Every monoid is isomorphic to the endomorphism monoid of a suitable digraph G.

Frucht, 1938 Every group is isomorphic to the automorphism group of a graph.

- Hedrlín and Pultr, 1965 Every monoid is isomorphic to the endomorphism monoid of a suitable digraph G.
- Pultr and Trnková, 1980 Any countable partial order is isomorphic to a suborder of the digraph poset.

Frucht, 1938 Every group is isomorphic to the automorphism group of a graph.

- Hedrlín and Pultr, 1965 Every monoid is isomorphic to the endomorphism monoid of a suitable digraph G.
- Pultr and Trnková, 1980 Any countable partial order is isomorphic to a suborder of the digraph poset.

Pultr and Trnková, 1980 Every concrete category can be represented in the category of finite graphs.

Complexity Issues

BFHHM (and others) examine retraction complexity and *no-certificates*.

List Homomorphisms

Definition 8 Let G and H be graphs. Let L(v) be a subset of V(H) for each vertex $v \in V(G)$. A list homomorphism $f: G \to H$ is a homomorphism such that $f(v) \in L(v)$ for all v.