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Preparing this talk

What should I say?
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Preparing this talk

What should I say?

What do you want to know?
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Talk Outline

• Basic Definitions;
• Homomorphisms Generalize Colourings;
• Graph Covering Arrays;
• Categorical Aspects;
• Computational Aspects.
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Graph Homomorphisms

Definition 1 Let G and H be graphs. A
homomorphism of G to H is a
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Graph Homomorphisms

Definition 1 Let G and H be graphs. A
homomorphism of G to H is a function
f : V (G)→ V (H) such that

xy ∈ E(G)⇒ f(x)f(y) ∈ E(H).
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Graph Homomorphisms

Definition 1 Let G and H be graphs. A
homomorphism of G to H is a function
f : V (G)→ V (H) such that

xy ∈ E(G)⇒ f(x)f(y) ∈ E(H).

Adjacent vertices receive adjacent images.
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Graph Homomorphisms

Definition 1 Let G and H be graphs. A
homomorphism of G to H is a function
f : V (G)→ V (H) such that

xy ∈ E(G)⇒ f(x)f(y) ∈ E(H).

We write G→ H (G 6→ H) if there is a
homomorphism (no homomorphism) of G to H.

CA Workshop, 2006 – p.6/66



Beyond graphs

Definition of a homomorphism naturally extends
to:

• digraphs;
• edge-coloured graphs;
• relational systems.
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Beyond graphs

Definition of a homomorphism naturally extends
to:

• digraphs;
• edge-coloured graphs;
• relational systems.

Hot idea: Constraint Satisfaction Problems
encoded as homomorphisms.
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An example
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An example

G

0

1 2

H

0

0

Why is this assignment not allowed?
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An example

G

0

1 2

H

0

0

This assignment requires a loop on vertex 0 (in H)
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An example

G

0

1 2

H

0

1

This assignment is allowed.
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An example

G

0

1 2

H

1

0

1

0 2

This labeling is a homomorphism G→ H.
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A partitioning problem

0

1 2

H

G
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A partitioning problem

0

1 2

H

G

0

1

2

The quotient of the partition is a subgraph of H

The partition is the kernel of the map.
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Some observations

Many keys ideas appear in our example:
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Some observations

Many keys ideas appear in our example:
• G→ K3 iff G is 3-colourable.
• G→ Kn iff G is n-colourable.
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Some observations

Many keys ideas appear in our example:
• G→ K3 iff G is 3-colourable.
• G→ Kn iff G is n-colourable.
• Homomorphisms generalize colourings.
• Testing the existence of a homomorphism is a

hard problem.
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Some observations

Many keys ideas appear in our example:
• G→ K3 iff G is 3-colourable.
• G→ Kn iff G is n-colourable.
• Homomorphisms generalize colourings.
• Testing the existence of a homomorphism is a

hard problem.

Notation: G→ H is an H-colouring of G.
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The complexity ofH-colouring

Let H be a fixed graph.

H-colouring
Instance: A graph G.
Question: Does G admit an H-colouring.

Theorem 1 (Hell and Nešet řil, 1990) If H is
bipartite or contains a loop, then H-colouring is
polynomial time solvable; otherwise, H is
NP-complete.
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About loops

• If H contains a loop, then the testing G ?
→ H

is trivial.
• Variants of H-colouring remain difficult when

loops are allowed.

We will assume graphs are loop-free unless
stated otherwise.
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In the language of
homomorphisms

• Chromatic number

χ(G) = min
n
{n|G→ Kn}

• Clique number

ω(G) = max
n
{n|Kn → G}

• Odd girth

og(G) = min
ℓ
{2ℓ+ 1|C2ℓ+1 → G}
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Homomorphism language con’t

An H-colouring of G is a partition of V (G) subject
to the edge structure in H.

• Independence number 0 1

H

α(G) = max
f
{|f−1(1)| | f : G→ H}
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General partitioning problems

• Split graphs 0 1

H

• G is a split-graph iff ∃g, g : G→ H such that
g−1(0) is complete.
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General partitioning problems

• Split graphs 0 1

H

• G is a split-graph iff ∃g, g : G→ H such that
g−1(0) is complete.

• M -partitions – Feder, Hell, Klein, and
Motwani.

• Trigraphs in Hell and Nešetřil book.
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General partitioning problems

• Split graphs 0 1

H

• G is a split-graph iff ∃g, g : G→ H such that
g−1(0) is complete.

• M -partitions – Feder, Hell, Klein, and
Motwani.

• Trigraphs in Hell and Nešetřil book.
• clique-cut set, skew partition, homogenous

set, ...
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CSP encodings via Edge-coloured
graphs

• Graphs have coloured edges.
• Homomorphisms preserve edges and their

colours.
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CSP encodings via Edge-coloured
graphs

• Graphs have coloured edges.
• Homomorphisms preserve edges and their

colours.
• Red edges encode same; and
• blue edges encode different.

0 1
H
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CSP encodings via Edge-coloured
graphs

0 1
H
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CSP encodings via Edge-coloured
graphs

0 1
H

G
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Colouring interpolation theorem

• Achromatic number

ψ(G) = max
k
{k|G

sur
→ Kk}

• Complete k-colourings
• Theorem 1 Let G be a graph. For each i,
χ(G) ≤ i ≤ ψ(G), G admits a complete
i-colouring.
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Another partitioning example
0

1

2

3
H

G
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Another partitioning example
0

1

2

3
H

G

0

1

2

3

The quotient of the partition
is the homomorphic image, in this case H
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Another partitioning example
0

1

2

3
H

G

0

1

2

3

The homomorphic image is the
upper triangle of H
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Another partitioning example
0

1

2

3
H

G

0

1

2

3

The homomorphic image is the edge on {0, 1}
Note any bipartite graph will map to {0, 1}
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A few natural questions about the
hom-image

Given f : G→ H:
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A few natural questions about the
hom-image

Given f : G→ H:

• Is f vertex (edge) injective?
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A few natural questions about the
hom-image

Given f : G→ H:

• Is f vertex (edge) injective?
• Is f vertex (edge) surjective?
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A few natural questions about the
hom-image

Given f : G→ H:

• Is f vertex (edge) injective?
• Is f vertex (edge) surjective?

Homomorphisms generalize isomorphisms.

NP-complete versus Graph-Isomorphism
complete.
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Homomorphisms compose

0
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Homomorphisms compose

0

1

2

3
H

G

0

1

2

3

x

y

z

K3

x

y

z
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Learning to say no

Let G and H be graphs.
• If χ(G) > χ(H), then G 6→ H.

• If og(G) < og(H), then G 6→ H.
• If F → G and F 6→ H, then G 6→ H.
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The core of a graph

In our example,
• H → K3 and K3 →֒ H.
• H and K3 are homomorphism equivalent.
• Every graph has a unique (up to iso) inclusion

minimal subgraph to which it is
hom-equivalent called the core of the graph.
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Core examples

H
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Core examples

H
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Core examples

H
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The mapping to the core

• C5 is a subgraph of H.
• H maps to C5.

• C5
g
→ H

h
→ C5

• h ◦ g = idC5

• The map h is a retraction.
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The mapping to the core

• C5 is a subgraph of H.
• H maps to C5.

• C5
g
→ H

h
→ C5

• h ◦ g = idC5

• The map h is a retraction.
• Let H ′ ⊆ H. A retraction f : H → H ′ is a hom

that is the identity on H ′.
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Core of an old friend
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Core of an old friend
Fixed in the core.

Not in the core.
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Core of an old friend
Fixed in the core.

Not in the core.

The hom-image contains K3 6⊆ P10.
Petersen graph is a core.
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Cores

• Every graph H contains a core, denoted H•.
• The core is a subgraph.
• There is a retraction r : H → H• (which fixes
H•).

• For all G,

G→ H ⇔ G→ H•

• If H = H•, then H is a core.
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Some popular cores

The following graphs are cores:
• complete graphs Kn;
• odd cycles C2n+1;

• directed cycles ~Ck.
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Resumé

• Homomorphisms generalize colourings.
• Homomorphisms generalize isomorphism.
• Each graph contains a unique core.
• Let H ′ ⊆ H. A retraction f : H → H ′ is a hom

that the identity on H ′.
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Colouring Problems

Key idea: Many colouring problems can be for-

mulated as homomorphism problems by defining

a suitable collection of target graphs.
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Circular colourings

A (p/q)-colouring of a graph G is:

• a function c : V (G)→ {0, 1, 2, . . . , p− 1};

• where uv ∈ E(G) implies
q ≤ |c(u)− c(v)| ≤ p− q.

In other words, adjacent vertices receive colours
that differ by a least q modulo p.
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Circular colourings

A (p/q)-colouring of a graph G is:

• a function c : V (G)→ {0, 1, 2, . . . , p− 1};

• where uv ∈ E(G) implies
q ≤ |c(u)− c(v)| ≤ p− q.

In other words, adjacent vertices receive colours
that differ by a least q modulo p.

• Introduced by Vince (1988).
• Combinatorial setting Bondy and Hell (1990).
• Survey Zhu (2001).
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Circular chromatic number

The circular chormatic number of a graph G is

χc(G) = inf

{

p

q
|G is (p/q)− colourable

}

.
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Circular chromatic number

The circular chormatic number of a graph G is

χc(G) = inf

{

p

q
|G is (p/q)− colourable

}

.

Prop 2
• A (p, 1)-colouring is simply a p-colouring.

Hence, (p, q)-colourings generalize classical
colourings.

• χc(Kn) = χ(Kn) = n;

• χc(C2k+1) = 2 + 1/k.
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Circular chromatic number in the
language of homomorphisms

We require a suitable colleciton of calibrating
graphs.
What is the correct target H for a
(p/q)-colouring?
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Circular chromatic number in the
language of homomorphisms

We require a suitable colleciton of calibrating
graphs.
What is the correct target H for a
(p/q)-colouring?

• V (H) = {0, 1, 2, . . . , p− 1};

• E(H) = {ij | q ≤ |i− j| ≤ p− q}.
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Circular chromatic number in the
language of homomorphisms

We require a suitable colleciton of calibrating
graphs.
What is the correct target H for a
(p/q)-colouring?

• V (H) = {0, 1, 2, . . . , p− 1};

• E(H) = {ij | q ≤ |i− j| ≤ p− q}.

We call these graphs the Kp/q cliques.

χc(G) = inf

{

p

q
|G→ Kp/q

}
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The circular cliqueK7/2

0

1

2

3

4

5

6
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Circular cliques behave

The circular cliques have many nice properties
we recognize from classical cliques.
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Circular cliques behave

The circular cliques have many nice properties
we recognize from classical cliques.

• For rationals r′ < r, Kr′ → Kr;

CA Workshop, 2006 – p.35/66



Circular cliques behave

The circular cliques have many nice properties
we recognize from classical cliques.

• For rationals r′ < r, Kr′ → Kr;
• for (p, q) = 1 and p/q ≥ 2

(Kp/q − {x})→ Kp′/q′

with p′/q′ < p/q, p′ < p and q′ < q;
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Circular cliques behave

The circular cliques have many nice properties
we recognize from classical cliques.

• For rationals r′ < r, Kr′ → Kr;
• for (p, q) = 1 and p/q ≥ 2

(Kp/q − {x})→ Kp′/q′

with p′/q′ < p/q, p′ < p and q′ < q;
• we can replace inf with min.
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Circular colouring comments
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Circular colouring comments

• χ(G)− 1 < χc(G) ≤ χ(G)
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Circular colouring comments

• χ(G)− 1 < χc(G) ≤ χ(G)

• An orientation ~G of G is obtained by assigning
a direction to each edge in G.

• Given a cycle C in G, C+(C−) is number of
forward (backward) arcs.
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Circular colouring comments

• χ(G)− 1 < χc(G) ≤ χ(G)

• An orientation ~G of G is obtained by assigning
a direction to each edge in G.

• Given a cycle C in G, C+(C−) is number of
forward (backward) arcs.

• Minty, 1962: χ(G) = min
~G

max
C

⌈

|C+|

|C−|
+ 1

⌉

• Goddyn, Tarsi, Zhang, 1998:

χc(G) = min
~G

max
C

|C+|

|C−|
+ 1
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Fractional Colourings

A k-tuple, n-colouring of a graph G is:
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Fractional Colourings

A k-tuple, n-colouring of a graph G is:

• an assignment to each vertex v, a k-set of
colours from an n-set;

• adjacent vertices receive disjoint sets.
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Fractional Colourings

A k-tuple, n-colouring of a graph G is:

• an assignment to each vertex v, a k-set of
colours from an n-set;

• adjacent vertices receive disjoint sets.

When k = 1 we have a classical vertex colouring.
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Fractional Colouring Targets

The Kneser graph K(n, k) is defined as follows:
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Fractional Colouring Targets

The Kneser graph K(n, k) is defined as follows:

• vertices k-sets from an n-set;
• two vertices are adjacent if they are disjoint.
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An old friend returns:K(5, 2)
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An old friend returns:K(5, 2)

12

45

23

15 34

35

13

14

24
25

CA Workshop, 2006 – p.39/66



K7/2 → K(7, 2)
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K7/2 → K(7, 2)

0

1

2

3

4

5

6
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K7/2 → K(7, 2)

{0, 1}

{1, 2}
{2, 3}

{3, 4}

{4, 5}

{5, 6}
{6, 0}
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Integer Programming

We can formulate ordinary chromatic number as
an integer program. Recall χ is the smallest
number of independent sets into which we can
partition V (G).
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Integer Programming

We can formulate ordinary chromatic number as
an integer program. Recall χ is the smallest
number of independent sets into which we can
partition V (G).

• For each independent set I, create a
01-variable xI .
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Integer Programming

We can formulate ordinary chromatic number as
an integer program. Recall χ is the smallest
number of independent sets into which we can
partition V (G).

• For each independent set I, create a
01-variable xI .

• χ is the optimum value of:

min
∑

I xI
∑

v∈I = 1, for all v ∈ V (G)
CA Workshop, 2006 – p.41/66



Fractional Relaxation

It is easy to verify that χf is the optimal value of
the fractional relaxation of the IP above:

min
∑

I xI
∑

v∈I = 1, for all v ∈ V (G)

xI ≥ 0
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Fractional Relaxation (2)

The dual to this problem (in standard form)
defines the fractional clique. Gives lower bounds
on χf . For example,

χf(G) ≥
|V (G)|

α
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Fractional Relaxation (2)

The dual to this problem (in standard form)
defines the fractional clique. Gives lower bounds
on χf . For example,

χf(G) ≥
|V (G)|

α

Using this we get χf(K(n, k)) = n
k .
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Kneser graphs

• Unlike the circular cliques, we do not have a
full understanding of the homomorphism
structure between K(n, k).

• We do know for n ≥ 2k ≥ 2
• K(n, k)→ K(n+ 1, k)
• K(n, k)→ K(tn, tk), for every positive

integer t
• K(n, k)→ K(n− 2, k − 1), for k > 1
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Chromatic number of Kneser
graphs

Theorem 3 (Lovász, 1978) For every
n, k, n ≥ 2k,

χ(K(n, k)) = n− 2k + 2.

CA Workshop, 2006 – p.45/66



Chromatic number of Kneser
graphs

Theorem 3 (Lovász, 1978) For every
n, k, n ≥ 2k,

χ(K(n, k)) = n− 2k + 2.

• Topological methods;

• Uses α(K(n, k)) =
(

n−1
k−2

)

from the
Erdős-Ko-Rado Theorem.
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Chromatic number of Kneser
graphs

Theorem 3 (Lovász, 1978) For every
n, k, n ≥ 2k,

χ(K(n, k)) = n− 2k + 2.

• Topological methods;

• Uses α(K(n, k)) =
(

n−1
k−2

)

from the
Erdős-Ko-Rado Theorem.

Stahl (and others) conjecture

K(n, k) 6→ K(tn− 2k + 1, tk − k + 1).
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Covering Arrays and
Homomorphisms

Can we express covering array problems in the
language of homomorphisms?
Natural problems? Interesting?
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Covering Arrays and
Homomorphisms

Can we express covering array problems in the
language of homomorphisms?
Natural problems? Interesting?

• Karen Meagher and Brett Stevens
• Karen Meagher, Lucia Moura, and Latifa

Zekaoui
• Chris Godsil, Karen Meagher, and Reza

Naserasr
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Covering Arrays Targets

The graph QI(n, g) (with n ≥ g2)

• V strings of length n over {0, 1, . . . , g − 1};
• E pairs of qualitatively independent strings.
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Covering Arrays Targets

The graph QI(n, g) (with n ≥ g2)

• V strings of length n over {0, 1, . . . , g − 1};
• E pairs of qualitatively independent strings.

A k-clique in QI(n, g) corresponds to a n× k
covering array.
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CA in the language of
homomorphisms

There exists a CA(n, k, g)
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CA in the language of
homomorphisms

There exists a CA(n, k, g)
iff k ≤ ω(QI(n, g))
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CA in the language of
homomorphisms

There exists a CA(n, k, g)
iff k ≤ ω(QI(n, g))
iff Kk → ω(QI(n, g))
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CA in the language of
homomorphisms

There exists a CA(n, k, g)
iff k ≤ ω(QI(n, g))
iff Kk → ω(QI(n, g))

Again, we may restrict our attention to cores.

Observe QI•(4, 2) = K3, and is induced by the

balance strings starting with 0.
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Continuing with homomorphisms

Let’s ask the question, for which graph G

G
?
→ QI(n, g)
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Continuing with homomorphisms

Let’s ask the question, for which graph G

G
?
→ QI(n, g)

Covering array on a graph G is a homomorphism
G→ QI(n, g).
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Continuing with homomorphisms

Let’s ask the question, for which graph G

G
?
→ QI(n, g)

Covering array on a graph G is a homomorphism
G→ QI(n, g).

CA(G, g) = minℓ∈N{ℓ : ∃CA(ℓ,G, g)}

Note: CAN(Kk, g) = CAN(k, g)
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Some Results

CA Workshop, 2006 – p.50/66



Some Results

Prop 4 If G→ H, then CAN(G, g) ≤ CAN(H, g).
In particular,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g)
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Some Results

Prop 4 If G→ H, then CAN(G, g) ≤ CAN(H, g).
In particular,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g)

Meagher and Stevens examined the problem of
finding graphs such that

CAN(G, 2) < CAN(Kχ(G), 2)
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Some Results

Prop 4 If G→ H, then CAN(G, g) ≤ CAN(H, g).
In particular,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g)

Meagher and Stevens examined the problem of
finding graphs such that

CAN(G, 2) < CAN(Kχ(G), 2)

QI(5, 2) is such a graph.
CA Workshop, 2006 – p.50/66



Do the target graphs behave?
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Do the target graphs behave?

(The core of) QI(5, 2) is the complement of the
Petersen graph.
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Do the target graphs behave?

(The core of) QI(5, 2) is the complement of the
Petersen graph.

Theorem 5 (MS) QI•(n, 2) is the complement of
a Kneser graph.
• for n even the core is K( n

n/2)/2;

• for n odd the core is F (n, 2) = subgraph
induced by vectors of weight ⌊n/2⌋.
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Karen’s Questions
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Karen’s Questions

• QI(n, g)→ BQI(n, g)?

• What is Aut(QI(n, k)) or Aut(QI(ck, k))?

• Is BQI(k2, k) a core?

• χ(BQI(k2, k)) =
(

k+1
2

)

?

CA Workshop, 2006 – p.52/66



List Homomorphisms

Definition 5 Let G and H be graphs. Let L(v) be
a subset of V (H) for each vertex v ∈ V (G). A list
homomorphism f : G→ H is a homomorphism
such that f(v) ∈ L(v) for all v.
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Products

The natural product with homomorphisms is the
categorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H
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⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)
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Products

The natural product with homomorphisms is the
categorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H π1 : G×H → G

Projections are
homomorphisms
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Products

The natural product with homomorphisms is the
categorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H π2 : G×H → H

Projections are
homomorphisms
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Products (2)

Prop 6 X → G×H iff X → G and X → H
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Prop 6 X → G×H iff X → G and X → H

G H

X

φ1 φ2
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Products (2)

Prop 6 X → G×H iff X → G and X → H

G H

X

φ1 φ2G×H

π1 π2
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Products (2)

Prop 6 X → G×H iff X → G and X → H

G H

X

φ1 φ2G×H

π1 π2

G×H

α

α(x) := (φ1(x), φ2(x)) (= φ1 × φ2(x))

φ1 = π1 ◦ α φ2 = π2 ◦ α
CA Workshop, 2006 – p.55/66



Varieties

• A variety is a set of graphs closed under
retracts and products.

• Let C be a family of graphs. The variety
generated by C is the smallest variety
containing C. Denoted V(C).

• Example, the variety generated by finite,
reflexive paths is important in the study of
graph retraction problems. Well
characterized.
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Cops and Robbers

Consider reflexive graphs.
• Cop picks a vertex.
• Robber picks a vertex.
• Take turns moving to an adjacent vertex.
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Cops and Robbers

Consider reflexive graphs.
• Cop picks a vertex.
• Robber picks a vertex.
• Take turns moving to an adjacent vertex.
• Cop wins by occupying the same vertex as

the robber. A graph is cop-win if the cop has
a winning strategy.

• Observation: Cop-win graphs form a variety.
• Nowakowski and Winkler, Disc Math, 1983.
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Homomorphism Partial Order

• Let G be the set of all finite graphs.
• G � H if G→ H.
• Reflexive and Transitive: quasi-order.
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Homomorphism Partial Order

• Let G be the set of all finite graphs.
• G � H if G→ H.
• Reflexive and Transitive: quasi-order.
• Not-antisymmetric: C6 → K2 and K2 → C6.
• Usual operation of moding out by hom-equiv

to obtain a partial order.
• Cores are the natural representation of the

classes.
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Homomorphism Partial Order (2)

• Rich structure.
• Distributive lattice.
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Homomorphism Partial Order (2)

• Rich structure.
• Distributive lattice.
• meet: G ∧H = G×H;
• join: G ∨H = G+H, disjoint union or

co-product.
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Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3
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• Recall:
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Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3

• Recall:

• χ(G) > χ(H)⇒ G 6→ H.
• og(G) > og(H)⇒ G 6← H.
• Erdös: ∀i ≥ 3, there exists a graph Ri such

that χ(Ri) = i and og(Ri) = 2i+ 1.
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Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3

• Recall:

• χ(G) > χ(H)⇒ G 6→ H.
• og(G) > og(H)⇒ G 6← H.
• Erdös: ∀i ≥ 3, there exists a graph Ri such

that χ(Ri) = i and og(Ri) = 2i+ 1.

• Ri, i ≥ 3 form an antichain.
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Density

Given G→ H and G 6← H:
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Density

Given G→ H and G 6← H:
• find Z such that
G→ Z → H and G 6← Z 6← H
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Density

Given G→ H and G 6← H:
• find Z such that
G→ Z → H and G 6← Z 6← H

• Theorem 7 (Welzl, 1982) If
{G,H} 6= {K1,K2} with G→ H and G 6← H,
then there exists Z such that

G→ Z → H and G 6← Z 6← H
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Density

Given G→ H and G 6← H:
• find Z such that
G→ Z → H and G 6← Z 6← H

• Theorem 7 (Welzl, 1982) If
{G,H} 6= {K1,K2} with G→ H and G 6← H,
then there exists Z such that

G→ Z → H and G 6← Z 6← H

• Proof indep Nešetřil and Perles (1990).
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Duality and Gaps

Define→ H := {G |G→ H}.
When can we nicely describe→ H?
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When can we nicely describe→ H?

• G→ K2 iff C 6→ G for all odd cycles C.
• G→ K1 iff K2 6→ G.
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Duality and Gaps

Define→ H := {G |G→ H}.
When can we nicely describe→ H?

• G→ K2 iff C 6→ G for all odd cycles C.
• G→ K1 iff K2 6→ G.
• duality pair: (F,H)

∀G,G→ H ⇔ F 6→ G
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Duality and Gaps

Define→ H := {G |G→ H}.
When can we nicely describe→ H?

• G→ K2 iff C 6→ G for all odd cycles C.
• G→ K1 iff K2 6→ G.
• duality pair: (F,H)

∀G,G→ H ⇔ F 6→ G

• finite duality: ({F1, . . . , Ft}, H)

∀G,G→ H ⇔ ∀i, Fi 6→ G
CA Workshop, 2006 – p.62/66



Gaps

A pair [G,H] with G < H is a gap if no X satisfies
G < X < H.
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Gaps

A pair [G,H] with G < H is a gap if no X satisfies
G < X < H.
The result of Welzl tell us that [K1,K2] is the only
gap in G.
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Gaps

A pair [G,H] with G < H is a gap if no X satisfies
G < X < H.
The result of Welzl tell us that [K1,K2] is the only
gap in G.
Theorem 8 (Nešet řil and Tardif, 2000)
• If cores (F,H) form a duality pair, then

[F ×H,F ] is a gap.

• If cores [A,B] form a gap and B is connected,
then (B,AB) is a duality pair.
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Gaps

A pair [G,H] with G < H is a gap if no X satisfies
G < X < H.
The result of Welzl tell us that [K1,K2] is the only
gap in G.
Theorem 8 (Nešet řil and Tardif, 2000)
• If cores (F,H) form a duality pair, then

[F ×H,F ] is a gap.

• If cores [A,B] form a gap and B is connected,
then (B,AB) is a duality pair.

Finite duality implies H-colouring is polynomial.
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Representation

Frucht, 1938 Every group is isomorphic to the
automorphism group of a graph.
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Hedrlı́n and Pultr, 1965 Every monoid is isomorphic
to the endomorphism monoid of a suitable
digraph G.
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Representation
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automorphism group of a graph.
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digraph G.

Pultr and Trnkov á, 1980 Any countable partial order
is isomorphic to a suborder of the digraph
poset.
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Representation

Frucht, 1938 Every group is isomorphic to the
automorphism group of a graph.

Hedrlı́n and Pultr, 1965 Every monoid is isomorphic
to the endomorphism monoid of a suitable
digraph G.

Pultr and Trnkov á, 1980 Any countable partial order
is isomorphic to a suborder of the digraph
poset.

Pultr and Trnkov á, 1980 Every concrete category
can be represented in the category of finite
graphs.

CA Workshop, 2006 – p.64/66



Complexity Issues

BFHHM (and others) examine retraction
complexity and no-certificates.
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List Homomorphisms

Definition 8 Let G and H be graphs. Let L(v) be
a subset of V (H) for each vertex v ∈ V (G). A list
homomorphism f : G→ H is a homomorphism
such that f(v) ∈ L(v) for all v.
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